library(stringr) library(tidyverse) readme_topics_df <- read_csv("text_analysis/readme_file_topic_distributions.csv") colMeans(subset(readme_topics_df, select = -filename)) readme_df <- read_csv("final_data/deb_readme_did.csv") readme_pop_df <- read_csv("final_data/deb_readme_pop_change.csv") #get the readmeution count #some preprocessing and expansion col_order <- c("upstream_vcs_link", "age_in_days", "first_commit", "first_commit_dt", "event_gap", "event_date", "event_hash", "before_all_ct", "after_all_ct", "before_mrg_ct", "after_mrg_ct", "before_auth_new", "after_auth_new", "before_commit_new", "after_commit_new") readme_df <- readme_df[,col_order] readme_df$ct_before_all <- str_split(gsub("[][]","", readme_df$before_all_ct), ", ") readme_df$ct_after_all <- str_split(gsub("[][]","", readme_df$after_all_ct), ", ") readme_df$ct_before_mrg <- str_split(gsub("[][]","", readme_df$before_mrg_ct), ", ") readme_df$ct_after_mrg <- str_split(gsub("[][]","", readme_df$after_mrg_ct), ", ") drop <- c("before_all_ct", "before_mrg_ct", "after_all_ct", "after_mrg_ct") readme_df = readme_df[,!(names(readme_df) %in% drop)] # 2 some expansion needs to happens for each project expand_timeseries <- function(project_row) { longer <- project_row |> pivot_longer(cols = starts_with("ct"), names_to = "window", values_to = "count") |> unnest(count) longer$observation_type <- gsub("^.*_", "", longer$window) longer <- ddply(longer, "observation_type", transform, week=seq(from=0, by=1, length.out=length(observation_type))) longer$count <- as.numeric(longer$count) #longer <- longer[which(longer$observation_type == "all"),] return(longer) } expanded_data <- expand_timeseries(readme_df[1,]) for (i in 2:nrow(readme_df)){ expanded_data <- rbind(expanded_data, expand_timeseries(readme_df[i,])) } #filter out the windows of time that we're looking at window_num <- 8 windowed_data <- expanded_data |> filter(week >= (27 - window_num) & week <= (27 + window_num)) |> mutate(D = ifelse(week > 27, 1, 0)) summed_data <- windowed_data |> filter(D==1) |> group_by(upstream_vcs_link) |> summarise_at(vars(count), list(summed_count=sum)) #concat dataframes into central data readme_pop_df <- readme_pop_df |> mutate(project_name = map_chr(upstream_vcs_link, ~ { parts <- str_split(.x, pattern = "/")[[1]] if (length(parts) >= 1) { parts[length(parts)] } else { NA_character_ } })) readme_topics_df <- readme_topics_df |> mutate(project_name = map_chr(filename, ~ { parts <- str_split(.x, pattern = "_")[[1]] if (length(parts) >= 1) { paste(head(parts, -1), collapse="_") } else { NA_character_ } })) readme_total_df <- readme_pop_df |> join(readme_topics_df, by="project_name") readme_total_df <- readme_total_df|> join(summed_data, by="upstream_vcs_link") #outcome variable that is number of commits by number of new readmeutors readme_total_df$commit_by_contrib = readme_total_df$summed_count *readme_total_df$after_contrib_new readme_total_df$logged_outcome = log1p(readme_total_df$commit_by_contrib) readme_total_df$logged_contrib = log1p(readme_total_df$after_contrib_new) readme_total_df$logged_commits = log1p(readme_total_df$summed_count) readme_total_df$t4t5 = readme_total_df$t4 + readme_total_df$t5 #running regressions library(MASS) contrib_ <- glm.nb(logged_contrib~ 0 + t0 + t1 + t2 + t3 + t4 + t5 + t6 + t7, data = readme_total_df) commits_ <- glm.nb(logged_commits~ 0 + t0 + t1 + t2 + t3 + t4 + t5 + t6 + t7, data = readme_total_df) qqnorm(residuals(commits_)) summary(commits_) saveRDS(commits_, "1107_topic_commitoutcome_readme.rda") contrib_ <- glm.nb(logged_contrib~ t0+t1+t2+t3+ t5 +t6 +t7, data = readme_total_df) commit_ <- glm.nb(logged_commits~ t0+t1+t2+t3+ t5 +t6 +t7, data = readme_total_df) library(texreg) texreg(commits_, stars=NULL, digits=3, use.packages=FALSE, custom.model.names=c( 'Commits'), custom.coef.names=c( 'Topic 1', 'Topic 2', 'Topic 3', 'Topic 4', 'Topic 5', 'Topic 6', 'Topic 7', 'Topic 8'), table=FALSE, ci.force = TRUE)