scaled variables for poisson

This commit is contained in:
mjgaughan 2024-04-20 11:09:35 -05:00
parent 40a9953280
commit c6c622c095
2 changed files with 435 additions and 433 deletions

View File

@ -1,313 +1,367 @@
window_num <- 10 link <- readme_df[i,]$upstream_vcs_link
longer <- longer %>% age <- full_df$age_of_project[full_df$upstream_vcs_link == link]
filter(week >= (26 - window_num) & week <= (26 + window_num)) project <- full_df$project_name[full_df$upstream_vcs_link == link]
#testing out analysis below ages <- c(ages, age)
longer[which(longer$observation_type == "all"),] |> if (length(project) != 1){
ggplot(aes(x = week, y = count)) + project
geom_point() + break
geom_vline(xintercept = 26) } else {
longer[which(longer$observation_type == "all"),] |> projects <- c(projects, project)
mutate(D = ifelse(week >= 26, 1, 0)) |>
lm(formula = count ~ D * I(week - 26)) |>
summary()
longer[which(longer$observation_type == "all"),] |>
select(count, week) |>
mutate(D = as.factor(ifelse(week >= 26, 1, 0))) |>
ggplot(aes(x = week, y = count, color = D)) +
geom_point() +
geom_smooth(se = FALSE) +
geom_vline(xintercept = 26)
# test_two <- c()
# iterator <- 0
# for (entry in test) {
# readme_df$cnt_before_all[iterator] <- as.numeric(unlist(entry))
# print(as.numeric(unlist(entry)))
# iterator <- iterator + 1
# }
# test_two
#Yes, need to expand the dataframe, but again, for the sake of clarity, do not want to until analysis step
# https://rpubs.com/phle/r_tutorial_regression_discontinuity_design
new_test <- readme_df[697,]
longer <- new_test |>
pivot_longer(cols = starts_with("ct"),
names_to = "window",
values_to = "count") |>
unnest(count)
longer$observation_type <- gsub("^.*_", "", longer$window)
longer <- ddply(longer, "observation_type", transform, week=seq(from=0, by=1, length.out=length(observation_type)))
longer$count <- as.numeric(longer$count)
window_num <- 27
longer <- longer %>%
filter(week >= (26 - window_num) & week <= (26 + window_num))
#testing out analysis below
longer[which(longer$observation_type == "all"),] |>
ggplot(aes(x = week, y = count)) +
geom_point() +
geom_vline(xintercept = 26)
longer[which(longer$observation_type == "all"),] |>
mutate(D = ifelse(week >= 26, 1, 0)) |>
lm(formula = count ~ D * I(week - 26)) |>
summary()
longer[which(longer$observation_type == "all"),] |>
select(count, week) |>
mutate(D = as.factor(ifelse(week >= 26, 1, 0))) |>
ggplot(aes(x = week, y = count, color = D)) +
geom_point() +
geom_smooth(se = FALSE) +
geom_vline(xintercept = 26)
window_num <- 13
longer <- longer %>%
filter(week >= (26 - window_num) & week <= (26 + window_num))
#testing out analysis below
longer[which(longer$observation_type == "all"),] |>
ggplot(aes(x = week, y = count)) +
geom_point() +
geom_vline(xintercept = 26)
longer[which(longer$observation_type == "all"),] |>
mutate(D = ifelse(week >= 26, 1, 0)) |>
lm(formula = count ~ D * I(week - 26)) |>
summary()
longer[which(longer$observation_type == "all"),] |>
select(count, week) |>
mutate(D = as.factor(ifelse(week >= 26, 1, 0))) |>
ggplot(aes(x = week, y = count, color = D)) +
geom_point() +
geom_smooth(se = FALSE) +
geom_vline(xintercept = 26)
longer[which(longer$observation_type == "all"),] |>
select(count, week) |>
mutate(D = as.factor(ifelse(week >= 26, 1, 0))) |>
ggplot(aes(x = week, y = count, color = D)) +
geom_point() +
geom_smooth(se = TRUE) +
geom_vline(xintercept = 26)
#testing out analysis below
longer[which(longer$observation_type == "all"),] |>
ggplot(aes(x = week, y = count)) +
geom_point() +
geom_vline(xintercept = 25.5)
longer[which(longer$observation_type == "all"),] |>
mutate(D = ifelse(week >= 26, 1, 0)) |>
lm(formula = count ~ D * I(week - 26)) |>
summary()
longer[which(longer$observation_type == "all"),] |>
select(count, week) |>
mutate(D = as.factor(ifelse(week >= 26, 1, 0))) |>
ggplot(aes(x = week, y = count, color = D)) +
geom_point() +
geom_smooth(se = TRUE) +
geom_vline(xintercept = 25.5)
#testing out analysis below
longer[which(longer$observation_type == "all"),] |>
ggplot(aes(x = week, y = count)) +
geom_point() +
geom_vline(xintercept = 26)
longer[which(longer$observation_type == "all"),] |>
mutate(D = ifelse(week >= 26, 1, 0)) |>
lm(formula = count ~ D * I(week - 26)) |>
summary()
longer[which(longer$observation_type == "all"),] |>
select(count, week) |>
mutate(D = as.factor(ifelse(week >= 26, 1, 0))) |>
ggplot(aes(x = week, y = count, color = D)) +
geom_point() +
geom_smooth(se = TRUE) +
geom_vline(xintercept = 26)
library(rdd-package)
library(rdd)
library(rdd)
# test_two <- c()
# iterator <- 0
# for (entry in test) {
# readme_df$cnt_before_all[iterator] <- as.numeric(unlist(entry))
# print(as.numeric(unlist(entry)))
# iterator <- iterator + 1
# }
# test_two
#Yes, need to expand the dataframe, but again, for the sake of clarity, do not want to until analysis step
# https://rpubs.com/phle/r_tutorial_regression_discontinuity_design
new_test <- readme_df[697,]
longer <- new_test |>
pivot_longer(cols = starts_with("ct"),
names_to = "window",
values_to = "count") |>
unnest(count)
longer$observation_type <- gsub("^.*_", "", longer$window)
longer <- ddply(longer, "observation_type", transform, week=seq(from=0, by=1, length.out=length(observation_type)))
longer$count <- as.numeric(longer$count)
#longer <- longer %>%
# filter(week >= (26 - window_num) & week <= (26 + window_num))
IKbandwidth(longer$week, longer$count, cutpoint = 26, verbose = FALSE, kernel = "triangular")
#testing out analysis below
longer[which(longer$observation_type == "all"),] |>
ggplot(aes(x = week, y = count)) +
geom_point() +
geom_vline(xintercept = 26)
longer[which(longer$observation_type == "all"),] |>
mutate(D = ifelse(week >= 26, 1, 0)) |>
lm(formula = count ~ D * I(week - 26)) |>
summary()
longer[which(longer$observation_type == "all"),] |>
select(count, week) |>
mutate(D = as.factor(ifelse(week >= 26, 1, 0))) |>
ggplot(aes(x = week, y = count, color = D)) +
geom_point() +
geom_smooth(se = TRUE) +
geom_vline(xintercept = 26)
# test_two <- c()
# iterator <- 0
# for (entry in test) {
# readme_df$cnt_before_all[iterator] <- as.numeric(unlist(entry))
# print(as.numeric(unlist(entry)))
# iterator <- iterator + 1
# }
# test_two
#Yes, need to expand the dataframe, but again, for the sake of clarity, do not want to until analysis step
# https://rpubs.com/phle/r_tutorial_regression_discontinuity_design
new_test <- readme_df[0,]
longer <- new_test |>
pivot_longer(cols = starts_with("ct"),
names_to = "window",
values_to = "count") |>
unnest(count)
longer$observation_type <- gsub("^.*_", "", longer$window)
longer <- ddply(longer, "observation_type", transform, week=seq(from=0, by=1, length.out=length(observation_type)))
longer$count <- as.numeric(longer$count)
#longer <- longer %>%
# filter(week >= (26 - window_num) & week <= (26 + window_num))
IKbandwidth(longer$week, longer$count, cutpoint = 26, verbose = FALSE, kernel = "triangular")
# test_two <- c()
# iterator <- 0
# for (entry in test) {
# readme_df$cnt_before_all[iterator] <- as.numeric(unlist(entry))
# print(as.numeric(unlist(entry)))
# iterator <- iterator + 1
# }
# test_two
#Yes, need to expand the dataframe, but again, for the sake of clarity, do not want to until analysis step
# https://rpubs.com/phle/r_tutorial_regression_discontinuity_design
new_test <- readme_df[3,]
longer <- new_test |>
pivot_longer(cols = starts_with("ct"),
names_to = "window",
values_to = "count") |>
unnest(count)
longer$observation_type <- gsub("^.*_", "", longer$window)
longer <- ddply(longer, "observation_type", transform, week=seq(from=0, by=1, length.out=length(observation_type)))
longer$count <- as.numeric(longer$count)
#longer <- longer %>%
# filter(week >= (26 - window_num) & week <= (26 + window_num))
IKbandwidth(longer$week, longer$count, cutpoint = 26, verbose = FALSE, kernel = "triangular")
# test_two <- c()
# iterator <- 0
# for (entry in test) {
# readme_df$cnt_before_all[iterator] <- as.numeric(unlist(entry))
# print(as.numeric(unlist(entry)))
# iterator <- iterator + 1
# }
# test_two
#Yes, need to expand the dataframe, but again, for the sake of clarity, do not want to until analysis step
# https://rpubs.com/phle/r_tutorial_regression_discontinuity_design
new_test <- readme_df[9,]
longer <- new_test |>
pivot_longer(cols = starts_with("ct"),
names_to = "window",
values_to = "count") |>
unnest(count)
longer$observation_type <- gsub("^.*_", "", longer$window)
longer <- ddply(longer, "observation_type", transform, week=seq(from=0, by=1, length.out=length(observation_type)))
longer$count <- as.numeric(longer$count)
#longer <- longer %>%
# filter(week >= (26 - window_num) & week <= (26 + window_num))
IKbandwidth(longer$week, longer$count, cutpoint = 26, verbose = FALSE, kernel = "triangular")
get_optimal_window <- function(project_row) {
longer <- project_row |>
pivot_longer(cols = starts_with("ct"),
names_to = "window",
values_to = "count") |>
unnest(count)
longer$observation_type <- gsub("^.*_", "", longer$window)
longer <- ddply(longer, "observation_type", transform, week=seq(from=0, by=1, length.out=length(observation_type)))
longer$count <- as.numeric(longer$count)
optimal_bandwidth <- IKbandwidth(longer$week, longer$count, cutpoint = 26, verbose = FALSE, kernel = "triangular")
return(optimal_bandwidth)
} }
bandwidths <- c() }
#set wd, read in data
try(setwd(dirname(rstudioapi::getActiveDocumentContext()$path)))
readme_df <- read_csv("../final_data/deb_readme_did.csv")
contributing_df <- read_csv("../final_data/deb_contrib_did.csv")
full_df <- read_csv("../final_data/deb_full_data.csv")
#preprocessing for readme_df
colnames(readme_df) <- c("upstream_vcs_link", "event_date", "event_hash", "before_all_ct", "before_mrg_ct", "after_all_ct", "after_mrg_ct", "before_auth_new", "after_commit_new", "after_auth_new", "before_commit_new")
col_order <- c("upstream_vcs_link", "event_date", "event_hash", "before_all_ct", "after_all_ct", "before_mrg_ct", "after_mrg_ct", "before_auth_new", "after_auth_new", "before_commit_new", "after_commit_new")
ages <- c()
projects <- c()
for (i in 1:nrow(readme_df)){ for (i in 1:nrow(readme_df)){
bandwidths <- c(bandwidths, get_optimal_window(readme_df[i,])) link <- readme_df[i,]$upstream_vcs_link
age <- full_df$age_of_project[full_df$upstream_vcs_link == link]
project <- full_df$project_name[full_df$upstream_vcs_link == link]
ages <- c(ages, age)
if (length(project) != 1){
project
break
} else {
projects <- c(projects, project)
} }
bandwidths
mean(bandwidths)
median(bandwidths)
get_optimal_window <- function(project_row) {
longer <- project_row |>
pivot_longer(cols = starts_with("ct"),
names_to = "window",
values_to = "count") |>
unnest(count)
longer$observation_type <- gsub("^.*_", "", longer$window)
longer <- ddply(longer, "observation_type", transform, week=seq(from=0, by=1, length.out=length(observation_type)))
longer$count <- as.numeric(longer$count)
longer <- longer[which(longer$observation_type == "all"),]
optimal_bandwidth <- IKbandwidth(longer$week, longer$count, cutpoint = 26, verbose = FALSE, kernel = "triangular")
return(optimal_bandwidth)
} }
bandwidths <- c() #set wd, read in data
try(setwd(dirname(rstudioapi::getActiveDocumentContext()$path)))
readme_df <- read_csv("../final_data/deb_readme_did.csv")
contributing_df <- read_csv("../final_data/deb_contrib_did.csv")
full_df <- read_csv("../final_data/deb_full_data.csv")
#preprocessing for readme_df
colnames(readme_df) <- c("upstream_vcs_link", "event_date", "event_hash", "before_all_ct", "before_mrg_ct", "after_all_ct", "after_mrg_ct", "before_auth_new", "after_commit_new", "after_auth_new", "before_commit_new")
col_order <- c("upstream_vcs_link", "event_date", "event_hash", "before_all_ct", "after_all_ct", "before_mrg_ct", "after_mrg_ct", "before_auth_new", "after_auth_new", "before_commit_new", "after_commit_new")
ages <- c()
projects <- c()
for (i in 1:nrow(readme_df)){ for (i in 1:nrow(readme_df)){
bandwidths <- c(bandwidths, get_optimal_window(readme_df[i,])) link <- readme_df[i,]$upstream_vcs_link
age <- full_df$age_of_project[full_df$upstream_vcs_link == link]
project <- full_df$project_name[full_df$upstream_vcs_link == link]
ages <- c(ages, age)
if (length(project) != 1){
project
break
} else {
projects <- c(projects, project)
} }
mean(bandwidths) }
median(bandwidths) #set wd, read in data
bandwidths <- c() try(setwd(dirname(rstudioapi::getActiveDocumentContext()$path)))
readme_df <- read_csv("../final_data/deb_readme_did.csv")
contributing_df <- read_csv("../final_data/deb_contrib_did.csv")
full_df <- read_csv("../final_data/deb_full_data.csv")
#preprocessing for readme_df
colnames(readme_df) <- c("upstream_vcs_link", "event_date", "event_hash", "before_all_ct", "before_mrg_ct", "after_all_ct", "after_mrg_ct", "before_auth_new", "after_commit_new", "after_auth_new", "before_commit_new")
col_order <- c("upstream_vcs_link", "event_date", "event_hash", "before_all_ct", "after_all_ct", "before_mrg_ct", "after_mrg_ct", "before_auth_new", "after_auth_new", "before_commit_new", "after_commit_new")
ages <- c()
projects <- c()
for (i in 1:nrow(readme_df)){ for (i in 1:nrow(readme_df)){
bandwidth <- get_optimal_window(readme_df[i,]) link <- readme_df[i,]$upstream_vcs_link
bandwidths <- c(bandwidths, bandwidth) age <- full_df$age_of_project[full_df$upstream_vcs_link == link]
project <- full_df$project_name[full_df$upstream_vcs_link == link]
ages <- c(ages, age)
if (length(project) != 1){
project
break
} else {
projects <- c(projects, project)
} }
mean(bandwidths)
median(bandwidths)
get_optimal_window <- function(project_row) {
longer <- project_row |>
pivot_longer(cols = starts_with("ct"),
names_to = "window",
values_to = "count") |>
unnest(count)
longer$observation_type <- gsub("^.*_", "", longer$window)
longer <- ddply(longer, "observation_type", transform, week=seq(from=0, by=1, length.out=length(observation_type)))
longer$count <- as.numeric(longer$count)
#this below line makes the code specific to the all-commits data
longer <- longer[which(longer$observation_type == "all"),]
result <- tryCatch({
optimal_bandwidth <- IKbandwidth(longer$week, longer$count, cutpoint = 26, verbose = FALSE, kernel = "triangular")
return(optimal_bandwidth)
}, error = function(e){
return(8)
})
} }
bandwidths <- c() readme_df <- read_csv("../final_data/deb_readme_did.csv")
contributing_df <- read_csv("../final_data/deb_contrib_did.csv")
full_df <- read_csv("../final_data/deb_full_data.csv")
#preprocessing for readme_df
colnames(readme_df) <- c("upstream_vcs_link", "event_date", "event_hash", "before_all_ct", "before_mrg_ct", "after_all_ct", "after_mrg_ct", "before_auth_new", "after_commit_new", "after_auth_new", "before_commit_new")
col_order <- c("upstream_vcs_link", "event_date", "event_hash", "before_all_ct", "after_all_ct", "before_mrg_ct", "after_mrg_ct", "before_auth_new", "after_auth_new", "before_commit_new", "after_commit_new")
ages <- c()
projects <- c()
for (i in 1:nrow(readme_df)){ for (i in 1:nrow(readme_df)){
bandwidth <- get_optimal_window(readme_df[i,]) link <- readme_df[i,]$upstream_vcs_link
bandwidths <- c(bandwidths, bandwidth) age <- full_df$age_of_project[full_df$upstream_vcs_link == link]
project <- full_df$project_name[full_df$upstream_vcs_link == link]
ages <- c(ages, age)
if (length(project) != 1){
project
break
} else {
projects <- c(projects, project)
} }
mean(bandwidths) }
median(bandwidths) #set wd, read in data
mode(bandwidths) try(setwd(dirname(rstudioapi::getActiveDocumentContext()$path)))
table(bandwidths) readme_df <- read_csv("../final_data/deb_readme_did.csv")
mean(bandwidths) # contributing_df <- read_csv("../final_data/deb_contrib_did.csv")
median(bandwidths) full_df <- read_csv("../final_data/deb_full_data.csv")
# this is the file with the lmer multi-level rddAnalysis #preprocessing for readme_df
colnames(readme_df) <- c("upstream_vcs_link", "event_date", "event_hash", "before_all_ct", "before_mrg_ct", "after_all_ct", "after_mrg_ct", "before_auth_new", "after_commit_new", "after_auth_new", "before_commit_new")
col_order <- c("upstream_vcs_link", "event_date", "event_hash", "before_all_ct", "after_all_ct", "before_mrg_ct", "after_mrg_ct", "before_auth_new", "after_auth_new", "before_commit_new", "after_commit_new")
ages <- c()
projects <- c()
for (i in 1:nrow(readme_df)){
link <- readme_df[i,]$upstream_vcs_link
age <- full_df$age_of_project[full_df$upstream_vcs_link == link]
project <- full_df$project_name[full_df$upstream_vcs_link == link]
ages <- c(ages, age)
if (length(project) != 1){
project
break
} else {
projects <- c(projects, project)
}
}
#set wd, read in data
try(setwd(dirname(rstudioapi::getActiveDocumentContext()$path)))
readme_df <- read_csv("../final_data/deb_readme_did.csv")
contributing_df <- read_csv("../final_data/deb_contrib_did.csv")
full_df <- read_csv("../final_data/deb_full_data.csv")
#preprocessing for readme_df
colnames(readme_df) <- c("upstream_vcs_link", "event_date", "event_hash", "before_all_ct", "before_mrg_ct", "after_all_ct", "after_mrg_ct", "before_auth_new", "after_commit_new", "after_auth_new", "before_commit_new")
col_order <- c("upstream_vcs_link", "event_date", "event_hash", "before_all_ct", "after_all_ct", "before_mrg_ct", "after_mrg_ct", "before_auth_new", "after_auth_new", "before_commit_new", "after_commit_new")
ages <- c()
projects <- c()
for (i in 1:nrow(readme_df)){
link <- readme_df[i,]$upstream_vcs_link
age <- full_df$age_of_project[full_df$upstream_vcs_link == link]
project <- full_df$project_name[full_df$upstream_vcs_link == link]
ages <- c(ages, age)
if (length(project) != 1){
project
break
} else {
projects <- c(projects, project)
}
}
#set wd, read in data
try(setwd(dirname(rstudioapi::getActiveDocumentContext()$path)))
readme_df <- read_csv("../final_data/deb_readme_did.csv")
contributing_df <- read_csv("../final_data/deb_contrib_did.csv")
full_df <- read_csv("../final_data/deb_full_data.csv")
#preprocessing for readme_df
colnames(readme_df) <- c("upstream_vcs_link", "event_date", "event_hash", "before_all_ct", "before_mrg_ct", "after_all_ct", "after_mrg_ct", "before_auth_new", "after_commit_new", "after_auth_new", "before_commit_new")
col_order <- c("upstream_vcs_link", "event_date", "event_hash", "before_all_ct", "after_all_ct", "before_mrg_ct", "after_mrg_ct", "before_auth_new", "after_auth_new", "before_commit_new", "after_commit_new")
ages <- c()
projects <- c()
for (i in 1:nrow(readme_df)){
link <- readme_df[i,]$upstream_vcs_link
age <- full_df$age_of_project[full_df$upstream_vcs_link == link]
project <- full_df$project_name[full_df$upstream_vcs_link == link]
ages <- c(ages, age)
if (length(project) != 1){
project
break
} else {
projects <- c(projects, project)
}
}
#set wd, read in data
try(setwd(dirname(rstudioapi::getActiveDocumentContext()$path)))
readme_df <- read_csv("../final_data/deb_readme_did.csv")
contributing_df <- read_csv("../final_data/deb_contrib_did.csv")
full_df <- read_csv("../final_data/deb_full_data.csv")
#preprocessing for readme_df
colnames(readme_df) <- c("upstream_vcs_link", "event_date", "event_hash", "before_all_ct", "before_mrg_ct", "after_all_ct", "after_mrg_ct", "before_auth_new", "after_commit_new", "after_auth_new", "before_commit_new")
col_order <- c("upstream_vcs_link", "event_date", "event_hash", "before_all_ct", "after_all_ct", "before_mrg_ct", "after_mrg_ct", "before_auth_new", "after_auth_new", "before_commit_new", "after_commit_new")
ages <- c()
projects <- c()
for (i in 1:nrow(readme_df)){
link <- readme_df[i,]$upstream_vcs_link
age <- full_df$age_of_project[full_df$upstream_vcs_link == link]
project <- full_df$project_name[full_df$upstream_vcs_link == link]
ages <- c(ages, age)
if (length(project) != 1){
project
break
} else {
projects <- c(projects, project)
}
}
#set wd, read in data
try(setwd(dirname(rstudioapi::getActiveDocumentContext()$path)))
readme_df <- read_csv("../final_data/deb_readme_did.csv")
contributing_df <- read_csv("../final_data/deb_contrib_did.csv")
full_df <- read_csv("../final_data/deb_full_data.csv")
#preprocessing for readme_df
colnames(readme_df) <- c("upstream_vcs_link", "event_date", "event_hash", "before_all_ct", "before_mrg_ct", "after_all_ct", "after_mrg_ct", "before_auth_new", "after_commit_new", "after_auth_new", "before_commit_new")
col_order <- c("upstream_vcs_link", "event_date", "event_hash", "before_all_ct", "after_all_ct", "before_mrg_ct", "after_mrg_ct", "before_auth_new", "after_auth_new", "before_commit_new", "after_commit_new")
ages <- c()
projects <- c()
for (i in 1:nrow(readme_df)){
link <- readme_df[i,]$upstream_vcs_link
age <- full_df$age_of_project[full_df$upstream_vcs_link == link]
project <- full_df$project_name[full_df$upstream_vcs_link == link]
ages <- c(ages, age)
if (length(project) != 1){
project
break
} else {
projects <- c(projects, project)
}
}
length(ages)
#set wd, read in data
try(setwd(dirname(rstudioapi::getActiveDocumentContext()$path)))
readme_df <- read_csv("../final_data/deb_readme_did.csv")
contributing_df <- read_csv("../final_data/deb_contrib_did.csv")
full_df <- read_csv("../final_data/deb_full_data.csv")
#preprocessing for readme_df
colnames(readme_df) <- c("upstream_vcs_link", "event_date", "event_hash", "before_all_ct", "before_mrg_ct", "after_all_ct", "after_mrg_ct", "before_auth_new", "after_commit_new", "after_auth_new", "before_commit_new")
col_order <- c("upstream_vcs_link", "event_date", "event_hash", "before_all_ct", "after_all_ct", "before_mrg_ct", "after_mrg_ct", "before_auth_new", "after_auth_new", "before_commit_new", "after_commit_new")
ages <- c()
projects <- c()
for (i in 1:nrow(readme_df)){
link <- readme_df[i,]$upstream_vcs_link
age <- full_df$age_of_project[full_df$upstream_vcs_link == link]
project <- full_df$project_name[full_df$upstream_vcs_link == link]
ages <- c(ages, age)
if (length(project) != 1){
project
break
} else {
projects <- c(projects, project)
}
}
#set wd, read in data
try(setwd(dirname(rstudioapi::getActiveDocumentContext()$path)))
readme_df <- read_csv("../final_data/deb_readme_did.csv")
contributing_df <- read_csv("../final_data/deb_contrib_did.csv")
full_df <- read_csv("../final_data/deb_full_data.csv")
#preprocessing for readme_df
colnames(readme_df) <- c("upstream_vcs_link", "event_date", "event_hash", "before_all_ct", "before_mrg_ct", "after_all_ct", "after_mrg_ct", "before_auth_new", "after_commit_new", "after_auth_new", "before_commit_new")
col_order <- c("upstream_vcs_link", "event_date", "event_hash", "before_all_ct", "after_all_ct", "before_mrg_ct", "after_mrg_ct", "before_auth_new", "after_auth_new", "before_commit_new", "after_commit_new")
ages <- c()
projects <- c()
for (i in 1:nrow(readme_df)){
link <- readme_df[i,]$upstream_vcs_link
age <- full_df$age_of_project[full_df$upstream_vcs_link == link]
project <- full_df$project_name[full_df$upstream_vcs_link == link]
ages <- c(ages, age)
if (length(project) != 1){
project
break
} else {
projects <- c(projects, project)
}
}
length(ages)
readme_df$age_of_project = full_df$age_of_project[full_df$upstream_vcs_link == readme_df$upstream_vcs_link]
View(readme_df)
readme_df$age_of_project = ages
View(readme_df)
write.csv(readme_df, "deb_readme_data_4_19.csv", row.names=FALSE)
#preprocessing for readme_df
colnames(contributing_df) <- c("upstream_vcs_link", "event_date", "event_hash", "before_all_ct", "before_mrg_ct", "after_all_ct", "after_mrg_ct", "before_auth_new", "after_commit_new", "after_auth_new", "before_commit_new")
col_order <- c("upstream_vcs_link", "event_date", "event_hash", "before_all_ct", "after_all_ct", "before_mrg_ct", "after_mrg_ct", "before_auth_new", "after_auth_new", "before_commit_new", "after_commit_new")
ages <- c()
projects <- c()
for (i in 1:nrow(contributing_df)){
link <- readme_df[i,]$upstream_vcs_link
age <- full_df$age_of_project[full_df$upstream_vcs_link == link]
project <- full_df$project_name[full_df$upstream_vcs_link == link]
ages <- c(ages, age)
if (length(project) != 1){
project
break
} else {
projects <- c(projects, project)
}
}
contributing_df$age_of_project = ages
write.csv(contributing_df, "deb_contributing_data_4_19.csv", row.names=FALSE)
View(contributing_df)
View(contributing_df)
View(readme_df)
View(contributing_df)
View(contributing_df)
contributing_df <- read_csv("../final_data/deb_contrib_did.csv")
View(contributing_df)
#preprocessing for readme_df
colnames(contributing_df) <- c("upstream_vcs_link", "event_date", "event_hash", "before_all_ct", "before_mrg_ct", "after_all_ct", "after_mrg_ct", "before_auth_new", "after_commit_new", "after_auth_new", "before_commit_new")
ages <- c()
projects <- c()
for (i in 1:nrow(contributing_df)){
link <- contributing_df[i,]$upstream_vcs_link
age <- full_df$age_of_project[full_df$upstream_vcs_link == link]
project <- full_df$project_name[full_df$upstream_vcs_link == link]
ages <- c(ages, age)
if (length(project) != 1){
project
break
} else {
projects <- c(projects, project)
}
}
#set wd, read in data
try(setwd(dirname(rstudioapi::getActiveDocumentContext()$path)))
readme_df <- read_csv("../final_data/deb_readme_did.csv")
contributing_df <- read_csv("../final_data/deb_contrib_did.csv")
full_df <- read_csv("../final_data/deb_full_data.csv")
#preprocessing for readme_df
colnames(contributing_df) <- c("upstream_vcs_link", "event_date", "event_hash", "before_all_ct", "before_mrg_ct", "after_all_ct", "after_mrg_ct", "before_auth_new", "after_commit_new", "after_auth_new", "before_commit_new")
col_order <- c("upstream_vcs_link", "event_date", "event_hash", "before_all_ct", "after_all_ct", "before_mrg_ct", "after_mrg_ct", "before_auth_new", "after_auth_new", "before_commit_new", "after_commit_new")
ages <- c()
projects <- c()
for (i in 1:nrow(contributing_df)){
link <- contributing_df[i,]$upstream_vcs_link
age <- full_df$age_of_project[full_df$upstream_vcs_link == link]
project <- full_df$project_name[full_df$upstream_vcs_link == link]
ages <- c(ages, age)
if (length(project) != 1){
project
break
} else {
projects <- c(projects, project)
}
}
#set wd, read in data
try(setwd(dirname(rstudioapi::getActiveDocumentContext()$path)))
readme_df <- read_csv("../final_data/deb_readme_did.csv")
contributing_df <- read_csv("../final_data/deb_contrib_did.csv")
full_df <- read_csv("../final_data/deb_full_data.csv")
#preprocessing for readme_df
colnames(contributing_df) <- c("upstream_vcs_link", "event_date", "event_hash", "before_all_ct", "before_mrg_ct", "after_all_ct", "after_mrg_ct", "before_auth_new", "after_commit_new", "after_auth_new", "before_commit_new")
ages <- c()
projects <- c()
for (i in 1:nrow(contributing_df)){
link <- contributing_df[i,]$upstream_vcs_link
age <- full_df$age_of_project[full_df$upstream_vcs_link == link]
project <- full_df$project_name[full_df$upstream_vcs_link == link]
ages <- c(ages, age)
if (length(project) != 1){
project
break
} else {
projects <- c(projects, project)
}
}
contributing_df$age_of_project = ages
write.csv(contributing_df, "deb_contributing_data_4_19.csv", row.names=FALSE)
# 0 loading the readme data in
try(setwd(dirname(rstudioapi::getActiveDocumentContext()$path)))
# 0 loading the readme data in # 0 loading the readme data in
try(setwd(dirname(rstudioapi::getActiveDocumentContext()$path))) try(setwd(dirname(rstudioapi::getActiveDocumentContext()$path)))
readme_df <- read_csv("../final_data/deb_readme_did.csv") readme_df <- read_csv("../final_data/deb_readme_did.csv")
View(readme_df)
# 1 preprocessing # 1 preprocessing
colnames(readme_df) <- c("upstream_vcs_link", "event_date", "event_hash", "before_all_ct", "before_mrg_ct", "after_all_ct", "after_mrg_ct", "before_auth_new", "after_commit_new", "after_auth_new", "before_commit_new") #colnames(readme_df) <- c("upstream_vcs_link", "event_date", "event_hash", "before_all_ct", "before_mrg_ct", "after_all_ct", "after_mrg_ct", "before_auth_new", "after_commit_new", "after_auth_new", "before_commit_new")
col_order <- c("upstream_vcs_link", "event_date", "event_hash", "before_all_ct", "after_all_ct", "before_mrg_ct", "after_mrg_ct", "before_auth_new", "after_auth_new", "before_commit_new", "after_commit_new") col_order <- c("upstream_vcs_link", "age_of_project", "event_date", "event_hash", "before_all_ct", "after_all_ct", "before_mrg_ct", "after_mrg_ct", "before_auth_new", "after_auth_new", "before_commit_new", "after_commit_new")
readme_df <- readme_df[,col_order] readme_df <- readme_df[,col_order]
readme_df$ct_before_all <- str_split(gsub("[][]","", readme_df$before_all_ct), ", ") readme_df$ct_before_all <- str_split(gsub("[][]","", readme_df$before_all_ct), ", ")
View(readme_df)
View(readme_df)
readme_df$ct_after_all <- str_split(gsub("[][]","", readme_df$after_all_ct), ", ") readme_df$ct_after_all <- str_split(gsub("[][]","", readme_df$after_all_ct), ", ")
readme_df$ct_before_mrg <- str_split(gsub("[][]","", readme_df$before_mrg_ct), ", ") readme_df$ct_before_mrg <- str_split(gsub("[][]","", readme_df$before_mrg_ct), ", ")
readme_df$ct_after_mrg <- str_split(gsub("[][]","", readme_df$after_mrg_ct), ", ") readme_df$ct_after_mrg <- str_split(gsub("[][]","", readme_df$after_mrg_ct), ", ")
drop <- c("before_all_ct", "before_mrg_ct", "after_all_ct", "after_mrg_ct") drop <- c("before_all_ct", "before_mrg_ct", "after_all_ct", "after_mrg_ct")
readme_df = readme_df[,!(names(readme_df) %in% drop)] readme_df = readme_df[,!(names(readme_df) %in% drop)]
View(readme_df)
# 2 some expansion needs to happens for each project # 2 some expansion needs to happens for each project
expand_timeseries <- function(project_row) { expand_timeseries <- function(project_row) {
longer <- project_row |> longer <- project_row |>
@ -326,131 +380,6 @@ for (i in 2:nrow(readme_df)){
expanded_data <- rbind(expanded_data, expand_timeseries(readme_df[i,])) expanded_data <- rbind(expanded_data, expand_timeseries(readme_df[i,]))
} }
View(expanded_data) View(expanded_data)
View(expanded_data)
View(expanded_data)
View(expanded_data)
View(expanded_data)
get_optimal_window <- function(project_row) {
longer <- project_row |>
pivot_longer(cols = starts_with("ct"),
names_to = "window",
values_to = "count") |>
unnest(count)
longer$observation_type <- gsub("^.*_", "", longer$window)
longer <- ddply(longer, "observation_type", transform, week=seq(from=0, by=1, length.out=length(observation_type)))
longer$count <- as.numeric(longer$count)
#this below line makes the code specific to the all-commits data
longer <- longer[which(longer$observation_type == "all"),]
result <- tryCatch({
#Imbens-Kalyanaraman Optimal Bandwidth Calculation
optimal_bandwidth <- IKbandwidth(longer$week, longer$count, cutpoint = 26, verbose = FALSE, kernel = "triangular")
return(optimal_bandwidth)
}, error = function(e){
return(9)
})
}
#this just gets the optimal bandwith window for each project and then appends to lists
bandwidths <- c()
for (i in 1:nrow(readme_df)){
bandwidth <- get_optimal_window(readme_df[i,])
bandwidths <- c(bandwidths, bandwidth)
}
mean(bandwidths) #8.574233
median(bandwidths) #8.363088
table(bandwidths)
#filter out the timewindows
window_num <- 8
expanded_data |>
filter(week >= (26 - window_num) & week <= (26 + window_num))
expanded_data |>
filter(week >= (26 - window_num) & week <= (26 + window_num))
# 3 rdd in lmer analysis
library(lme4)
draft_model <- lmer(count ~ D * I(week - 26) + upstream_vcs_link, data=expanded_data[which(longer$observation_type == "all"),])
expanded_data |>
filter(week >= (26 - window_num) & week <= (26 + window_num)) |>
mutate(D = ifelse(week >= 26, 1, 0))
# 3 rdd in lmer analysis
library(lme4)
draft_model <- lmer(count ~ D * I(week - 26) + upstream_vcs_link, data=expanded_data[which(longer$observation_type == "all"),])
summary(draft_model)
View(expanded_data)
#filter out the timewindows
window_num <- 8
expanded_data <- expanded_data |>
filter(week >= (26 - window_num) & week <= (26 + window_num)) |>
mutate(D = ifelse(week >= 26, 1, 0))
draft_model <- lmer(count ~ D * I(week - 26) + upstream_vcs_link, data=expanded_data[which(longer$observation_type == "all"),])
summary(draft_model)
draft_model <- lmer(count ~ D * I(week - 26) + upstream_vcs_link, REML=FALSE, data=expanded_data[which(longer$observation_type == "all"),])
draft_model <- lmer(count ~ D * I(week - 26) + upstream_vcs_link, REML=FALSE, data=expanded_data[which(longer$observation_type == "all"),])
draft_model <- lmer(count ~ D * I(week - 26) + (1|upstream_vcs_link), REML=FALSE, data=expanded_data[which(longer$observation_type == "all"),])
summary(draft_model)
# this is the file with the lmer multi-level rddAnalysis
# 0 loading the readme data in
try(setwd(dirname(rstudioapi::getActiveDocumentContext()$path)))
readme_df <- read_csv("../final_data/deb_readme_did.csv")
# this is the file with the lmer multi-level rddAnalysis
library(tidyverse)
# 0 loading the readme data in
try(setwd(dirname(rstudioapi::getActiveDocumentContext()$path)))
readme_df <- read_csv("../final_data/deb_readme_did.csv")
# 1 preprocessing
colnames(readme_df) <- c("upstream_vcs_link", "event_date", "event_hash", "before_all_ct", "before_mrg_ct", "after_all_ct", "after_mrg_ct", "before_auth_new", "after_commit_new", "after_auth_new", "before_commit_new")
col_order <- c("upstream_vcs_link", "event_date", "event_hash", "before_all_ct", "after_all_ct", "before_mrg_ct", "after_mrg_ct", "before_auth_new", "after_auth_new", "before_commit_new", "after_commit_new")
readme_df <- readme_df[,col_order]
readme_df$ct_before_all <- str_split(gsub("[][]","", readme_df$before_all_ct), ", ")
readme_df$ct_after_all <- str_split(gsub("[][]","", readme_df$after_all_ct), ", ")
readme_df$ct_before_mrg <- str_split(gsub("[][]","", readme_df$before_mrg_ct), ", ")
readme_df$ct_after_mrg <- str_split(gsub("[][]","", readme_df$after_mrg_ct), ", ")
drop <- c("before_all_ct", "before_mrg_ct", "after_all_ct", "after_mrg_ct")
readme_df = readme_df[,!(names(readme_df) %in% drop)]
# 2 some expansion needs to happens for each project
expand_timeseries <- function(project_row) {
longer <- project_row |>
pivot_longer(cols = starts_with("ct"),
names_to = "window",
values_to = "count") |>
unnest(count)
longer$observation_type <- gsub("^.*_", "", longer$window)
longer <- ddply(longer, "observation_type", transform, week=seq(from=0, by=1, length.out=length(observation_type)))
longer$count <- as.numeric(longer$count)
#longer <- longer[which(longer$observation_type == "all"),]
return(longer)
}
expanded_data <- expand_timeseries(readme_df[1,])
for (i in 2:nrow(readme_df)){
expanded_data <- rbind(expanded_data, expand_timeseries(readme_df[i,]))
}
library(plyr)
# 2 some expansion needs to happens for each project
expand_timeseries <- function(project_row) {
longer <- project_row |>
pivot_longer(cols = starts_with("ct"),
names_to = "window",
values_to = "count") |>
unnest(count)
longer$observation_type <- gsub("^.*_", "", longer$window)
longer <- ddply(longer, "observation_type", transform, week=seq(from=0, by=1, length.out=length(observation_type)))
longer$count <- as.numeric(longer$count)
#longer <- longer[which(longer$observation_type == "all"),]
return(longer)
}
expanded_data <- expand_timeseries(readme_df[1,])
for (i in 2:nrow(readme_df)){
expanded_data <- rbind(expanded_data, expand_timeseries(readme_df[i,]))
}
#filter out the timewindows
window_num <- 8
expanded_data <- expanded_data |>
filter(week >= (26 - window_num) & week <= (26 + window_num)) |>
mutate(D = ifelse(week >= 26, 1, 0))
# 3 rdd in lmer analysis
library(lme4)
draft_model <- lmer(count ~ D * I(week - 26) + (1|as.factor(upstream_vcs_link)), REML=FALSE, data=expanded_data[which(longer$observation_type == "all"),])
draft_model <- lmer(count ~ D * I(week - 26) + (1|as.factor(upstream_vcs_link)), REML=FALSE, data=expanded_data[which(expanded_data$observation_type == "all"),])
draft_model <- lmer(count ~ D * I(week - 26) + (1|upstream_vcs_link), REML=FALSE, data=expanded_data[which(expanded_data$observation_type == "all"),])
summary(draft_model)
# this is the file with the lmer multi-level rddAnalysis # this is the file with the lmer multi-level rddAnalysis
library(tidyverse) library(tidyverse)
library(plyr) library(plyr)
@ -458,8 +387,8 @@ library(plyr)
try(setwd(dirname(rstudioapi::getActiveDocumentContext()$path))) try(setwd(dirname(rstudioapi::getActiveDocumentContext()$path)))
readme_df <- read_csv("../final_data/deb_readme_did.csv") readme_df <- read_csv("../final_data/deb_readme_did.csv")
# 1 preprocessing # 1 preprocessing
colnames(readme_df) <- c("upstream_vcs_link", "event_date", "event_hash", "before_all_ct", "before_mrg_ct", "after_all_ct", "after_mrg_ct", "before_auth_new", "after_commit_new", "after_auth_new", "before_commit_new") #colnames(readme_df) <- c("upstream_vcs_link", "event_date", "event_hash", "before_all_ct", "before_mrg_ct", "after_all_ct", "after_mrg_ct", "before_auth_new", "after_commit_new", "after_auth_new", "before_commit_new")
col_order <- c("upstream_vcs_link", "event_date", "event_hash", "before_all_ct", "after_all_ct", "before_mrg_ct", "after_mrg_ct", "before_auth_new", "after_auth_new", "before_commit_new", "after_commit_new") col_order <- c("upstream_vcs_link", "age_of_project", "event_date", "event_hash", "before_all_ct", "after_all_ct", "before_mrg_ct", "after_mrg_ct", "before_auth_new", "after_auth_new", "before_commit_new", "after_commit_new")
readme_df <- readme_df[,col_order] readme_df <- readme_df[,col_order]
readme_df$ct_before_all <- str_split(gsub("[][]","", readme_df$before_all_ct), ", ") readme_df$ct_before_all <- str_split(gsub("[][]","", readme_df$before_all_ct), ", ")
readme_df$ct_after_all <- str_split(gsub("[][]","", readme_df$after_all_ct), ", ") readme_df$ct_after_all <- str_split(gsub("[][]","", readme_df$after_all_ct), ", ")
@ -484,29 +413,100 @@ expanded_data <- expand_timeseries(readme_df[1,])
for (i in 2:nrow(readme_df)){ for (i in 2:nrow(readme_df)){
expanded_data <- rbind(expanded_data, expand_timeseries(readme_df[i,])) expanded_data <- rbind(expanded_data, expand_timeseries(readme_df[i,]))
} }
#filter out the timewindows #filter out the windows of time that we're looking at
window_num <- 8 window_num <- 8
expanded_data <- expanded_data |> expanded_data <- expanded_data |>
filter(week >= (26 - window_num) & week <= (26 + window_num)) |> filter(week >= (26 - window_num) & week <= (26 + window_num)) |>
mutate(D = ifelse(week >= 26, 1, 0))
# 3 rdd in lmer analysis
library(lme4)
draft_model <- lmer(count ~ D * I(week - 26) + (1|upstream_vcs_link), REML=FALSE, data=expanded_data[which(expanded_data$observation_type == "all"),])
summary(draft_model)
expanded_data <- expanded_data |>
filter(week >= (26 - window_num) & week <= (26 + window_num)) |>
mutate(D = ifelse(week > 26, 1, 0)) mutate(D = ifelse(week > 26, 1, 0))
#separate out the cleaning
all_actions_data <- expanded_data[which(expanded_data$observation_type == "all"),]
mrg_actions_data <- expanded_data[which(expanded_data$observation_type == "mrg"),]
draft_all_model <- lmer(count ~ D * I(week - 26) + (1|upstream_vcs_link), REML=FALSE, data=all_actions_data)
summary(draft_all_model)
# 3 rdd in lmer analysis # 3 rdd in lmer analysis
# rdd: https://rpubs.com/phle/r_tutorial_regression_discontinuity_design # rdd: https://rpubs.com/phle/r_tutorial_regression_discontinuity_design
# lmer: https://www.youtube.com/watch?v=LzAwEKrn2Mc # lmer: https://www.youtube.com/watch?v=LzAwEKrn2Mc
library(lme4) library(lme4)
draft_model <- lmer(count ~ D * I(week - 26) + (1|upstream_vcs_link), REML=FALSE, data=expanded_data[which(expanded_data$observation_type == "all"),]) draft_all_model <- lmer(count ~ D * I(week - 26) + (1|upstream_vcs_link), REML=FALSE, data=all_actions_data)
summary(draft_model)
View(expanded_data)
draft_all_model <- lmer(count ~ D * I(week - 26) + (1|upstream_vcs_link), REML=FALSE, data=expanded_data[which(expanded_data$observation_type == "all"),])
summary(draft_all_model) summary(draft_all_model)
draft_mrg_model <- lmer(count ~ D * I(week - 26) + (1|upstream_vcs_link), REML=FALSE, data=expanded_data[which(expanded_data$observation_type == "mrg"),]) draft_all_model <- lmer(count ~ D * I(week - 26) + age_of_project + (1|upstream_vcs_link), REML=FALSE, data=all_actions_data)
summary(draft_all_model)
ICC(outcome="count", group="upstream_vcs_link", data=all_actions_data)
# need to calculate inter-class correlation coefficient?
library(merTools)
ICC(outcome="count", group="upstream_vcs_link", data=all_actions_data)
ICC(outcome="count", group="week", data=all_actions_data)
draft_all_model <- lmer(count ~ D * I(week - 26) + age_of_project + (1 + D * I(week - 26) + age_of_project |upstream_vcs_link), REML=FALSE, data=all_actions_data)
summary(draft_all_model)
draft_all_model <- lmer(count ~ D * I(week - 26) + age_of_project + (1 |upstream_vcs_link), REML=FALSE, data=all_actions_data)
summary(draft_all_model)
describe(all_actions_data)
hist(all_actions_data$count)
mean(all_actions_data$count)
median(all_actions_data$count)
mean(all_actions_data$count)
draft_all_model <- lmer(count ~ D * I(week - 26) + age_of_project + (1 |upstream_vcs_link), REML=FALSE, data=all_actions_data)
summary(draft_all_model)
draft_all_model <- lmer(count ~ D * I(week - 26) + age_of_project + (1+week|upstream_vcs_link), REML=FALSE, data=all_actions_data)
summary(draft_all_model)
draft_all_model <- lmer(count ~ D * I(week - 26) + age_of_project + (1+D * I(week - 26)|upstream_vcs_link), REML=FALSE, data=all_actions_data)
summary(draft_all_model)
draft_all_model <- lmer(count ~ D * I(week - 26) + age_of_project + (1+ upstream_vcs_link|upstream_vcs_link), REML=FALSE, data=all_actions_data)
draft_all_model <- lmer(count ~ (1 | D * I(week - 26) + age_of_project) + (1 |upstream_vcs_link), REML=FALSE, data=all_actions_data)
draft_all_model <- lmer(count ~ D * I(week - 26) + age_of_project + (1 + I(week - 26) |upstream_vcs_link), REML=FALSE, data=all_actions_data)
summary(draft_all_model)
draft_all_model <- lmer(count ~ D * I(week - 26) + age_of_project + (1 + week |upstream_vcs_link), REML=FALSE, data=all_actions_data)
summary(draft_all_model)
draft_all_model <- lmer(count ~ D * I(week - 26) + age_of_project + (1 + I(week - 26) |upstream_vcs_link), REML=FALSE, data=all_actions_data)
summary(draft_all_model)
draft_all_model <- lmer(count ~ D * I(week - 26) + age_of_project + (1 + D |upstream_vcs_link), REML=FALSE, data=all_actions_data)
summary(draft_all_model)
draft_mrg_model <- lmer(count ~ D * I(week - 26) + age_of_project + (1 + D |upstream_vcs_link), REML=FALSE, data=mrg_actions_data)
summary(draft_mrg_model) summary(draft_mrg_model)
draft_all_model <- lmer(count ~ D * I(week - 26) + (1|upstream_vcs_link), REML=TRUE, data=expanded_data[which(expanded_data$observation_type == "all"),]) draft_all_model <- lmer(count ~ D + I(week - 26) + D:I(week - 26) + age_of_project + (1 + D |upstream_vcs_link), REML=FALSE, data=all_actions_data)
summary(draft_all_model) summary(draft_all_model)
flat_all_model <- lmer(count ~ D + I(week - 26) + D:I(week - 26) + age_of_project, REML=FALSE, data=all_actions_data)
flat_all_model <- lm(count ~ D + I(week - 26) + D:I(week - 26) + age_of_project, REML=FALSE, data=all_actions_data)
summary(flat_all_model)
draft_all_model <- lmer(count ~ D + I(week - 26) + D:I(week - 26) + age_of_project + (1 + D |upstream_vcs_link), REML=FALSE, data=all_actions_data)
summary(draft_all_model) summary(draft_all_model)
#find some EDA to identify which types of models might be the best for this
mean(all_actions_data$count)
median(all_actions_data$count)
table(all_actions_data$count)
dist(all_actions_data$count)
var(all_actions_data$count)
sd(all_actions_data$count)
qqplot(all_actions_data$count, all_actions_data$week)
qqnorm(all_actions_data$count)
y <- qunif(ppoints(length(all_actions_data$count)))
qqplot(all_actions_data$count, y)
qqnorm(all_actions_data$count)
qqnorm(log(all_actions_data$count)
qqnorm(log(all_actions_data$count))
qqnorm(log(all_actions_data$count))
qqplot(log(all_actions_data$count), y)
qqnorm(all_actions_data$count)
qqnorm(root(all_actions_data$count))
qqnorm(log(all_actions_data$count))
qqplot(log(all_actions_data$count), y)
qqplot(all_actions_data$count, y)
poisson_all_model <- glmer(count ~ D + I(week - 26) + D:I(week - 26) + age_of_project + (1 + D |upstream_vcs_link), data=all_actions_data, family = poisson(link = "log"))
summary(poisson_all_model)
summary(draft_all_model)
# Performance:
draft_mrg_model <- lmer(count ~ D * I(week - 26) + age_of_project + (1 + D |upstream_vcs_link), REML=FALSE, data=mrg_actions_data)
summary(draft_mrg_model)
lmer_residuals <- residuals(lmer_all_model)
lmer_all_model <- lmer(count ~ D + I(week - 26) + D:I(week - 26) + age_of_project + (1 + D |upstream_vcs_link), REML=FALSE, data=all_actions_data)
summary(lmer_all_model)
lmer_residuals <- residuals(lmer_all_model)
qqnorm(lmer_residuals)
poisson_residuals <- residuals(poisson_all_model)
qqnorm(poisson_residuals)
summary(poisson_all_model)
#if I'm reading the residuals right, the poisson is better?
poisson_all_model <- glmer(count ~ D + I(week - 26) + D:I(week - 26) + age_of_project + (1 + D |upstream_vcs_link), data=all_actions_data, family = poisson(link = "log"), nAGQ = 100)
summary(poisson_all_model)
poisson_residuals <- residuals(poisson_all_model)
qqnorm(poisson_residuals)

View File

@ -36,6 +36,8 @@ window_num <- 8
expanded_data <- expanded_data |> expanded_data <- expanded_data |>
filter(week >= (26 - window_num) & week <= (26 + window_num)) |> filter(week >= (26 - window_num) & week <= (26 + window_num)) |>
mutate(D = ifelse(week > 26, 1, 0)) mutate(D = ifelse(week > 26, 1, 0))
#scale the age numbers
expanded_data$scaled_project_age <- scale(expanded_data$age_of_project)
#separate out the cleaning d #separate out the cleaning d
all_actions_data <- expanded_data[which(expanded_data$observation_type == "all"),] all_actions_data <- expanded_data[which(expanded_data$observation_type == "all"),]
mrg_actions_data <- expanded_data[which(expanded_data$observation_type == "mrg"),] mrg_actions_data <- expanded_data[which(expanded_data$observation_type == "mrg"),]
@ -51,19 +53,19 @@ qqplot(all_actions_data$count, y)
# rdd: https://rpubs.com/phle/r_tutorial_regression_discontinuity_design # rdd: https://rpubs.com/phle/r_tutorial_regression_discontinuity_design
# lmer: https://www.youtube.com/watch?v=LzAwEKrn2Mc # lmer: https://www.youtube.com/watch?v=LzAwEKrn2Mc
library(lme4) library(lme4)
flat_all_model <- lm(count ~ D + I(week - 26) + D:I(week - 26) + age_of_project, REML=FALSE, data=all_actions_data) flat_all_model <- lm(count ~ D + I(week - 26) + D:I(week - 26) + scaled_project_age, REML=FALSE, data=all_actions_data)
summary(flat_all_model) summary(flat_all_model)
lmer_all_model <- lmer(count ~ D + I(week - 26) + D:I(week - 26) + age_of_project + (1 + D |upstream_vcs_link), REML=FALSE, data=all_actions_data) lmer_all_model <- lmer(count ~ D + I(week - 26) + D:I(week - 26) + scaled_project_age + (1 + D |upstream_vcs_link), REML=FALSE, data=all_actions_data)
summary(lmer_all_model) summary(lmer_all_model)
lmer_residuals <- residuals(lmer_all_model) lmer_residuals <- residuals(lmer_all_model)
qqnorm(lmer_residuals) qqnorm(lmer_residuals)
#if I'm reading the residuals right, the poisson is better? #if I'm reading the residuals right, the poisson is better?
poisson_all_model <- glmer(count ~ D + I(week - 26) + D:I(week - 26) + age_of_project + (1 + D |upstream_vcs_link), data=all_actions_data, family = poisson(link = "log"), nAGQ = 100) poisson_all_model <- glmer(count ~ D + I(week - 26) + D:I(week - 26) + scaled_project_age + (1 + D |upstream_vcs_link), data=all_actions_data, family = poisson(link = "log"))
summary(poisson_all_model) summary(poisson_all_model)
poisson_residuals <- residuals(poisson_all_model) poisson_residuals <- residuals(poisson_all_model)
qqnorm(poisson_residuals) qqnorm(poisson_residuals)
# Performance: # Performance:
draft_mrg_model <- lmer(count ~ D * I(week - 26) + age_of_project + (1 + D |upstream_vcs_link), REML=FALSE, data=mrg_actions_data) draft_mrg_model <- lmer(count ~ D * I(week - 26) + scaled_project_age + (1 + D |upstream_vcs_link), REML=FALSE, data=mrg_actions_data)
summary(draft_mrg_model) summary(draft_mrg_model)
# Performance: # Performance: