saving topic model
This commit is contained in:
parent
369e775fd3
commit
f59ce460e2
BIN
0509_lda.jl
Normal file
BIN
0509_lda.jl
Normal file
Binary file not shown.
@ -5,6 +5,7 @@ import glob
|
||||
import copy
|
||||
from statistics import mean, median
|
||||
from strip_markdown import strip_markdown
|
||||
import joblib
|
||||
|
||||
from getMetadata import metadata_for_file
|
||||
|
||||
@ -35,6 +36,7 @@ def get_data_from_dir(directory):
|
||||
data_list = []
|
||||
word_counts = []
|
||||
avg_word_lengths = []
|
||||
file_list = []
|
||||
for file in files:
|
||||
text = open(file, encoding='utf-8').read()
|
||||
#here's some of the descriptive text analysis
|
||||
@ -43,7 +45,9 @@ def get_data_from_dir(directory):
|
||||
avg_word_lengths.append(avg_word_length)
|
||||
#adding the data to the list of text
|
||||
data_list.append(text)
|
||||
return data_list, word_counts, avg_word_lengths
|
||||
#adding filename
|
||||
file_list.append(file)
|
||||
return data_list, word_counts, avg_word_lengths, file_list
|
||||
|
||||
#preprocessing text data
|
||||
def preprocess(corpus_list):
|
||||
@ -103,18 +107,29 @@ def best_lda_model(data_vectorized, vocab):
|
||||
print('Topic: %d' % topic)
|
||||
print(' %s' % ', '.join(words))
|
||||
#lda.print_topics(num_words=10)
|
||||
joblib.dump(lda, '0509_lda.jl')
|
||||
#lda = joblib.load('0509_lda.jl')
|
||||
return id_topic
|
||||
|
||||
|
||||
def get_most_prevalent(distributions, documents):
|
||||
most_prevalent = {0: [0, ""],1: [0, ""], 2: [0, ""], 3: [0, ""], 4: [0, ""], 5: [0, ""], 6: [0, ""], 7: [0, ""]}
|
||||
for i, topic_distribution in enumerate(distributions):
|
||||
for j in range(8):
|
||||
if topic_distribution[j] > most_prevalent[j][0]:
|
||||
most_prevalent[j] = [topic_distribution[j], documents[i]]
|
||||
print(most_prevalent)
|
||||
return most_prevalent
|
||||
|
||||
if __name__ == "__main__":
|
||||
readme_directory = "/data/users/mgaughan/kkex/time_specific_files/readme2"
|
||||
contributing_directory = "/data/users/mgaughan/kkex/time_specific_files/contributing2"
|
||||
listed_corpus, wordcounts, wordlengths = get_data_from_dir(readme_directory)
|
||||
listed_corpus, wordcounts, wordlengths, file_list = get_data_from_dir(readme_directory)
|
||||
print("Mean wordcount: ", mean(wordcounts))
|
||||
print("Median wordcount: ", median(wordcounts))
|
||||
print("Mean wordlength: ", mean(wordlengths))
|
||||
print("Median wordlength: ", median(wordlengths))
|
||||
lemmatized_corpus = preprocess(listed_corpus)
|
||||
#print(lemmatized_corpus)
|
||||
#prepped_corpus, id2word = text_preparation(lemmatized_corpus)
|
||||
vectorizer = CountVectorizer(analyzer='word',
|
||||
min_df=2,
|
||||
@ -123,10 +138,12 @@ if __name__ == "__main__":
|
||||
token_pattern='[a-zA-Z0-9]{2,}',
|
||||
)
|
||||
data_vectorized = vectorizer.fit_transform(lemmatized_corpus)
|
||||
#print(data_vectorized)
|
||||
#lda_model_identification(data_vectorized)
|
||||
#freqs = zip(vectorizer.get_feature_names_out(), data_vectorized.sum(axis=0).tolist()[0])
|
||||
# sort from largest to smallest
|
||||
#print(sorted(freqs, key=lambda x: -x[1])[:25])
|
||||
best_lda_model(data_vectorized, vectorizer.get_feature_names_out())
|
||||
topic_distributions = best_lda_model(data_vectorized, vectorizer.get_feature_names_out())
|
||||
get_most_prevalent(topic_distributions, file_list)
|
||||
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user