library(tidyverse) library(plyr) readme_df <- read_csv("110124_readme_strict_subset.csv") col_order <- c("upstream_vcs_link", "age_in_days", "first_commit", "first_commit_dt", "event_gap", "event_date", "event_hash", "before_all_ct", "after_all_ct", "before_mrg_ct", "after_mrg_ct", "before_auth_new", "after_auth_new", "before_commit_new", "after_commit_new") readme_df <- readme_df[,col_order] readme_df$ct_before_all <- str_split(gsub("[][]","", readme_df$before_all_ct), ", ") readme_df$ct_after_all <- str_split(gsub("[][]","", readme_df$after_all_ct), ", ") readme_df$ct_before_mrg <- str_split(gsub("[][]","", readme_df$before_mrg_ct), ", ") readme_df$ct_after_mrg <- str_split(gsub("[][]","", readme_df$after_mrg_ct), ", ") drop <- c("before_all_ct", "before_mrg_ct", "after_all_ct", "after_mrg_ct") # 2 some expansion needs to happens for each project expand_timeseries <- function(project_row) { longer <- project_row |> pivot_longer(cols = starts_with("ct"), names_to = "window", values_to = "count") |> unnest(count) longer$observation_type <- gsub("^.*_", "", longer$window) longer <- ddply(longer, "observation_type", transform, week=seq(from=0, by=1, length.out=length(observation_type))) longer$count <- as.numeric(longer$count) #longer <- longer[which(longer$observation_type == "all"),] return(longer) } expanded_data <- expand_timeseries(readme_df[1,]) for (i in 2:nrow(readme_df)){ expanded_data <- rbind(expanded_data, expand_timeseries(readme_df[i,])) } head(expanded_data) #filter out the windows of time that we're looking at window_num <- 8 windowed_data <- expanded_data |> filter(week >= (27 - window_num) & week <= (27 + window_num)) |> mutate(D = ifelse(week > 27, 1, 0)) #scale the age numbers windowed_data$scaled_project_age <- scale(windowed_data$age_in_days) windowed_data$scaled_event_gap <- scale(windowed_data$event_gap) windowed_data$week_offset <- windowed_data$week - 27 #break out the different types of commit actions that are studied all_actions_data <- windowed_data[which(windowed_data$observation_type == "all"),] mrg_actions_data <- windowed_data[which(windowed_data$observation_type == "mrg"),] #log the dependent all_actions_data$logged_count <- log(all_actions_data$count) all_actions_data$log1p_count <- log1p(all_actions_data$count) range(all_actions_data$log1p_count) var(all_actions_data$log1p_count) mean (all_actions_data$log1p_count) sd(all_actions_data$log1p_count) median(all_actions_data$log1p_count) var(all_actions_data$count) mean (all_actions_data$count) sd (all_actions_data$count) median(all_actions_data$count) library(lme4) all_log1p_gmodel <- glmer.nb(log1p_count ~ D * week_offset + (D * week_offset | upstream_vcs_link), data=all_actions_data, nAGQ=1, control=glmerControl(optimizer="bobyqa", optCtrl=list(maxfun=1e5))) summary(all_log1p_gmodel) saveRDS(all_log1p_gmodel, "110224_log1p_readme_subset.rda") all_gmodel <- glmer.nb(count ~ D * week_offset + (D * week_offset | upstream_vcs_link), data=all_actions_data, nAGQ=1, control=glmerControl(optimizer="bobyqa", optCtrl=list(maxfun=1e5))) summary(all_gmodel) saveRDS(all_gmodel, "110224_readme_subset.rda")