diff --git a/R/powerAnalysis.R b/R/powerAnalysis.R index 6bbb903..e4a0ccd 100644 --- a/R/powerAnalysis.R +++ b/R/powerAnalysis.R @@ -56,7 +56,8 @@ powerCheck <- function(n, nSims) { #run a power calculation on the dataset given simData <- makeDataNew(n) # make some data ## outcome goes here --v # e.g. simData$up.fac.mean <- (usefuleffsizeA * mmt) + (usefuleffsizeB * milestones) + rnorm(n=1, mean=0, sd=1) ##plus some noise - simData$up.fac.mean <- (-2.075 * simData$mmt) + (0.4284 * simData$milestones) + rnorm(n=1, mean=0, sd=1) + #simData$up.fac.mean <- (-2.075 * simData$mmt) + (0.4284 * simData$milestones) + rnorm(n=1, mean=0, sd=1) + simData$up.fac.mean <- (0.4284 * simData$milestones) + rnorm(n=1, mean=0, sd=1) #have updated for kkex through here, now need to look at the underproduction work #m1.sim <- lm(up.fac.mean ~ ((mmt)/ (milestones/age)), data=simData) ## could leave age out for now? @@ -64,13 +65,13 @@ powerCheck <- function(n, nSims) { #run a power calculation on the dataset given m1.sim <- lm(up.fac.mean ~ mmt + milestones, data=simData) p0 <- coef(summary(m1.sim))[1,4] #intercept p1 <- coef(summary(m1.sim))[2,4] #mmt - p2 <- coef(summary(m1.sim))[3,4] #milestones + #p2 <- coef(summary(m1.sim))[3,4] #milestones #p3 <- coef(summary(m1.sim))[4,4] #age signif0[s] <- p0 <=.05 signif1[s] <- p1 <=.05 - signif2[s] <- p2 <=.05 + #signif2[s] <- p2 <=.05 #signif3[s] <- p3 <=.05 - signifM[s] <- p0 <=.05 & p1 <=.05 & p2 <=.05 #& p3 <=.05 + signifM[s] <- p0 <=.05 & p1 <=.05 #& p2 <=.05 #& p3 <=.05 } power <- c(mean(signif0), mean(signif1), mean(signif2), mean(signif3), mean(signifM)) return(power)