library(tidyverse) library(plyr) library(stringr) try(setwd(dirname(rstudioapi::getActiveDocumentContext()$path))) #load in data full_df <- read_csv("../final_data/deb_full_data.csv") contrib_df <- read_csv("../final_data/deb_contrib_pop_change.csv") readme_df <- read_csv("../final_data/deb_readme_pop_change.csv") contrib_df <- merge(full_df, contrib_df, by="upstream_vcs_link") readme_df <- merge(full_df, readme_df, by="upstream_vcs_link") # age is calculated against December 11, 2023 #some expansion needs to happens for each project expand_timeseries <- function(project_row) { longer <- project_row |> pivot_longer(cols = ends_with("new"), names_to = "window", values_to = "count") |> unnest(count) |> mutate(after_doc = as.numeric(str_detect(window, "after"))) |> mutate(is_collab = as.numeric(str_detect(window, "collab"))) return(longer) } expanded_readme_data <- expand_timeseries(readme_df[1,]) for (i in 2:nrow(readme_df)){ expanded_readme_data <- rbind(expanded_readme_data, expand_timeseries(readme_df[i,])) } expanded_contrib_data <- expand_timeseries(contrib_df[1,]) for (i in 2:nrow(contrib_df)){ expanded_contrib_data <- rbind(expanded_contrib_data, expand_timeseries(contrib_df[i,])) } expanded_readme_data$log1pcount <- log1p(expanded_readme_data$count) expanded_contrib_data$log1pcount <- log1p(expanded_contrib_data$count) expanded_readme_data$logcount <- log(expanded_readme_data$count) expanded_contrib_data$logcount <- log(expanded_contrib_data$count) #scale age expanded_readme_data$scaled_age <- scale(expanded_readme_data$age_in_days) expanded_contrib_data$scaled_age <- scale(expanded_contrib_data$age_in_days) #breaking out the types of population counts collab_pop_readme <- expanded_readme_data[which(expanded_readme_data$is_collab == 1),] contrib_pop_readme <- expanded_readme_data[which(expanded_readme_data$is_collab == 0),] collab_pop_contrib <- expanded_contrib_data[which(expanded_contrib_data$is_collab == 1),] contrib_pop_contrib <- expanded_contrib_data[which(expanded_contrib_data$is_collab == 0),] #import models library(lme4) library(optimx) library(MASS) #readme docs simple_collab_readme_model <- glm.nb(log1pcount ~ as.factor(after_doc) + scale(age_in_days), data=collab_pop_readme) summary(simple_collab_readme_model) qqnorm(residuals(simple_collab_readme_model)) simple_contrib_readme_model <- glm.nb(log1pcount ~ as.factor(after_doc) + scale(age_in_days), data=collab_pop_readme) summary(simple_contrib_readme_model) qqnorm(residuals(simple_contrib_readme_model)) # I don't think MLM is the right one collab_readme_model <- glmer.nb(log1pcount ~ as.factor(after_doc) + scaled_age + (after_doc| upstream_vcs_link), data=collab_pop_readme) summary(collab_readme_model) saveRDS(collab_readme_model, "final_models/0624_pop_rm_collab_better.rda") contrib_readme_model <- glmer.nb(log1pcount ~ as.factor(after_doc) + scaled_age + (after_doc| upstream_vcs_link), data=contrib_pop_readme) summary(contrib_readme_model) saveRDS(contrib_readme_model, "final_models/0624_pop_rm_contrib.rda") #contrib_readme_model <- readRDS("final_models/0623_pop_rm_contrib.rda") #contributing models are not statistically significant`` library(texreg) texreg(list(collab_readme_model, contrib_readme_model), stars=NULL, digits=2, custom.model.names=c( 'collab','contrib.' ), custom.coef.names=c('(Intercept)', 'after_introduction', 'etc'), use.packages=FALSE, table=FALSE, ci.force = TRUE) library(ggplot2) contrib_pop_readme |> ggplot(aes(x = after_doc, y = log1pcount, col = as.factor(after_doc))) + geom_violin() expanded_readme_data |> ggplot(aes(x = after_doc, y = count, col = as.factor(after_doc))) + geom_violin() expanded_contrib_data |> ggplot(aes(x = after_doc, y = count, col = as.factor(after_doc))) + geom_violin()