mutate(crescendo_limit = ifelse(week_offset < (-4), 0, 1))|> cor.test(crescendo_limit, count) cor.test(second_windowed_data$crescendo_limit, second_windowed_data$count) #checking crescendo of contributions before document publication #second window second_windowed_data <- windowed_data |> filter(week_offset <= 0) |> mutate(crescendo_limit = ifelse(week_offset < (-2), 0, 1)) cor.test(second_windowed_data$crescendo_limit, second_windowed_data$count) #checking crescendo of contributions before document publication #second window second_windowed_data <- windowed_data |> filter(week_offset <= 0) |> mutate(crescendo_limit = ifelse(week_offset < (-1), 0, 1)) cor.test(second_windowed_data$crescendo_limit, second_windowed_data$count) #checking crescendo of contributions before document publication #second window second_windowed_data <- all_actions_data |> filter(week_offset <= 0) |> mutate(crescendo_limit = ifelse(week_offset < (-1), 0, 1)) #testing whether there's a correlation between count and the presce cor.test(second_windowed_data$crescendo_limit, second_windowed_data$count) library(tidyverse) library(plyr) #get the contrib data instead try(setwd(dirname(rstudioapi::getActiveDocumentContext()$path))) contrib_df <- read_csv("../final_data/deb_contrib_did.csv") #some preprocessing and expansion col_order <- c("upstream_vcs_link", "age_of_project", "event_date", "event_hash", "before_all_ct", "after_all_ct", "before_mrg_ct", "after_mrg_ct", "before_auth_new", "after_auth_new", "before_commit_new", "after_commit_new") contrib_df <- contrib_df[,col_order] contrib_df$ct_before_all <- str_split(gsub("[][]","", contrib_df$before_all_ct), ", ") contrib_df$ct_after_all <- str_split(gsub("[][]","", contrib_df$after_all_ct), ", ") contrib_df$ct_before_mrg <- str_split(gsub("[][]","", contrib_df$before_mrg_ct), ", ") contrib_df$ct_after_mrg <- str_split(gsub("[][]","", contrib_df$after_mrg_ct), ", ") drop <- c("before_all_ct", "before_mrg_ct", "after_all_ct", "after_mrg_ct") contrib_df = contrib_df[,!(names(contrib_df) %in% drop)] # 2 some expansion needs to happens for each project expand_timeseries <- function(project_row) { longer <- project_row |> pivot_longer(cols = starts_with("ct"), names_to = "window", values_to = "count") |> unnest(count) longer$observation_type <- gsub("^.*_", "", longer$window) longer <- ddply(longer, "observation_type", transform, week=seq(from=0, by=1, length.out=length(observation_type))) longer$count <- as.numeric(longer$count) #longer <- longer[which(longer$observation_type == "all"),] return(longer) } expanded_data <- expand_timeseries(contrib_df[1,]) for (i in 2:nrow(contrib_df)){ expanded_data <- rbind(expanded_data, expand_timeseries(contrib_df[i,])) } #filter out the windows of time that we're looking at window_num <- 8 windowed_data <- expanded_data |> filter(week >= (27 - window_num) & week <= (27 + window_num)) |> mutate(D = ifelse(week > 27, 1, 0)) #scale the age numbers and calculate the week offset here windowed_data$scaled_project_age <- scale(windowed_data$age_of_project) windowed_data$week_offset <- windowed_data$week - 27 #break out the different type of commit actions all_actions_data <- windowed_data[which(windowed_data$observation_type == "all"),] mrg_actions_data <- windowed_data[which(windowed_data$observation_type == "mrg"),] #logging all_actions_data$logged_count <- log(all_actions_data$count) all_actions_data$log1p_count <- log1p(all_actions_data$count) # now for merge mrg_actions_data$logged_count <- log(mrg_actions_data$count) mrg_actions_data$log1p_count <- log1p(mrg_actions_data$count) #checking crescendo of contributions before document publication #second window second_windowed_data <- all_actions_data |> filter(week_offset <= 0) |> mutate(crescendo_limit = ifelse(week_offset < (-1), 0, 1)) #testing whether there's a correlation between count and the two weeks before the introduction cor.test(second_windowed_data$crescendo_limit, second_windowed_data$count) #checking crescendo of contributions before document publication #second window second_windowed_data <- all_actions_data |> filter(week_offset <= 0) |> mutate(crescendo_limit = ifelse(week_offset < (-3), 0, 1)) #testing whether there's a correlation between count and the two weeks before the introduction cor.test(second_windowed_data$crescendo_limit, second_windowed_data$count) #checking crescendo of contributions before document publication #second window second_windowed_data <- all_actions_data |> filter(week_offset <= 0) |> mutate(crescendo_limit = ifelse(week_offset < (-1), 0, 1)) #testing whether there's a correlation between count and the two weeks before the introduction cor.test(second_windowed_data$crescendo_limit, second_windowed_data$count) # this is the file with the lmer multi-level rddAnalysis library(tidyverse) library(plyr) # 0 loading the readme data in try(setwd(dirname(rstudioapi::getActiveDocumentContext()$path))) readme_df <- read_csv("../final_data/deb_readme_did.csv") # 1 preprocessing #colnames(readme_df) <- c("upstream_vcs_link", "event_date", "event_hash", "before_all_ct", "before_mrg_ct", "after_all_ct", "after_mrg_ct", "before_auth_new", "after_commit_new", "after_auth_new", "before_commit_new") col_order <- c("upstream_vcs_link", "age_of_project", "event_date", "event_hash", "before_all_ct", "after_all_ct", "before_mrg_ct", "after_mrg_ct", "before_auth_new", "after_auth_new", "before_commit_new", "after_commit_new") readme_df <- readme_df[,col_order] readme_df$ct_before_all <- str_split(gsub("[][]","", readme_df$before_all_ct), ", ") readme_df$ct_after_all <- str_split(gsub("[][]","", readme_df$after_all_ct), ", ") readme_df$ct_before_mrg <- str_split(gsub("[][]","", readme_df$before_mrg_ct), ", ") readme_df$ct_after_mrg <- str_split(gsub("[][]","", readme_df$after_mrg_ct), ", ") drop <- c("before_all_ct", "before_mrg_ct", "after_all_ct", "after_mrg_ct") readme_df = readme_df[,!(names(readme_df) %in% drop)] # 2 some expansion needs to happens for each project expand_timeseries <- function(project_row) { longer <- project_row |> pivot_longer(cols = starts_with("ct"), names_to = "window", values_to = "count") |> unnest(count) longer$observation_type <- gsub("^.*_", "", longer$window) longer <- ddply(longer, "observation_type", transform, week=seq(from=0, by=1, length.out=length(observation_type))) longer$count <- as.numeric(longer$count) #longer <- longer[which(longer$observation_type == "all"),] return(longer) } expanded_data <- expand_timeseries(readme_df[1,]) for (i in 2:nrow(readme_df)){ expanded_data <- rbind(expanded_data, expand_timeseries(readme_df[i,])) } #filter out the windows of time that we're looking at window_num <- 8 windowed_data <- expanded_data |> filter(week >= (27 - window_num) & week <= (27 + window_num)) |> mutate(D = ifelse(week > 27, 1, 0)) #scale the age numbers windowed_data$scaled_project_age <- scale(windowed_data$age_of_project) windowed_data$week_offset <- windowed_data$week - 27 #break out the different types of commit actions that are studied all_actions_data <- windowed_data[which(windowed_data$observation_type == "all"),] mrg_actions_data <- windowed_data[which(windowed_data$observation_type == "mrg"),] #log the dependent all_actions_data$logged_count <- log(all_actions_data$count) all_actions_data$log1p_count <- log1p(all_actions_data$count) #checking crescendo of contributions before document publication #second window second_windowed_data <- all_actions_data |> filter(week_offset <= 0) |> mutate(crescendo_limit = ifelse(week_offset < (-1), 0, 1)) #testing whether there's a correlation between count and the two weeks before the introduction cor.test(second_windowed_data$crescendo_limit, second_windowed_data$count) lm(count ~ crescendo_limit + week_offset, data = second_windowed_data) crescendow_huh <- lm(count ~ crescendo_limit + week_offset, data = second_windowed_data) crescendo_huh <- lm(count ~ crescendo_limit + week_offset, data = second_windowed_data) summary(crescendo_huh) #checking crescendo of contributions before document publication #second window second_windowed_data <- all_actions_data |> filter(week_offset <= 0) |> mutate(crescendo_limit = ifelse(week_offset < (-3), 0, 1)) #testing whether there's a correlation between count and the two weeks before the introduction cor.test(second_windowed_data$crescendo_limit, second_windowed_data$count) crescendo_huh <- lm(count ~ crescendo_limit + week_offset, data = second_windowed_data) summary(crescendo_huh) library(tidyverse) library(plyr) #get the contrib data instead try(setwd(dirname(rstudioapi::getActiveDocumentContext()$path))) contrib_df <- read_csv("../final_data/deb_contrib_did.csv") #some preprocessing and expansion col_order <- c("upstream_vcs_link", "age_of_project", "event_date", "event_hash", "before_all_ct", "after_all_ct", "before_mrg_ct", "after_mrg_ct", "before_auth_new", "after_auth_new", "before_commit_new", "after_commit_new") contrib_df <- contrib_df[,col_order] contrib_df$ct_before_all <- str_split(gsub("[][]","", contrib_df$before_all_ct), ", ") contrib_df$ct_after_all <- str_split(gsub("[][]","", contrib_df$after_all_ct), ", ") contrib_df$ct_before_mrg <- str_split(gsub("[][]","", contrib_df$before_mrg_ct), ", ") contrib_df$ct_after_mrg <- str_split(gsub("[][]","", contrib_df$after_mrg_ct), ", ") drop <- c("before_all_ct", "before_mrg_ct", "after_all_ct", "after_mrg_ct") contrib_df = contrib_df[,!(names(contrib_df) %in% drop)] # 2 some expansion needs to happens for each project expand_timeseries <- function(project_row) { longer <- project_row |> pivot_longer(cols = starts_with("ct"), names_to = "window", values_to = "count") |> unnest(count) longer$observation_type <- gsub("^.*_", "", longer$window) longer <- ddply(longer, "observation_type", transform, week=seq(from=0, by=1, length.out=length(observation_type))) longer$count <- as.numeric(longer$count) #longer <- longer[which(longer$observation_type == "all"),] return(longer) } expanded_data <- expand_timeseries(contrib_df[1,]) for (i in 2:nrow(contrib_df)){ expanded_data <- rbind(expanded_data, expand_timeseries(contrib_df[i,])) } #filter out the windows of time that we're looking at window_num <- 8 windowed_data <- expanded_data |> filter(week >= (27 - window_num) & week <= (27 + window_num)) |> mutate(D = ifelse(week > 27, 1, 0)) #scale the age numbers and calculate the week offset here windowed_data$scaled_project_age <- scale(windowed_data$age_of_project) windowed_data$week_offset <- windowed_data$week - 27 #break out the different type of commit actions all_actions_data <- windowed_data[which(windowed_data$observation_type == "all"),] mrg_actions_data <- windowed_data[which(windowed_data$observation_type == "mrg"),] #logging all_actions_data$logged_count <- log(all_actions_data$count) all_actions_data$log1p_count <- log1p(all_actions_data$count) # now for merge mrg_actions_data$logged_count <- log(mrg_actions_data$count) mrg_actions_data$log1p_count <- log1p(mrg_actions_data$count) #checking crescendo of contributions before document publication #second window second_windowed_data <- all_actions_data |> filter(week_offset <= 0) |> mutate(crescendo_limit = ifelse(week_offset < (-1), 0, 1)) #testing whether there's a correlation between count and the two weeks before the introduction cor.test(second_windowed_data$crescendo_limit, second_windowed_data$count) crescendo_huh <- lm(count ~ crescendo_limit + week_offset, data = second_windowed_data) summary(crescendo_huh) crescendo_huh <- lm(count ~ crescendo_limit * week_offset, data = second_windowed_data) summary(crescendo_huh) # this is the file with the lmer multi-level rddAnalysis library(tidyverse) library(plyr) # 0 loading the readme data in try(setwd(dirname(rstudioapi::getActiveDocumentContext()$path))) readme_df <- read_csv("../final_data/deb_readme_did.csv") # 1 preprocessing #colnames(readme_df) <- c("upstream_vcs_link", "event_date", "event_hash", "before_all_ct", "before_mrg_ct", "after_all_ct", "after_mrg_ct", "before_auth_new", "after_commit_new", "after_auth_new", "before_commit_new") col_order <- c("upstream_vcs_link", "age_of_project", "event_date", "event_hash", "before_all_ct", "after_all_ct", "before_mrg_ct", "after_mrg_ct", "before_auth_new", "after_auth_new", "before_commit_new", "after_commit_new") readme_df <- readme_df[,col_order] readme_df$ct_before_all <- str_split(gsub("[][]","", readme_df$before_all_ct), ", ") readme_df$ct_after_all <- str_split(gsub("[][]","", readme_df$after_all_ct), ", ") readme_df$ct_before_mrg <- str_split(gsub("[][]","", readme_df$before_mrg_ct), ", ") readme_df$ct_after_mrg <- str_split(gsub("[][]","", readme_df$after_mrg_ct), ", ") drop <- c("before_all_ct", "before_mrg_ct", "after_all_ct", "after_mrg_ct") readme_df = readme_df[,!(names(readme_df) %in% drop)] # 2 some expansion needs to happens for each project expand_timeseries <- function(project_row) { longer <- project_row |> pivot_longer(cols = starts_with("ct"), names_to = "window", values_to = "count") |> unnest(count) longer$observation_type <- gsub("^.*_", "", longer$window) longer <- ddply(longer, "observation_type", transform, week=seq(from=0, by=1, length.out=length(observation_type))) longer$count <- as.numeric(longer$count) #longer <- longer[which(longer$observation_type == "all"),] return(longer) } expanded_data <- expand_timeseries(readme_df[1,]) for (i in 2:nrow(readme_df)){ expanded_data <- rbind(expanded_data, expand_timeseries(readme_df[i,])) } #filter out the windows of time that we're looking at window_num <- 8 windowed_data <- expanded_data |> filter(week >= (27 - window_num) & week <= (27 + window_num)) |> mutate(D = ifelse(week > 27, 1, 0)) #scale the age numbers windowed_data$scaled_project_age <- scale(windowed_data$age_of_project) windowed_data$week_offset <- windowed_data$week - 27 #break out the different types of commit actions that are studied all_actions_data <- windowed_data[which(windowed_data$observation_type == "all"),] mrg_actions_data <- windowed_data[which(windowed_data$observation_type == "mrg"),] #log the dependent all_actions_data$logged_count <- log(all_actions_data$count) all_actions_data$log1p_count <- log1p(all_actions_data$count) #checking crescendo of contributions before document publication #second window second_windowed_data <- all_actions_data |> filter(week_offset <= 0) |> mutate(crescendo_limit = ifelse(week_offset < (-1), 0, 1)) #testing whether there's a correlation between count and the two weeks before the introduction cor.test(second_windowed_data$crescendo_limit, second_windowed_data$count) crescendo_huh <- lm(count ~ crescendo_limit * week_offset, data = second_windowed_data) summary(crescendo_huh) #checking crescendo of contributions before document publication #second window second_windowed_data <- all_actions_data |> filter(week_offset <= 0) |> mutate(crescendo_limit = ifelse(week_offset < (-3), 0, 1)) #testing whether there's a correlation between count and the two weeks before the introduction cor.test(second_windowed_data$crescendo_limit, second_windowed_data$count) crescendo_huh <- lm(count ~ crescendo_limit * week_offset, data = second_windowed_data) summary(crescendo_huh) #checking crescendo of contributions before document publication #second window second_windowed_data <- all_actions_data |> filter(week_offset <= 0) |> mutate(crescendo_limit = ifelse(week_offset < (-1), 0, 1)) #testing whether there's a correlation between count and the two weeks before the introduction cor.test(second_windowed_data$crescendo_limit, second_windowed_data$count) crescendo_huh <- lm(count ~ crescendo_limit * week_offset, data = second_windowed_data) summary(crescendo_huh) library(tidyverse) library(plyr) # script for the analysis of document readability metrics # readability metrics will be studied controlled by their length # gaughan@u.northwestern.edu # loading in the data try(setwd(dirname(rstudioapi::getActiveDocumentContext()$path))) readme_df <- read_csv("../text_analysis/draft_readability_readme.csv") contributing_df <- read_csv("../text_analysis/draft_readability_contributing.csv") head(readme_df) readme_df <- readme_df |> mutate(coef_grouping <- as.factor(subdir)) cor.test(readme_df$coef_grouping, readme_df$flesch_reading_ease) readme_df <- readme_df |> mutate(coef_grouping <- as.factor(subdir)) cor.test(readme_df$coef_grouping, readme_df$flesch_reading_ease) cor(readme_df$coef_grouping, readme_df$flesch_reading_ease) readme_df <- readme_df |> mutate(coef_grouping <- as.factor(subdir)) test_lm <- lm(flesch_reading_ease ~ coef_grouping,data=readme_df) readme_df <- readme_df |> mutate(coef_grouping <- as.factor(subdir)) test_lm <- lm(flesch_reading_ease ~ coef_grouping,data=readme_df) test_lm <- lm(flesch_reading_ease ~ subdir,data=readme_df) summary(test_lm) test_lm <- lm(flesch_reading_ease ~ as.factor(subdir),data=readme_df) summary(test_lm) head(readme_df) test_lm <- lm(flesch_reading_ease ~ char_count + as.factor(subdir),data=readme_df) summary(test_lm) head(readme_df) test_lm <- lm(linsear_write_formula ~ char_count + as.factor(subdir),data=readme_df) summary(test_lm) head(readme_df) test_lm <- lm(mcalpine_eflaw ~ char_count + as.factor(subdir),data=readme_df) summary(test_lm) test_lm <- lm(mcalpine_eflaw ~ word_count + as.factor(subdir),data=readme_df) summary(test_lm) aggregate(readme_df[, 3:11], list(readme_df$subdir), mean) aggregate(readme_df[, 3:10], list(readme_df$subdir), mean) #readme_df <- readme_df |> # mutate(coef_grouping <- as.factor(subdir)) #test_lm <- lm(mcalpine_eflaw ~ word_count + as.factor(subdir),data=readme_df) #summary(test_lm) aggregate(contributing_df[, 3:10], list(contributing_df$subdir), mean) library(tidyverse) library(plyr) # script for the analysis of document readability metrics # readability metrics will be studied controlled by their length # gaughan@u.northwestern.edu # loading in the data try(setwd(dirname(rstudioapi::getActiveDocumentContext()$path))) readme_df <- read_csv("../text_analysis/draft_readability_readme.csv") contributing_df <- read_csv("../text_analysis/draft_readability_contributing.csv") head(readme_df) aggregate(readme_df[, 3:10], list(readme_df$subdir), mean) aggregate(readme_df[, 3:10], list(readme_df$subdir), median) #readme_df <- readme_df |> # mutate(coef_grouping <- as.factor(subdir)) #test_lm <- lm(mcalpine_eflaw ~ word_count + as.factor(subdir),data=readme_df) #summary(test_lm) aggregate(contributing_df[, 3:10], list(contributing_df$subdir), median) rm(list=ls()) set.seed(424242) library(readr) library(ggplot2) library(tidyverse) overall_data <- read_csv('../final_data/deb_full_data.csv',show_col_types = FALSE) overall_data <- read_csv('../final_data/deb_full_data.csv',show_col_types = FALSE) octo_data <- read_csv('../final_data/deb_octo_data.csv', show_col_types = FALSE) readme_data <- read_csv("../final_data/deb_readme_roster.csv", show_col_types = FALSE) overall_data$mmt <- (((overall_data$collaborators * 2)+ overall_data$contributors) / (overall_data$contributors + overall_data$collaborators)) mean(overall_data$mmt) hist(overall_data$mmt, probability = TRUE) #the basic stuff for the overall data overall_data$mmt <- (((overall_data$collaborators * 2)+ overall_data$contributors) / (overall_data$contributors + overall_data$collaborators)) mean(overall_data$mmt) hist(overall_data$mmt, probability = TRUE) #some new variables around age #overall_data$new.age <- as.numeric(cut(overall_data$age_of_project/365, breaks=c(0,7.524197,10.323056,13.649367,17), labels=c(1,2,3,4))) #table(overall_data$new.age) #overall_data$new.age.factor <- as.factor(overall_data$new.age) overall_data$scaled_age <- scale(overall_data$age_of_project) #model mmtmodel1 <- lm(underproduction_mean ~ mmt + scaled_age, data=overall_data) summary(mmtmodel1) qqnorm(residuals(mmtmodel1)) # below this is the analysis for the octo data octo_data$new.age <- as.numeric(cut(octo_data$age_of_project/365, breaks=c(0,7.524197,10.323056,13.649367,17), labels=c(1,2,3,4))) table(octo_data$new.age) octo_data$new.age.factor <- as.factor(octo_data$new.age) octo_data$scaled_age <- scale(octo_data$age_of_project) octo_data$mmt <- (((octo_data$collaborators * 2)+ octo_data$contributors) / (octo_data$contributors + octo_data$collaborators)) mean(octo_data$mmt) hist(octo_data$mmt) head(octo_data) #getting the mmt-equivalent for both issue activity as well as wiki contrib activity octo_data$issue_mmt <- ((octo_data$issue_contrib_count * 2) + (octo_data$total_contrib - octo_data$issue_contrib_count)) / (octo_data$total_contrib) octo_data$sqrt_issue_mmt <- sqrt(octo_data$issue_mmt) #right skewed data, need to transform octo_data$wiki_mmt <- ((octo_data$wiki_contrib_count * 2) + (octo_data$total_contrib - octo_data$wiki_contrib_count)) / (octo_data$total_contrib) hist(octo_data$wiki_mmt) #below are the models for the octo data, there should be analysis for each one octo_mmtmodel1 <- lm(underproduction_mean ~ mmt + scaled_age + has_readme + has_contrib, data=octo_data) summary(octo_mmtmodel1) issue_mmtmodel1 <- lm(underproduction_mean ~ issue_mmt + scaled_age + has_readme + has_contrib, data=octo_data) summary(issue_mmtmodel1) qqnorm(residuals(issue_mmtmodel1)) wiki_mmtmodel1 <- lm(underproduction_mean ~ wiki_mmt + scaled_age + has_readme + has_contrib, data=octo_data) summary(wiki_mmtmodel1) #getting some of the information in about whether projects have specific files readme_did_roster <- read_csv("../final_data/deb_readme_did.csv", show_col_types = FALSE) contrib_did_roster <- read_csv("../final_data/deb_contrib_did.csv", show_col_types = FALSE) octo_data <- octo_data |> mutate(has_readme = as.numeric(upstream_vcs_link %in% readme_did_roster$upstream_vcs_link)) |> mutate(has_contrib = as.numeric(upstream_vcs_link %in% contrib_did_roster$upstream_vcs_link)) overall_data <- overall_data |> mutate(has_readme = as.numeric(upstream_vcs_link %in% readme_did_roster$upstream_vcs_link)) |> mutate(has_contrib = as.numeric(upstream_vcs_link %in% contrib_did_roster$upstream_vcs_link)) #below are the models for the octo data, there should be analysis for each one octo_mmtmodel1 <- lm(underproduction_mean ~ mmt + scaled_age + has_readme + has_contrib, data=octo_data) summary(octo_mmtmodel1) issue_mmtmodel1 <- lm(underproduction_mean ~ issue_mmt + scaled_age + has_readme + has_contrib, data=octo_data) summary(issue_mmtmodel1) qqnorm(residuals(issue_mmtmodel1)) wiki_mmtmodel1 <- lm(underproduction_mean ~ wiki_mmt + scaled_age + has_readme + has_contrib, data=octo_data) summary(wiki_mmtmodel1) qqnorm(residuals(wiki_mmtmodel1)) #these next three are looking at mmt as an outcome of other factors mmt_outcome_model <- lm(mmt ~ scaled_age + as.factor(has_readme) + as.factor(has_contrib), data = octo_data) summary(mmt_outcome_model) library(texreg) #my little "lib" texreg(list(octo_mmtmodel1, issue_mmtmodel1, wiki_mmtmodel1), stars=NULL, digits=2, custom.model.names=c( 'M1: MMT','M2: issue contrib.', 'M3: wiki contrib.' ), custom.coef.names=c('(Intercept)', 'MMT', 'scaled_age', 'has readme', 'has contrib', 'Issue MMT', 'Wiki MMT'), use.packages=FALSE, table=FALSE, ci.force = TRUE) govdoc_issuesmmt <- lm(issue_mmt ~ scaled_age + as.factor(has_readme) + as.factor(has_contrib), data=octo_data) summary(govdoc_issuesmmt) View(octo_data) octo_cleaned <- octo_data[octo_data$issue_mmt != NaN] octo_cleaned <- octo_data[!is.nan(octo_data$issue_mmt),] #below are the models for the octo data, there should be analysis for each one octo_mmtmodel1 <- lm(underproduction_mean ~ mmt + scaled_age + has_readme + has_contrib, data=octo_cleaned) summary(octo_mmtmodel1) issue_mmtmodel1 <- lm(underproduction_mean ~ issue_mmt + scaled_age + has_readme + has_contrib, data=octo_cleaned) summary(issue_mmtmodel1) qqnorm(residuals(issue_mmtmodel1)) wiki_mmtmodel1 <- lm(underproduction_mean ~ wiki_mmt + scaled_age + has_readme + has_contrib, data=octo_cleaned) summary(wiki_mmtmodel1) write.csv(octo_cleaned,"cleaned_octo.csv", row.names = FALSE) texreg(list(octo_mmtmodel1, issue_mmtmodel1, wiki_mmtmodel1), stars=NULL, digits=2, custom.model.names=c( 'M1: MMT','M2: issue contrib.', 'M3: wiki contrib.' ), custom.coef.names=c('(Intercept)', 'MMT', 'scaled_age', 'has readme', 'has contrib', 'Issue MMT', 'Wiki MMT'), use.packages=FALSE, table=FALSE, ci.force = TRUE) rm(list=ls()) set.seed(424242) library(readr) library(ggplot2) library(tidyverse) #primary analysis for cross-sectional community metrics overall_data <- read_csv('../final_data/deb_full_data.csv',show_col_types = FALSE) octo_data <- read_csv('../final_data/deb_octo_data.csv', show_col_types = FALSE) readme_data <- read_csv("../final_data/deb_readme_roster.csv", show_col_types = FALSE) contributing_data <- read_csv("../final_data/deb_contribfile_roster.csv", show_col_types = FALSE) overall_data$mmt <- (((overall_data$collaborators * 2)+ overall_data$contributors) / (overall_data$contributors + overall_data$collaborators)) mean(overall_data$mmt) #the basic stuff for the overall data overall_data$mmt <- (((overall_data$collaborators * 2)+ overall_data$contributors) / (overall_data$contributors + overall_data$collaborators)) mean(overall_data$mmt) hist(overall_data$mmt, probability = TRUE) #model mmtmodel1 <- lm(underproduction_mean ~ mmt + scaled_age, data=overall_data) summary(mmtmodel1) qqnorm(residuals(mmtmodel1)) #clean octo data octo_data <- filter(octo_data, total_contrib != 0) #some new variables around age #overall_data$new.age <- as.numeric(cut(overall_data$age_of_project/365, breaks=c(0,7.524197,10.323056,13.649367,17), labels=c(1,2,3,4))) #table(overall_data$new.age) #overall_data$new.age.factor <- as.factor(overall_data$new.age) overall_data$scaled_age <- scale(overall_data$age_of_project) #model mmtmodel1 <- lm(underproduction_mean ~ mmt + scaled_age, data=overall_data) table(octo_data$new.age) octo_data$new.age.factor <- as.factor(octo_data$new.age) octo_data$scaled_age <- scale(octo_data$age_of_project) octo_data$mmt <- (((octo_data$collaborators * 2)+ octo_data$contributors) / (octo_data$contributors + octo_data$collaborators)) mean(octo_data$mmt) hist(octo_data$mmt) head(octo_data) #getting the mmt-equivalent for both issue activity as well as wiki contrib activity octo_data$issue_mmt <- ((octo_data$issue_contrib_count * 2) + (octo_data$total_contrib - octo_data$issue_contrib_count)) / (octo_data$total_contrib) #right skewed data, need to transform octo_data$wiki_mmt <- ((octo_data$wiki_contrib_count * 2) + (octo_data$total_contrib - octo_data$wiki_contrib_count)) / (octo_data$total_contrib) #getting some of the information in about whether projects have specific files readme_did_roster <- read_csv("../final_data/deb_readme_did.csv", show_col_types = FALSE) contrib_did_roster <- read_csv("../final_data/deb_contrib_did.csv", show_col_types = FALSE) octo_data <- octo_data |> mutate(has_readme = as.numeric(upstream_vcs_link %in% readme_did_roster$upstream_vcs_link)) |> mutate(has_contrib = as.numeric(upstream_vcs_link %in% contrib_did_roster$upstream_vcs_link)) overall_data <- overall_data |> mutate(has_readme = as.numeric(upstream_vcs_link %in% readme_did_roster$upstream_vcs_link)) |> mutate(has_contrib = as.numeric(upstream_vcs_link %in% contrib_did_roster$upstream_vcs_link)) #below are the models for the octo data, there should be analysis for each one octo_mmtmodel1 <- lm(underproduction_mean ~ mmt + scaled_age + has_readme + has_contrib, data=octo_data) summary(octo_mmtmodel1) issue_mmtmodel1 <- lm(underproduction_mean ~ issue_mmt + scaled_age + has_readme + has_contrib, data=octo_data) summary(issue_mmtmodel1) qqnorm(residuals(issue_mmtmodel1)) wiki_mmtmodel1 <- lm(underproduction_mean ~ wiki_mmt + scaled_age + has_readme + has_contrib, data=octo_data) summary(wiki_mmtmodel1) library(texreg) #my little "lib" texreg(list(octo_mmtmodel1, issue_mmtmodel1, wiki_mmtmodel1), stars=NULL, digits=2, custom.model.names=c( 'M1: MMT','M2: issue contrib.', 'M3: wiki contrib.' ), custom.coef.names=c('(Intercept)', 'MMT', 'scaled_age', 'has readme', 'has contrib', 'Issue MMT', 'Wiki MMT'), use.packages=FALSE, table=FALSE, ci.force = TRUE) #now large MMT model taking into account having contributing or README mmtmodel2 <- lm(underproduction_mean ~ mmt + scaled_age + has_readme + has_contrib, data=overall_data) summary(mmtmodel2) qqnorm(residuals(mmtmodel2)) summary(mmtmodel2)