summary(lm1) lm1 <- glm.nb(after_contrib_new ~ reading_time, data = contrib_total_df) qqnorm(residuals(lm1)) summary(lm1) lm1 <- glm.nb(after_contrib_new ~ flesch_reading_ease, data = contrib_total_df) qqnorm(residuals(lm1)) summary(lm1) contrib_readability_df <- contrib_readability_df |> mutate(project_name = map_chr(filename, ~ { parts <- str_split(.x, pattern = "_")[[1]] if (length(parts) >= 1) { head(parts, -1) } else { NA_character_ } })) parts[1] + parts[2] contrib_readability_df <- contrib_readability_df |> mutate(project_name = map_chr(filename, ~ { parts <- str_split(.x, pattern = "_")[[1]] if (length(parts) >= 1) { parts[1] + parts[2] } else { NA_character_ } })) contrib_readability_df <- contrib_readability_df |> mutate(project_name = map_chr(filename, ~ { parts <- str_split(.x, pattern = "_")[[1]] if (length(parts) >= 1) { paste(head(parts, -1), collapse="") } else { NA_character_ } })) View(contrib_readability_df) #libraries library(stringr) contrib_df <- read_csv("../final_data/deb_contrib_did.csv") contrib_pop_df <- read_csv("../final_data/deb_contrib_pop_change.csv") contrib_readability_df <- read_csv('../text_analysis/dwo_readability_contributing.csv') contrib_pop_df <- contrib_pop_df |> mutate(project_name = map_chr(upstream_vcs_link, ~ { parts <- str_split(.x, pattern = "/")[[1]] if (length(parts) >= 1) { parts[length(parts)] } else { NA_character_ } })) contrib_readability_df <- contrib_readability_df |> mutate(project_name = map_chr(filename, ~ { parts <- str_split(.x, pattern = "_")[[1]] if (length(parts) >= 1) { paste(head(parts, -1), collapse="_") } else { NA_character_ } })) contrib_total_df <- contrib_pop_df |> join(contrib_readability_df, by="project_name") View(contrib_total_df) # test regressions library(MASS) lm1 <- glm.nb(after_contrib_new ~ flesch_reading_ease, data = contrib_total_df) qqnorm(residuals(lm1)) summary(lm1) lm1 <- glm.nb(after_contrib_new ~ flesch_reading_ease + age_in_days, data = contrib_total_df) qqnorm(residuals(lm1)) summary(lm1) View(contrib_df) source("~/Desktop/git/24_deb_gov/R/contrib_docChar_outcomes.R") View(windowed_data) View(windowed_data) summed_data <- windowed_data |> group_by(upstream_vcs_link) |> summarize(total_ct_after_all = sum(ct_after_all)) summed_data <- windowed_data |> filter(window="ct_after_all") |> group_by(upstream_vcs_link) |> summarize(total_ct_after_all = sum(count)) summed_data <- windowed_data |> filter(window=="ct_after_all") |> group_by(upstream_vcs_link) |> summarize(total_ct_after_all = sum(count)) View(summed_data) summed_data <- windowed_data |> filter(window=="ct_after_all") |> group_by(upstream_vcs_link) |> mutate(total_ct_after_all = sum(count)) View(summed_data) summed_data <- windowed_data |> filter(window=="ct_after_all") |> group_by(upstream_vcs_link) |> summarize(total_ct_after_all = sum(count)) |> ungroup() View(summed_data) View(windowed_data) summed_data <- windowed_data |> filter(window=="ct_after_all") |> group_by(upstream_vcs_link) |> summarise_at(vars(count), list(name=sum)) View(summed_data) summed_data <- windowed_data |> filter(D==1) |> group_by(upstream_vcs_link) |> summarise_at(vars(count), list(summed_count=sum)) View(summed_data) source("~/Desktop/git/24_deb_gov/R/contrib_docChar_outcomes.R") contrib_total_df <- contrib_total_df|> join(summed_data, by=upstream_vcs_link) contrib_total_df <- contrib_pop_df |> join(contrib_readability_df, by="project_name") View(contrib_total_df) contrib_total_df <- contrib_total_df|> join(summed_data, by=upstream_vcs_link) View(summed_data) contrib_total_df <- contrib_total_df|> join(summed_data, by="upstream_vcs_link") View(contrib_total_df) View(contrib_df) source("~/Desktop/git/24_deb_gov/R/contrib_docChar_outcomes.R") #outcome variable that is number of commits by number of new contributors contrib_total_df$commit_by_contrib = contrib_total_df$summed_count * contrib_total_df$after_contrib_new # test regressions library(MASS) lm1 <- glm.nb(after_contrib_new ~ flesch_reading_ease + age_in_days, data = contrib_total_df) qqnorm(residuals(lm1)) summary(lm1) lm1 <- glm.nb(commit_by_contrib ~ flesch_reading_ease + age_in_days, data = contrib_total_df) qqnorm(residuals(lm1)) summary(lm1) View(contrib_total_df) lm1 <- glm.nb(commit_by_contrib ~ word_count, data = contrib_total_df) qqnorm(residuals(lm1)) summary(lm1) contrib_total_df$scaled_outcome = scale(contrib_total_df$commit_by_contrib) lm1 <- glm.nb(scaled_outcome ~ word_count + flesch_kincaid, data = contrib_total_df) lm1 <- glm.nb(scaled_outcome ~ word_count + flesch_kincaid_grade, data = contrib_total_df) contrib_total_df$logged_outcome = log1p(contrib_total_df$commit_by_contrib) # test regressions library(MASS) lm1 <- glm.nb(scaled_outcome ~ word_count + flesch_kincaid_grade, data = contrib_total_df) lm1 <- glm.nb(logged_outcome ~ word_count + flesch_kincaid_grade, data = contrib_total_df) qqnorm(residuals(lm1)) summary(lm1) lm1 <- glm.nb(logged_outcome ~ word_count + flesch_kincaid_grade + linsear_write_formula, data = contrib_total_df) qqnorm(residuals(lm1)) summary(lm1) contrib_total_df$scaled_outcome = scale(contrib_total_df$commit_by_contrib) # test regressions library(MASS) lm1 <- lm(scaled_outcome ~ word_count + flesch_kincaid_grade + linsear_write_formula, data = contrib_total_df) qqnorm(residuals(lm1)) summary(lm1) lm1 <- glm.nb(logged_outcome ~ word_count + flesch_kincaid_grade + linsear_write_formula, data = contrib_total_df) qqnorm(residuals(lm1)) summary(lm1) lm1 <- glm.nb(logged_outcome ~ word_count + flesch_kincaid_grade + linsear_write_formula + mcalpine_eflaw, data = contrib_total_df) qqnorm(residuals(lm1)) summary(lm1) lm1 <- glm.nb(logged_outcome ~ word_count + flesch_kincaid_grade + linsear_write_formula + mcalpine_eflaw + dale_chall_readability_score, data = contrib_total_df) qqnorm(residuals(lm1)) summary(lm1) lm1 <- glm.nb(logged_outcome ~ word_count + dale_chall_readability_score, data = contrib_total_df) qqnorm(residuals(lm1)) summary(lm1) lm1 <- glm.nb(logged_outcome ~ word_count + reading_time, data = contrib_total_df) qqnorm(residuals(lm1)) summary(lm1) lm1 <- glm.nb(commit_by_contrib ~ word_count + reading_time, data = contrib_total_df) qqnorm(residuals(lm1)) summary(lm1) lm1 <- glm.nb(commit_by_contrib ~ word_count + flesch_kincaid_grade, data = contrib_total_df) qqnorm(residuals(lm1)) summary(lm1) #libraries library(stringr) readme_df <- read_csv("../final_data/deb_readme_did.csv") readme_pop_df <- read_csv("../final_data/deb_readme_pop_change.csv") readme_readability_df <- read_csv('../text_analysis/dwo_readability_readmeuting.csv') source("~/Desktop/git/24_deb_gov/R/readme_docChar_outcomes.R") source("~/Desktop/git/24_deb_gov/R/readme_docChar_outcomes.R") lm1 <- glm.nb(commit_by_readme ~ word_count + flesch_kincaid_grade, data = readme_total_df) View(readme_readability_df) readme_readability_df <- readme_readability_df |> mutate(project_name = map_chr(filename, ~ { parts <- str_split(.x, pattern = "_")[[1]] if (length(parts) >= 1) { paste(head(parts, -1), collapse="_") } else { NA_character_ } })) readme_total_df <- readme_pop_df |> join(readme_readability_df, by="project_name") readme_total_df <- readme_total_df|> join(summed_data, by="upstream_vcs_link") #outcome variable that is number of commits by number of new readmeutors readme_total_df$commit_by_readme = readme_total_df$summed_count * readme_total_df$after_readme_new readme_total_df$logged_outcome = log(readme_total_df$commit_by_readme) View(readme_total_df) View(readme_total_df) #outcome variable that is number of commits by number of new readmeutors readme_total_df$commit_by_readme = readme_total_df$summed_count * readme_total_df$after_readme_new View(readme_total_df) View(readme_readability_df) readme_pop_df[readme_pop_df['upstream_vcs_link'] == "https://github.com/agateau/yokadi/issues/new", "project_name"] = "yokadi" View(readme_pop_df) readme_pop_df[readme_pop_df['upstream_vcs_link'] == "https://github.com/SciRuby/rb-gsl/issues/new", "project_name"] = "rb-gsl" source("~/Desktop/git/24_deb_gov/R/readme_docChar_outcomes.R") readme_readability_df <- readme_readability_df |> mutate(project_name = map_chr(filename, ~ { parts <- str_split(.x, pattern = "_")[[1]] if (length(parts) >= 1) { paste(head(parts, -1), collapse="_") } else { NA_character_ } })) readme_readability_df[readme_readability_df['filename'] == "yder_README_8md.html", "project_name"] = "yder" readme_readability_df[readme_readability_df['filename'] == "pg_filedump.git_README.pg_filedump", "project_name"] = "pg_filedump.git" readme_readability_df[readme_readability_df['filename'] == "openvas_UPGRADE_README", "project_name"] = "openvas" readme_readability_df[readme_readability_df['filename'] == "hyphen.git_README_hyph_en_US.txt", "project_name"] = "hyphen.git" readme_readability_df[readme_readability_df['filename'] == "cycle.git_README_ru.html", "project_name"] = "cycle.git" readme_readability_df[readme_readability_df['filename'] == "diffuse.git_README_ru", "project_name"] = "diffuse.git" readme_readability_df[readme_readability_df['filename'] == "CheMPS2_README_8md_source.html", "project_name"] = "CheMPS2" readme_readability_df[readme_readability_df['filename'] == "sleuthkit_README_win32.txt", "project_name"] = "sleuthkit" readme_readability_df[readme_readability_df['filename'] == "Lmod_README_lua_modulefiles.txt", "project_name"] = "Lmod" readme_readability_df[readme_readability_df['filename'] == "engauge_debian_README_for_osx", "project_name"] = "engauge_debian" readme_total_df <- readme_pop_df |> join(readme_readability_df, by="project_name") readme_total_df <- readme_total_df|> join(summed_data, by="upstream_vcs_link") #outcome variable that is number of commits by number of new readmeutors readme_total_df$commit_by_readme = readme_total_df$summed_count * readme_total_df$after_readme_new View(readme_total_df) readme_total_df$logged_outcome = log(readme_total_df$commit_by_readme) #outcome variable that is number of commits by number of new readmeutors readme_total_df$commit_by_readme = readme_total_df$summed_count * readme_total_df$after_readme_new #outcome variable that is number of commits by number of new readmeutors readme_total_df$commit_by_contrib = readme_total_df$summed_count * readme_total_df$after_readme_new #outcome variable that is number of commits by number of new readmeutors readme_total_df$commit_by_contrib = NA readme_total_df$commit_by_contrib = readme_total_df$summed_count * readme_total_df$after_readme_new View(readme_total_df) View(readme_total_df) readme_total_df$commit_by_contrib = readme_total_df$summed_count * readme_total_df$after_contrib_new lm1 <- glm.nb(commit_by_contrib ~ word_count + flesch_kincaid_grade, data = readme_total_df) qqnorm(residuals(lm1)) summary(lm1) readme_total_df$logged_outcome = log(readme_total_df$commit_by_readme) readme_total_df$logged_outcome = log(readme_total_df$commit_by_contrib) lm1 <- glm.nb(commit_by_contrib ~ word_count + flesch_kincaid_grade, data = readme_total_df) qqnorm(residuals(lm1)) summary(lm1) lm1 <- glm.nb(summed_count ~ word_count + flesch_kincaid_grade, data = readme_total_df) qqnorm(residuals(lm1)) summary(lm1) lm1 <- glm.nb(commit_by_contrib ~ word_count + flesch_kincaid_grade, data = readme_total_df) qqnorm(residuals(lm1)) summary(lm1) lm1 <- glm.nb(after_contrib_new ~ word_count + flesch_kincaid_grade, data = readme_total_df) qqnorm(residuals(lm1)) summary(lm1) lm1 <- glm.nb(after_contrib_new ~ word_count + reading_time, data = readme_total_df) qqnorm(residuals(lm1)) summary(lm1) lm1 <- glm.nb(commit_by_contrib ~ word_count + reading_time, data = readme_total_df) qqnorm(residuals(lm1)) summary(lm1) lm1 <- glm.nb(reading_time ~ word_count , data = readme_total_df) qqnorm(residuals(lm1)) summary(lm1) View(readme_total_df) lm1 <- glm.nb(reading_time ~ flesch_reading_ease , data = readme_total_df) qqnorm(residuals(lm1)) summary(lm1) lm1 <- glm.nb(flesch_reading_ease ~ reading_time , data = readme_total_df) lm1 <- glm.nb(commit_by_contrib ~ reading_time , data = readme_total_df) qqnorm(residuals(lm1)) summary(lm1) lm1 <- glm.nb(commit_by_contrib ~ reading_time + linsear_write_formula , data = readme_total_df) qqnorm(residuals(lm1)) summary(lm1) readme_total_df$commit_by_contrib = readme_total_df$summed_count * (readme_total_df$after_contrib_new + 1) readme_total_df$logged_outcome = log(readme_total_df$commit_by_contrib) lm1 <- glm.nb(commit_by_contrib ~ reading_time + linsear_write_formula , data = readme_total_df) qqnorm(residuals(lm1)) summary(lm1) readme_total_df$logged_outcome = log1p(readme_total_df$commit_by_contrib) lm1 <- glm.nb(logged_outcome ~ reading_time + linsear_write_formula , data = readme_total_df) qqnorm(residuals(lm1)) summary(lm1) lm1 <- glm.nb(logged_outcome ~ reading_time + linsear_write_formula + flesch_reading_ease, data = readme_total_df) qqnorm(residuals(lm1)) summary(lm1) lm1 <- glm.nb(logged_outcome ~ reading_time + linsear_write_formula + flesch_reading_ease + mcalpine_eflaw, data = readme_total_df) qqnorm(residuals(lm1)) summary(lm1) lm1 <- glm.nb(summed_count~ reading_time + linsear_write_formula + flesch_reading_ease + mcalpine_eflaw, data = readme_total_df) qqnorm(residuals(lm1)) summary(lm1) lm1 <- glm.nb(summed_count~ reading_time + linsear_write_formula + flesch_reading_ease + mcalpine_eflaw + word_count, data = readme_total_df) qqnorm(residuals(lm1)) summary(lm1) lm1 <- glm.nb(logged_outcome~ reading_time + linsear_write_formula + flesch_reading_ease + mcalpine_eflaw + word_count, data = readme_total_df) qqnorm(residuals(lm1)) summary(lm1) source("~/Desktop/git/24_deb_gov/R/contrib_docChar_outcomes.R") lm1 <- glm.nb(logged_outcome~ reading_time + linsear_write_formula + flesch_reading_ease + mcalpine_eflaw + word_count, data = contrib_total_df) contrib_total_df$logged_outcome = log1p(contrib_total_df$commit_by_contrib) lm1 <- glm.nb(logged_outcome ~ reading_time + linsear_write_formula + flesch_reading_ease + mcalpine_eflaw + word_count, data = contrib_total_df) qqnorm(residuals(lm1)) summary(lm1) lm1 <- glm.nb(summed_count ~ reading_time + linsear_write_formula + flesch_reading_ease + mcalpine_eflaw + word_count, data = contrib_total_df) qqnorm(residuals(lm1)) summary(lm1) contrib_topics_df <- read_csv("../text_analysis/contrib_file_topic_distributions.csv") library(tidyverse) contrib_topics_df <- read_csv("../text_analysis/contrib_file_topic_distributions.csv") View(contrib_topics_df) source("~/Desktop/git/24_deb_gov/R/contrib_topic_outcomes.R") source("~/Desktop/git/24_deb_gov/R/contrib_topic_outcomes.R") source("~/Desktop/git/24_deb_gov/R/contrib_docChar_outcomes.R") source("~/Desktop/git/24_deb_gov/R/contrib_topic_outcomes.R") source("~/Desktop/git/24_deb_gov/R/contrib_topic_outcomes.R") source("~/Desktop/git/24_deb_gov/R/contrib_topic_outcomes.R") lm1 <- glm.nb(summed_count ~ t0 + t1 + t2 + t3, data = contrib_total_df) #running regressions library(MASS) lm1 <- glm.nb(summed_count ~ t0 + t1 + t2 + t3, data = contrib_total_df) source("~/Desktop/git/24_deb_gov/R/contrib_topic_outcomes.R") library(stringr) library(plyr) contrib_topics_df <- read_csv("../text_analysis/contrib_file_topic_distributions.csv") contrib_df <- read_csv("../final_data/deb_contrib_did.csv") contrib_pop_df <- read_csv("../final_data/deb_contrib_pop_change.csv") #get the contribution count #some preprocessing and expansion col_order <- c("upstream_vcs_link", "age_in_days", "first_commit", "first_commit_dt", "event_gap", "event_date", "event_hash", "before_all_ct", "after_all_ct", "before_mrg_ct", "after_mrg_ct", "before_auth_new", "after_auth_new", "before_commit_new", "after_commit_new") contrib_df <- contrib_df[,col_order] contrib_df$ct_before_all <- str_split(gsub("[][]","", contrib_df$before_all_ct), ", ") contrib_df$ct_after_all <- str_split(gsub("[][]","", contrib_df$after_all_ct), ", ") contrib_df$ct_before_mrg <- str_split(gsub("[][]","", contrib_df$before_mrg_ct), ", ") contrib_df$ct_after_mrg <- str_split(gsub("[][]","", contrib_df$after_mrg_ct), ", ") drop <- c("before_all_ct", "before_mrg_ct", "after_all_ct", "after_mrg_ct") contrib_df = contrib_df[,!(names(contrib_df) %in% drop)] # 2 some expansion needs to happens for each project expand_timeseries <- function(project_row) { longer <- project_row |> pivot_longer(cols = starts_with("ct"), names_to = "window", values_to = "count") |> unnest(count) longer$observation_type <- gsub("^.*_", "", longer$window) longer <- ddply(longer, "observation_type", transform, week=seq(from=0, by=1, length.out=length(observation_type))) longer$count <- as.numeric(longer$count) #longer <- longer[which(longer$observation_type == "all"),] return(longer) } expanded_data <- expand_timeseries(contrib_df[1,]) for (i in 2:nrow(contrib_df)){ expanded_data <- rbind(expanded_data, expand_timeseries(contrib_df[i,])) } #filter out the windows of time that we're looking at window_num <- 8 windowed_data <- expanded_data |> filter(week >= (27 - window_num) & week <= (27 + window_num)) |> mutate(D = ifelse(week > 27, 1, 0)) summed_data <- windowed_data |> filter(D==1) |> group_by(upstream_vcs_link) |> summarise_at(vars(count), list(summed_count=sum)) #concat dataframes into central data contrib_pop_df <- contrib_pop_df |> mutate(project_name = map_chr(upstream_vcs_link, ~ { parts <- str_split(.x, pattern = "/")[[1]] if (length(parts) >= 1) { parts[length(parts)] } else { NA_character_ } })) contrib_topic_df <- contrib_topic_df |> mutate(project_name = map_chr(filename, ~ { parts <- str_split(.x, pattern = "_")[[1]] if (length(parts) >= 1) { paste(head(parts, -1), collapse="_") } else { NA_character_ } })) contrib_topics_df <- contrib_topics_df |> mutate(project_name = map_chr(filename, ~ { parts <- str_split(.x, pattern = "_")[[1]] if (length(parts) >= 1) { paste(head(parts, -1), collapse="_") } else { NA_character_ } })) contrib_total_df <- contrib_pop_df |> join(contrib_topics_df, by="project_name") contrib_total_df <- contrib_total_df|> join(summed_data, by="upstream_vcs_link") #outcome variable that is number of commits by number of new contributors contrib_total_df$commit_by_contrib = contrib_total_df$summed_count * contrib_total_df$after_contrib_new contrib_total_df$logged_outcome = log1p(contrib_total_df$commit_by_contrib) #running regressions library(MASS) lm1 <- glm.nb(summed_count ~ t0 + t1 + t2 + t3, data = contrib_total_df) qqnorm(residuals(lm1)) summary(lm1) View(contrib_total_df) lm1 <- glm.nb(summed_count ~ t3, data = contrib_total_df) qqnorm(residuals(lm1)) summary(lm1) lm1 <- glm.nb(summed_count ~ t3 + t2 + t1, data = contrib_total_df) qqnorm(residuals(lm1)) summary(lm1) lm1 <- glm.nb(summed_count ~ t3 + t2 + t1 + t0, data = contrib_total_df) qqnorm(residuals(lm1)) summary(lm1) lm1 <- glm.nb(summed_count ~ t0 + t1 + t2 + t3, data = contrib_total_df) qqnorm(residuals(lm1)) summary(lm1) lm1 <- lm(summed_count ~ t0 + t1 + t2 + t3, data = contrib_total_df) qqnorm(residuals(lm1)) summary(lm1) lm1 <- glm.nb(summed_count ~ t0 + t1 + t2 + t3, data = contrib_total_df) qqnorm(residuals(lm1)) summary(lm1) lm1 <- glm.nb(summed_count ~ t1 + t2 + t3, data = contrib_total_df) qqnorm(residuals(lm1)) summary(lm1) lm1 <- glm.nb(summed_count ~ t3, data = contrib_total_df) qqnorm(residuals(lm1)) summary(lm1) lm1 <- glm.nb(commit_by_contrib ~ t3, data = contrib_total_df) qqnorm(residuals(lm1)) summary(lm1) lm1 <- glm.nb(commit_by_contrib ~ t1 + t2 +t3, data = contrib_total_df) qqnorm(residuals(lm1)) summary(lm1) lm1 <- glm.nb(commit_by_contrib ~ t3, data = contrib_total_df) qqnorm(residuals(lm1)) summary(lm1) lm1 <- glm.nb(commit_by_contrib ~ t2, data = contrib_total_df) qqnorm(residuals(lm1)) summary(lm1) lm1 <- glm.nb(commit_by_contrib ~ t1, data = contrib_total_df) qqnorm(residuals(lm1)) summary(lm1) lm1 <- glm.nb(commit_by_contrib ~ t3, data = contrib_total_df) qqnorm(residuals(lm1)) summary(lm1) source("~/Desktop/git/24_deb_gov/R/readme_topic_outcomes.R") #outcome variable that is number of commits by number of new readmeutors readme_total_df$commit_by_contrib = readme_total_df$summed_count *readme_total_df$after_contrib_new readme_total_df$logged_outcome = log1p(readme_total_df$commit_by_readme) #running regressions library(MASS) lm1 <- glm.nb(commit_by_readme ~ t3, data = readme_total_df) lm1 <- glm.nb(commit_by_contrib ~ t3, data = readme_total_df) qqnorm(residuals(lm1)) summary(lm1) lm1 <- glm.nb(commit_by_contrib ~ t0, data = readme_total_df) qqnorm(residuals(lm1)) summary(lm1) lm1 <- glm.nb(commit_by_contrib ~ t1, data = readme_total_df) qqnorm(residuals(lm1)) summary(lm1) lm1 <- glm.nb(commit_by_contrib ~ t7, data = readme_total_df) qqnorm(residuals(lm1)) summary(lm1) lm1 <- glm.nb(commit_by_contrib ~ t0+t1+t7, data = readme_total_df) qqnorm(residuals(lm1)) summary(lm1) lm1 <- glm.nb(commit_by_contrib ~ t0+t1+t2+t7, data = readme_total_df) qqnorm(residuals(lm1)) summary(lm1) lm1 <- glm.nb(commit_by_contrib ~ t0+t1+t2+t7+t3, data = readme_total_df) qqnorm(residuals(lm1)) summary(lm1) lm1 <- glm.nb(commit_by_contrib ~ t0+t1+t2+t7+t3 + t4, data = readme_total_df) qqnorm(residuals(lm1)) summary(lm1) lm1 <- glm.nb(commit_by_contrib ~ t0+t1+t2+t7+t3 +t4 + t5 + t6, data = readme_total_df) qqnorm(residuals(lm1)) summary(lm1) lm1 <- glm.nb(commit_by_contrib ~ t0+t1+t2+t7+t3 +t4 + t5, data = readme_total_df) qqnorm(residuals(lm1)) summary(lm1) source("~/Desktop/git/24_deb_gov/R/contrib_topic_outcomes.R") lm1 <- glm.nb(commit_by_contrib ~ t3, data = contrib_total_df) qqnorm(residuals(lm1)) summary(lm1) lm1 <- glm.nb(commit_by_contrib ~ t0+ t1+ t3, data = contrib_total_df) qqnorm(residuals(lm1)) summary(lm1) lm1 <- glm.nb(commit_by_contrib ~ t0+ t1+ t2+ t3, data = contrib_total_df) qqnorm(residuals(lm1)) summary(lm1) lm1 <- glm.nb(commit_by_contrib ~ t1+ t2+ t3, data = contrib_total_df) qqnorm(residuals(lm1)) summary(lm1) lm1 <- glm.nb(commit_by_contrib ~ t1+ t3, data = contrib_total_df) qqnorm(residuals(lm1)) summary(lm1) lm1 <- glm.nb(commit_by_contrib ~ t2+ t3, data = contrib_total_df) qqnorm(residuals(lm1)) summary(lm1)