assembling data for qual interp
This commit is contained in:
parent
9ba2f30f33
commit
ed54ab2dec
@ -139,11 +139,24 @@ def prevalent_topics(vect_documents, file_list):
|
||||
else:
|
||||
count_of_multiple += 1
|
||||
topic_arrays.append(topic_distribution)
|
||||
most_frequent(top_topic)
|
||||
#most_frequent(top_topic)
|
||||
print(count_of_multiple)
|
||||
df = pd.DataFrame(topic_arrays)
|
||||
averages = df.mean()
|
||||
print(averages)
|
||||
#print(df.sort_values(by=['0']).head(5))
|
||||
for i in range(4):
|
||||
print("-----------------------Topic " + str(i) + " --------------------------------")
|
||||
top5 = df.nlargest(10, i)
|
||||
top_indices = top5.index.to_list()
|
||||
print(top5)
|
||||
for index in top_indices:
|
||||
print(file_list[index])
|
||||
bottom5 = df.nsmallest(10, i)
|
||||
bottom_indices = bottom5.index.to_list()
|
||||
print(bottom5)
|
||||
for index in bottom_indices:
|
||||
print(file_list[index])
|
||||
#averages = df.mean()
|
||||
#print(averages)
|
||||
|
||||
def most_frequent(topic_prevalence):
|
||||
most_frequent_array = []
|
||||
@ -157,7 +170,7 @@ def most_frequent(topic_prevalence):
|
||||
|
||||
if __name__ == "__main__":
|
||||
#eadme_directory = "/data/users/mgaughan/kkex/time_specific_files/partitioned_readme/p1"
|
||||
contributing_directory = "/data/users/mgaughan/kkex//time_specific_files/partitioned_contributing/p2"
|
||||
contributing_directory = "/data/users/mgaughan/kkex//time_specific_files/contributing3"
|
||||
listed_corpus, wordcounts, wordlengths, file_list = get_data_from_dir(contributing_directory)
|
||||
print("Mean wordcount: ", mean(wordcounts))
|
||||
print("Median wordcount: ", median(wordcounts))
|
||||
|
@ -123,7 +123,7 @@ def get_most_prevalent(distributions, documents):
|
||||
return most_prevalent
|
||||
|
||||
def prevalent_topics(vect_documents, file_list):
|
||||
lda = joblib.load('0509_lda.jl')
|
||||
lda = joblib.load('0509_readme_lda.jl')
|
||||
distributions = lda.transform(vect_documents)
|
||||
#figuring out what the max distribution is and then figuring out the mode
|
||||
top_topic = []
|
||||
@ -140,8 +140,21 @@ def prevalent_topics(vect_documents, file_list):
|
||||
#most_frequent(top_topic)
|
||||
print(count_of_multiple)
|
||||
df = pd.DataFrame(topic_arrays)
|
||||
averages = df.mean()
|
||||
print(averages)
|
||||
#print(df.sort_values(by=['0']).head(5))
|
||||
for i in range(8):
|
||||
print("-----------------------Topic " + str(i) + " --------------------------------")
|
||||
top5 = df.nlargest(10, i)
|
||||
top_indices = top5.index.to_list()
|
||||
print(top5)
|
||||
for index in top_indices:
|
||||
print(file_list[index])
|
||||
bottom5 = df.nsmallest(10, i)
|
||||
bottom_indices = bottom5.index.to_list()
|
||||
print(bottom5)
|
||||
for index in bottom_indices:
|
||||
print(file_list[index])
|
||||
#averages = df.mean()
|
||||
#print(averages)
|
||||
|
||||
def most_frequent(topic_prevalence):
|
||||
most_frequent_array = []
|
||||
@ -154,7 +167,7 @@ def most_frequent(topic_prevalence):
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
readme_directory = "/data/users/mgaughan/kkex/time_specific_files/partitioned_readme/p1"
|
||||
readme_directory = "/data/users/mgaughan/kkex/time_specific_files/readme3"
|
||||
contributing_directory = "/data/users/mgaughan/kkex/time_specific_files/partitioned_contributing/p2"
|
||||
listed_corpus, wordcounts, wordlengths, file_list = get_data_from_dir(readme_directory)
|
||||
print("Mean wordcount: ", mean(wordcounts))
|
||||
|
Loading…
Reference in New Issue
Block a user