adds my power analysis example

This commit is contained in:
Kaylea Champion 2023-11-08 09:10:54 -08:00
parent 268ca229a2
commit f4f5fd823f
2 changed files with 103 additions and 0 deletions

49
R/calculatePower.R Normal file
View File

@ -0,0 +1,49 @@
##############################################################################
#
# Purpose:
# Use pilot project data to calculate power of a full study through simulation
#
# Parts:
# (0) - Setup
# (1) - Get the pilot data and clean it
# (2) - Run the model on the pilot data and extract effects
# (3) - Set up and run the simulation
# ====> Set variables at the arrows <====
#
##############################################################################
rm(list=ls())
set.seed(424242)
# (1) - Get the pilot data and clean it
source('~/Research/tor_wikipedia_edits/handcoded_edits/inter_coder_reliability_ns0.R')
d$nd <- to_logical(d$not.damaging, custom_true=c("Y"))
levels(d$source) <- c("IP-based Editors", "New Editors", "Registered Editors", "Tor-based Editors")
# (2) - Run the model on the pilot data
pilotM <- glm(nd ~ source, family=binomial(link="logit"), data=d)
summary(pilotM) #we expect effect sizes on this order
pilot.b0 <- coef(summary(pilotM))[1,1]
pilot.b1 <- coef(summary(pilotM))[2,1]
pilot.b2 <- coef(summary(pilotM))[3,1]
pilot.b3 <- coef(summary(pilotM))[4,1]
# (3) - Set up and run the simulation
source('powerAnalysis.R') #my little "lib"
#====>
nSims <- 5000 #how many simulations to run
n <- 100 #a guess for necessary sample size (per group)
#makeData(10) #DEBUGGING CODE -- you can uncomment this if you want to see it work
#<====
print("Levels are:")
print(levels(d$source))
powerCheck(n, nSims)
#Sample values
powerCheck(50, 100)
powerCheck(80, 1000)
powerCheck(200, 5000)

54
R/powerAnalysis.R Normal file
View File

@ -0,0 +1,54 @@
# This is semi-generic code for doing a power analysis of a logistic regression with 4
# levels in a factor
# when there's some pilot values already available and defined
#modelled heavily the simulation example explained in:
#http://meeting.spsp.org/2016/sites/default/files/Lane%2C%20Hennes%2C%20West%20SPSP%20Power%20Workshop%202016.pdf
library('batman')
library('reshape')
l2p <- function(b) {
odds <- exp(b)
prob <- odds/(1+odds)
return(prob)
}
makeData <- function(n) { #make a random dataset of size n
#4 group IDs
tDF <- data.frame(
Group0=rbinom(n=n, size=1, prob=l2p(pilot.b0)), #ASK: what about se in pilot data?
Group1=rbinom(n=n, size=1, prob=l2p(pilot.b0 + pilot.b1)), # shouldn't my probs
Group2=rbinom(n=n, size=1, prob=l2p(pilot.b0 + pilot.b2)), # include se?
Group3=rbinom(n=n, size=1, prob=l2p(pilot.b0 + pilot.b3)))
sDF <- melt(tDF, id.vars = 0) #AKA the index is the unique id, as far as that goes
colnames(sDF) <- c('source', 'nd')
return(sDF)
}
powerCheck <- function(n, nSims) { #run a power calculation on the dataset given
#set up some empty arrays b/c R
signif0 <- rep(NA, nSims)
signif1 <- rep(NA, nSims)
signif2 <- rep(NA, nSims)
signif3 <- rep(NA, nSims)
signifM <- rep(NA, nSims)
for (s in 1:nSims) { # repeatedly we will....
simData <- makeData(n) # make some data
m1.sim <- glm(nd ~ source, # give the anticipated regression a try
family=binomial(link="logit"), data=simData)
p0 <- coef(summary(m1.sim))[1,4]
p1 <- coef(summary(m1.sim))[2,4]
p2 <- coef(summary(m1.sim))[3,4]
p3 <- coef(summary(m1.sim))[4,4]
signif0[s] <- p0 <=.05
signif1[s] <- p1 <=.05
signif2[s] <- p2 <=.05
signif3[s] <- p3 <=.05
signifM[s] <- p0 <=.05 & p1 <=.05 & p2 <=.05 & p3 <=.05
}
power <- c(mean(signif0), mean(signif1), mean(signif2), mean(signif3), mean(signifM))
return(power)
}