import re import numpy as np import pandas as pd import glob import copy from statistics import mean, median from strip_markdown import strip_markdown from getMetadata import metadata_for_file # Gensim import gensim import gensim.corpora as corpora from gensim.utils import simple_preprocess from gensim.models import CoherenceModel from gensim.models.phrases import Phrases from sklearn.decomposition import LatentDirichletAllocation from sklearn.model_selection import GridSearchCV from sklearn.feature_extraction.text import CountVectorizer, TfidfVectorizer # spacy and nltk for lemmatization import nltk #nltk.download('stopwords') import spacy from nltk.corpus import stopwords from nltk.stem.wordnet import WordNetLemmatizer stopwords = stopwords.words('english') #https://nlp.stanford.edu/IR-book/html/htmledition/dropping-common-terms-stop-words-1.html #loading data in, getting misc descriptors def get_data_from_dir(directory): files = glob.glob(f"{directory}/*") data_list = [] word_counts = [] avg_word_lengths = [] for file in files: text = open(file, encoding='utf-8').read() #here's some of the descriptive text analysis word_count, avg_word_length = metadata_for_file(text) word_counts.append(word_count) avg_word_lengths.append(avg_word_length) #adding the data to the list of text data_list.append(text) return data_list, word_counts, avg_word_lengths #preprocessing text data def preprocess(corpus_list): #extending stopwords specific_stopwords = ["http", "com", "www", "org", "file", "code", "time", "software", "use", "user", "set", "line", "run", "source", "github", "lineno", "python", "php", "ruby", "api"] stopwords.extend(specific_stopwords) D = copy.copy(corpus_list) #stripping markdown from documents D = [strip_markdown(doc) for doc in D] #strip html D = [re.sub(r'', '', doc, flags=re.DOTALL) for doc in D] #mvp right now, can certainly be expanded as iterations of text analysis are done D = [[token for token in simple_preprocess(doc) if token not in stopwords and len(token) > 2]for doc in D] lemmatizer = WordNetLemmatizer() D_lemma = [" ".join([lemmatizer.lemmatize(token) for token in doc]) for doc in D] return D_lemma #preparing processed data for model usage def text_preparation(lemmatized_text): #bigrams D_bigrams = copy.copy(lemmatized_text) bigram = Phrases(D_bigrams, min_count=2) for i in range(len(lemmatized_text)): for token in bigram[D_bigrams[i]]: if '_' in token: D_bigrams[i].append(token) #id2word id2word = corpora.Dictionary(D_bigrams) id2word.filter_extremes(no_below=5, no_above=0.5) #bow representation bag_of_words = [id2word.doc2bow(doc) for doc in D_bigrams] return bag_of_words, id2word #TODO: identify best LDA model here def lda_model_identification(data_vectorized): lda = LatentDirichletAllocation() search_params = {'n_components': [8], 'learning_decay': [.5, .7, .9], 'batch_size' : [128, 256] } model = GridSearchCV(lda, param_grid=search_params, verbose=10) model.fit(data_vectorized) best_lda_model = model.best_estimator_ print("Best Model's Params: ", model.best_params_) print("Best Log Likelihood Score: ", model.best_score_) print("Model Perplexity: ", best_lda_model.perplexity(data_vectorized)) #TODO: implement best LDA model here def best_lda_model(data_vectorized, vocab): #Best Log Likelihood Score: -502085.9749390023 #Model Perplexity: 1689.0943431883845 lda = LatentDirichletAllocation(n_components=8, learning_decay = 0.9, batch_size = 128, max_iter = 50) id_topic = lda.fit_transform(data_vectorized) topic_words = {} for topic, comp in enumerate(lda.components_): word_idx = np.argsort(comp)[::-1][:10] topic_words[topic] = [vocab[i] for i in word_idx] for topic, words in topic_words.items(): print('Topic: %d' % topic) print(' %s' % ', '.join(words)) #lda.print_topics(num_words=10) if __name__ == "__main__": readme_directory = "/data/users/mgaughan/kkex/time_specific_files/readme2" contributing_directory = "/data/users/mgaughan/kkex/time_specific_files/contributing2" listed_corpus, wordcounts, wordlengths = get_data_from_dir(readme_directory) print("Mean wordcount: ", mean(wordcounts)) print("Median wordcount: ", median(wordcounts)) print("Mean wordlength: ", mean(wordlengths)) print("Median wordlength: ", median(wordlengths)) lemmatized_corpus = preprocess(listed_corpus) #prepped_corpus, id2word = text_preparation(lemmatized_corpus) vectorizer = CountVectorizer(analyzer='word', min_df=2, stop_words='english', lowercase=True, token_pattern='[a-zA-Z0-9]{2,}', ) data_vectorized = vectorizer.fit_transform(lemmatized_corpus) #lda_model_identification(data_vectorized) #freqs = zip(vectorizer.get_feature_names_out(), data_vectorized.sum(axis=0).tolist()[0]) # sort from largest to smallest #print(sorted(freqs, key=lambda x: -x[1])[:25]) best_lda_model(data_vectorized, vectorizer.get_feature_names_out())