assembling data for qual interp
This commit is contained in:
parent
9ba2f30f33
commit
ed54ab2dec
@ -139,11 +139,24 @@ def prevalent_topics(vect_documents, file_list):
|
|||||||
else:
|
else:
|
||||||
count_of_multiple += 1
|
count_of_multiple += 1
|
||||||
topic_arrays.append(topic_distribution)
|
topic_arrays.append(topic_distribution)
|
||||||
most_frequent(top_topic)
|
#most_frequent(top_topic)
|
||||||
print(count_of_multiple)
|
print(count_of_multiple)
|
||||||
df = pd.DataFrame(topic_arrays)
|
df = pd.DataFrame(topic_arrays)
|
||||||
averages = df.mean()
|
#print(df.sort_values(by=['0']).head(5))
|
||||||
print(averages)
|
for i in range(4):
|
||||||
|
print("-----------------------Topic " + str(i) + " --------------------------------")
|
||||||
|
top5 = df.nlargest(10, i)
|
||||||
|
top_indices = top5.index.to_list()
|
||||||
|
print(top5)
|
||||||
|
for index in top_indices:
|
||||||
|
print(file_list[index])
|
||||||
|
bottom5 = df.nsmallest(10, i)
|
||||||
|
bottom_indices = bottom5.index.to_list()
|
||||||
|
print(bottom5)
|
||||||
|
for index in bottom_indices:
|
||||||
|
print(file_list[index])
|
||||||
|
#averages = df.mean()
|
||||||
|
#print(averages)
|
||||||
|
|
||||||
def most_frequent(topic_prevalence):
|
def most_frequent(topic_prevalence):
|
||||||
most_frequent_array = []
|
most_frequent_array = []
|
||||||
@ -157,7 +170,7 @@ def most_frequent(topic_prevalence):
|
|||||||
|
|
||||||
if __name__ == "__main__":
|
if __name__ == "__main__":
|
||||||
#eadme_directory = "/data/users/mgaughan/kkex/time_specific_files/partitioned_readme/p1"
|
#eadme_directory = "/data/users/mgaughan/kkex/time_specific_files/partitioned_readme/p1"
|
||||||
contributing_directory = "/data/users/mgaughan/kkex//time_specific_files/partitioned_contributing/p2"
|
contributing_directory = "/data/users/mgaughan/kkex//time_specific_files/contributing3"
|
||||||
listed_corpus, wordcounts, wordlengths, file_list = get_data_from_dir(contributing_directory)
|
listed_corpus, wordcounts, wordlengths, file_list = get_data_from_dir(contributing_directory)
|
||||||
print("Mean wordcount: ", mean(wordcounts))
|
print("Mean wordcount: ", mean(wordcounts))
|
||||||
print("Median wordcount: ", median(wordcounts))
|
print("Median wordcount: ", median(wordcounts))
|
||||||
|
@ -123,7 +123,7 @@ def get_most_prevalent(distributions, documents):
|
|||||||
return most_prevalent
|
return most_prevalent
|
||||||
|
|
||||||
def prevalent_topics(vect_documents, file_list):
|
def prevalent_topics(vect_documents, file_list):
|
||||||
lda = joblib.load('0509_lda.jl')
|
lda = joblib.load('0509_readme_lda.jl')
|
||||||
distributions = lda.transform(vect_documents)
|
distributions = lda.transform(vect_documents)
|
||||||
#figuring out what the max distribution is and then figuring out the mode
|
#figuring out what the max distribution is and then figuring out the mode
|
||||||
top_topic = []
|
top_topic = []
|
||||||
@ -140,8 +140,21 @@ def prevalent_topics(vect_documents, file_list):
|
|||||||
#most_frequent(top_topic)
|
#most_frequent(top_topic)
|
||||||
print(count_of_multiple)
|
print(count_of_multiple)
|
||||||
df = pd.DataFrame(topic_arrays)
|
df = pd.DataFrame(topic_arrays)
|
||||||
averages = df.mean()
|
#print(df.sort_values(by=['0']).head(5))
|
||||||
print(averages)
|
for i in range(8):
|
||||||
|
print("-----------------------Topic " + str(i) + " --------------------------------")
|
||||||
|
top5 = df.nlargest(10, i)
|
||||||
|
top_indices = top5.index.to_list()
|
||||||
|
print(top5)
|
||||||
|
for index in top_indices:
|
||||||
|
print(file_list[index])
|
||||||
|
bottom5 = df.nsmallest(10, i)
|
||||||
|
bottom_indices = bottom5.index.to_list()
|
||||||
|
print(bottom5)
|
||||||
|
for index in bottom_indices:
|
||||||
|
print(file_list[index])
|
||||||
|
#averages = df.mean()
|
||||||
|
#print(averages)
|
||||||
|
|
||||||
def most_frequent(topic_prevalence):
|
def most_frequent(topic_prevalence):
|
||||||
most_frequent_array = []
|
most_frequent_array = []
|
||||||
@ -154,7 +167,7 @@ def most_frequent(topic_prevalence):
|
|||||||
|
|
||||||
|
|
||||||
if __name__ == "__main__":
|
if __name__ == "__main__":
|
||||||
readme_directory = "/data/users/mgaughan/kkex/time_specific_files/partitioned_readme/p1"
|
readme_directory = "/data/users/mgaughan/kkex/time_specific_files/readme3"
|
||||||
contributing_directory = "/data/users/mgaughan/kkex/time_specific_files/partitioned_contributing/p2"
|
contributing_directory = "/data/users/mgaughan/kkex/time_specific_files/partitioned_contributing/p2"
|
||||||
listed_corpus, wordcounts, wordlengths, file_list = get_data_from_dir(readme_directory)
|
listed_corpus, wordcounts, wordlengths, file_list = get_data_from_dir(readme_directory)
|
||||||
print("Mean wordcount: ", mean(wordcounts))
|
print("Mean wordcount: ", mean(wordcounts))
|
||||||
|
Loading…
Reference in New Issue
Block a user