library(stringr) library(plyr) contrib_topics_df <- read_csv("../text_analysis/contrib_file_topic_distributions.csv") colMeans(subset(contrib_topics_df, select = -filename)) contrib_df <- read_csv("../final_data/deb_contrib_did.csv") contrib_pop_df <- read_csv("../final_data/deb_contrib_pop_change.csv") median(contrib_df$age_in_days) #get the contribution count #some preprocessing and expansion col_order <- c("upstream_vcs_link", "age_in_days", "first_commit", "first_commit_dt", "event_gap", "event_date", "event_hash", "before_all_ct", "after_all_ct", "before_mrg_ct", "after_mrg_ct", "before_auth_new", "after_auth_new", "before_commit_new", "after_commit_new") contrib_df <- contrib_df[,col_order] contrib_df$ct_before_all <- str_split(gsub("[][]","", contrib_df$before_all_ct), ", ") contrib_df$ct_after_all <- str_split(gsub("[][]","", contrib_df$after_all_ct), ", ") contrib_df$ct_before_mrg <- str_split(gsub("[][]","", contrib_df$before_mrg_ct), ", ") contrib_df$ct_after_mrg <- str_split(gsub("[][]","", contrib_df$after_mrg_ct), ", ") drop <- c("before_all_ct", "before_mrg_ct", "after_all_ct", "after_mrg_ct") contrib_df = contrib_df[,!(names(contrib_df) %in% drop)] # 2 some expansion needs to happens for each project expand_timeseries <- function(project_row) { longer <- project_row |> pivot_longer(cols = starts_with("ct"), names_to = "window", values_to = "count") |> unnest(count) longer$observation_type <- gsub("^.*_", "", longer$window) longer <- ddply(longer, "observation_type", transform, week=seq(from=0, by=1, length.out=length(observation_type))) longer$count <- as.numeric(longer$count) #longer <- longer[which(longer$observation_type == "all"),] return(longer) } expanded_data <- expand_timeseries(contrib_df[1,]) for (i in 2:nrow(contrib_df)){ expanded_data <- rbind(expanded_data, expand_timeseries(contrib_df[i,])) } #filter out the windows of time that we're looking at window_num <- 8 windowed_data <- expanded_data |> filter(week >= (27 - window_num) & week <= (27 + window_num)) |> mutate(D = ifelse(week > 27, 1, 0)) summed_data <- windowed_data |> filter(D==1) |> group_by(upstream_vcs_link) |> summarise_at(vars(count), list(summed_count=sum)) #concat dataframes into central data contrib_pop_df <- contrib_pop_df |> mutate(project_name = map_chr(upstream_vcs_link, ~ { parts <- str_split(.x, pattern = "/")[[1]] if (length(parts) >= 1) { parts[length(parts)] } else { NA_character_ } })) contrib_topics_df <- contrib_topics_df |> mutate(project_name = map_chr(filename, ~ { parts <- str_split(.x, pattern = "_")[[1]] if (length(parts) >= 1) { paste(head(parts, -1), collapse="_") } else { NA_character_ } })) contrib_total_df <- contrib_pop_df |> join(contrib_topics_df, by="project_name") contrib_total_df <- contrib_total_df|> join(summed_data, by="upstream_vcs_link") #outcome variable that is number of commits by number of new contributors contrib_total_df$commit_by_contrib = contrib_total_df$summed_count * contrib_total_df$after_contrib_new contrib_total_df$logged_outcome = log1p(contrib_total_df$commit_by_contrib) contrib_total_df$logged_contrib = log1p(contrib_total_df$after_contrib_new) contrib_total_df$logged_commits = log1p(contrib_total_df$summed_count) #running regressions library(MASS) contrib_ <- glm.nb(logged_contrib ~ t0 + t1 + t2 + t3, data = contrib_total_df) commits_ <- glm.nb(logged_commits ~ t0 + t1 + t2 + t3, data = contrib_total_df) qqnorm(residuals(lm1)) summary(contrib_) summary(commits_) texreg(list(contrib_, commits_), stars=NULL, digits=3, use.packages=FALSE, custom.model.names=c( 'Contributions','Commits'), custom.coef.names=c('(Intercept)', 'Topic 1', 'Topic 2', 'Topic 3'), table=FALSE, ci.force = TRUE) saveRDS(commits_, "0731_topic_commitoutcome_contrib.rda") saveRDS(contrib_, "0731_topic_contriboutcome_contrib.rda")