expanded_sample_data <- expand_timeseries(sampled_data[1,]) for (i in 2:nrow(sampled_data)){ expanded_sample_data <- rbind(expanded_sample_data, expand_timeseries(sampled_data[i,])) } windowed_sample_data <- expanded_sample_data |> filter(week >= (26 - window_num) & week <= (26 + window_num)) |> mutate(D = ifelse(week > 26, 1, 0)) windowed_sample_data$scaled_project_age <- scale(windowed_sample_data$age_of_project) windowed_sample_data$week_offset <- windowed_sample_data$week - 26 all_actions_sample_data <- windowed_sample_data[which(windowed_sample_data$observation_type == "all"),] #test model test_model <- lmer(count ~ D * I(week_offset) + scaled_project_age + (week_offset|upstream_vcs_link), data=all_actions_sample_data, REML=FALSE) summary(test_model) #plot results p <- ggplot(all_actions_sample_data, aes(x=week_offset, y=count, color=upstream_vcs_link), show.legend = FALSE) + geom_point(size=3, show.legend = FALSE) + geom_line(aes(y=predict(test_model), group=upstream_vcs_link), show.legend = FALSE) + theme_bw() p #test model test_model <- lmer(count ~ D * I(week_offset) + scaled_project_age + (D * I(week_offset)|upstream_vcs_link), data=all_actions_sample_data, REML=FALSE) summary(test_model) #plot results p <- ggplot(all_actions_sample_data, aes(x=week_offset, y=count, color=upstream_vcs_link), show.legend = FALSE) + geom_point(size=3, show.legend = FALSE) + geom_line(aes(y=predict(test_model), group=upstream_vcs_link), show.legend = FALSE) + theme_bw() p #test model test_model <- lmer(count ~ D * I(week_offset) + scaled_project_age + (week_offset|upstream_vcs_link), data=all_actions_sample_data, REML=FALSE) summary(test_model) #plot results p <- ggplot(all_actions_sample_data, aes(x=week_offset, y=count, color=upstream_vcs_link), show.legend = FALSE) + geom_point(size=3, show.legend = FALSE) + geom_line(aes(y=predict(test_model), group=upstream_vcs_link), show.legend = FALSE) + theme_bw() p ## all_model <- lmer(count ~ D * I(week_offset)+ scaled_project_age + (D * I(week_offset)| upstream_vcs_link), data=all_actions_data, REML=FALSE) summary(all_model) ## all_model <- lmer(count ~ D * I(week_offset)+ scaled_project_age + (week_offset| upstream_vcs_link), data=all_actions_data, REML=FALSE) summary(all_model) ## all_model <- lmer(count ~ D * I(week_offset)+ scaled_project_age + (D * I(week_offset)| upstream_vcs_link), data=all_actions_data, REML=FALSE) summary(all_model) #test model test_model <- lmer(count ~ D * I(week_offset) + scaled_project_age + (D * I(week_offset)|upstream_vcs_link), data=all_actions_sample_data, REML=FALSE) summary(test_model) #plot results p <- ggplot(all_actions_sample_data, aes(x=week_offset, y=count, color=upstream_vcs_link), show.legend = FALSE) + geom_point(size=3, show.legend = FALSE) + geom_line(aes(y=predict(test_model), group=upstream_vcs_link), show.legend = FALSE) + theme_bw() p # this is the file with the lmer multi-level rddAnalysis library(tidyverse) library(plyr) # 0 loading the readme data in try(setwd(dirname(rstudioapi::getActiveDocumentContext()$path))) readme_df <- read_csv("../final_data/deb_readme_did.csv") # 1 preprocessing #colnames(readme_df) <- c("upstream_vcs_link", "event_date", "event_hash", "before_all_ct", "before_mrg_ct", "after_all_ct", "after_mrg_ct", "before_auth_new", "after_commit_new", "after_auth_new", "before_commit_new") col_order <- c("upstream_vcs_link", "age_of_project", "event_date", "event_hash", "before_all_ct", "after_all_ct", "before_mrg_ct", "after_mrg_ct", "before_auth_new", "after_auth_new", "before_commit_new", "after_commit_new") readme_df <- readme_df[,col_order] readme_df$ct_before_all <- str_split(gsub("[][]","", readme_df$before_all_ct), ", ") readme_df$ct_after_all <- str_split(gsub("[][]","", readme_df$after_all_ct), ", ") readme_df$ct_before_mrg <- str_split(gsub("[][]","", readme_df$before_mrg_ct), ", ") readme_df$ct_after_mrg <- str_split(gsub("[][]","", readme_df$after_mrg_ct), ", ") drop <- c("before_all_ct", "before_mrg_ct", "after_all_ct", "after_mrg_ct") readme_df = readme_df[,!(names(readme_df) %in% drop)] # 2 some expansion needs to happens for each project expand_timeseries <- function(project_row) { longer <- project_row |> pivot_longer(cols = starts_with("ct"), names_to = "window", values_to = "count") |> unnest(count) longer$observation_type <- gsub("^.*_", "", longer$window) longer <- ddply(longer, "observation_type", transform, week=seq(from=0, by=1, length.out=length(observation_type))) longer$count <- as.numeric(longer$count) #longer <- longer[which(longer$observation_type == "all"),] return(longer) } expanded_data <- expand_timeseries(readme_df[1,]) for (i in 2:nrow(readme_df)){ expanded_data <- rbind(expanded_data, expand_timeseries(readme_df[i,])) } #filter out the windows of time that we're looking at window_num <- 8 windowed_data <- expanded_data |> filter(week >= (27 - window_num) & week <= (27 + window_num)) |> mutate(D = ifelse(week > 27, 1, 0)) #scale the age numbers windowed_data$scaled_project_age <- scale(windowed_data$age_of_project) windowed_data$week_offset <- windowed_data$week - 27 #separate out the cleaning d all_actions_data <- windowed_data[which(windowed_data$observation_type == "all"),] mrg_actions_data <- windowed_data[which(windowed_data$observation_type == "mrg"),] # 3 rdd in lmer analysis # rdd: https://rpubs.com/phle/r_tutorial_regression_discontinuity_design # lmer: https://www.youtube.com/watch?v=LzAwEKrn2Mc library(lme4) # https://www.bristol.ac.uk/cmm/learning/videos/random-intercepts.html#exvar #making some random data sampled_data <- readme_df[sample(nrow(readme_df), 220), ] expanded_sample_data <- expand_timeseries(sampled_data[1,]) for (i in 2:nrow(sampled_data)){ expanded_sample_data <- rbind(expanded_sample_data, expand_timeseries(sampled_data[i,])) } windowed_sample_data <- expanded_sample_data |> filter(week >= (27 - window_num) & week <= (27 + window_num)) |> mutate(D = ifelse(week > 27, 1, 0)) windowed_sample_data$scaled_project_age <- scale(windowed_sample_data$age_of_project) windowed_sample_data$week_offset <- windowed_sample_data$week - 27 all_actions_sample_data <- windowed_sample_data[which(windowed_sample_data$observation_type == "all"),] #test model test_model <- lmer(count ~ D * I(week_offset) + scaled_project_age + (D * I(week_offset)|upstream_vcs_link), data=all_actions_sample_data, REML=FALSE) summary(test_model) #plot results p <- ggplot(all_actions_sample_data, aes(x=week_offset, y=count, color=upstream_vcs_link), show.legend = FALSE) + geom_point(size=3, show.legend = FALSE) + geom_line(aes(y=predict(test_model), group=upstream_vcs_link), show.legend = FALSE) + theme_bw() p ## all_model <- lmer(count ~ D * I(week_offset)+ scaled_project_age + (D * I(week_offset)| upstream_vcs_link), data=all_actions_data, REML=FALSE) summary(all_model) # https://www.bristol.ac.uk/cmm/learning/videos/random-intercepts.html#exvar #making some random data sampled_data <- readme_df[sample(nrow(readme_df), 220), ] expanded_sample_data <- expand_timeseries(sampled_data[1,]) for (i in 2:nrow(sampled_data)){ expanded_sample_data <- rbind(expanded_sample_data, expand_timeseries(sampled_data[i,])) } windowed_sample_data <- expanded_sample_data |> filter(week >= (27 - window_num) & week <= (27 + window_num)) |> mutate(D = ifelse(week > 27, 1, 0)) windowed_sample_data$scaled_project_age <- scale(windowed_sample_data$age_of_project) windowed_sample_data$week_offset <- windowed_sample_data$week - 27 all_actions_sample_data <- windowed_sample_data[which(windowed_sample_data$observation_type == "all"),] #test model test_model <- lmer(count ~ D * I(week_offset) + scaled_project_age + (D * I(week_offset)|upstream_vcs_link), data=all_actions_sample_data, REML=FALSE) summary(test_model) #plot results p <- ggplot(all_actions_sample_data, aes(x=week_offset, y=count, color=upstream_vcs_link), show.legend = FALSE) + geom_point(size=3, show.legend = FALSE) + geom_line(aes(y=predict(test_model), group=upstream_vcs_link), show.legend = FALSE) + theme_bw() p #test model test_model <- lmer(count ~ D * I(week_offset) + scaled_project_age + (week_offset|upstream_vcs_link), data=all_actions_sample_data, REML=FALSE) summary(test_model) #plot results p <- ggplot(all_actions_sample_data, aes(x=week_offset, y=count, color=upstream_vcs_link), show.legend = FALSE) + geom_point(size=3, show.legend = FALSE) + geom_line(aes(y=predict(test_model), group=upstream_vcs_link), show.legend = FALSE) + theme_bw() p #test model test_model <- lmer(count ~ D * I(week_offset) + scaled_project_age + (D * I(week_offset)|upstream_vcs_link), data=all_actions_sample_data, REML=FALSE) summary(test_model) #plot results p <- ggplot(all_actions_sample_data, aes(x=week_offset, y=count, color=upstream_vcs_link), show.legend = FALSE) + geom_point(size=3, show.legend = FALSE) + geom_line(aes(y=predict(test_model), group=upstream_vcs_link), show.legend = FALSE) + theme_bw() p # https://www.bristol.ac.uk/cmm/learning/videos/random-intercepts.html#exvar #making some random data sampled_data <- readme_df[sample(nrow(readme_df), 220), ] expanded_sample_data <- expand_timeseries(sampled_data[1,]) for (i in 2:nrow(sampled_data)){ expanded_sample_data <- rbind(expanded_sample_data, expand_timeseries(sampled_data[i,])) } windowed_sample_data <- expanded_sample_data |> filter(week >= (27 - window_num) & week <= (27 + window_num)) |> mutate(D = ifelse(week > 27, 1, 0)) windowed_sample_data$scaled_project_age <- scale(windowed_sample_data$age_of_project) windowed_sample_data$week_offset <- windowed_sample_data$week - 27 all_actions_sample_data <- windowed_sample_data[which(windowed_sample_data$observation_type == "all"),] #test model test_model <- lmer(count ~ D * I(week_offset) + scaled_project_age + (D * I(week_offset)|upstream_vcs_link), data=all_actions_sample_data, REML=FALSE) summary(test_model) #plot results p <- ggplot(all_actions_sample_data, aes(x=week_offset, y=count, color=upstream_vcs_link), show.legend = FALSE) + geom_point(size=3, show.legend = FALSE) + geom_line(aes(y=predict(test_model), group=upstream_vcs_link), show.legend = FALSE) + theme_bw() p # https://www.bristol.ac.uk/cmm/learning/videos/random-intercepts.html#exvar #making some random data sampled_data <- readme_df[sample(nrow(readme_df), 220), ] expanded_sample_data <- expand_timeseries(sampled_data[1,]) for (i in 2:nrow(sampled_data)){ expanded_sample_data <- rbind(expanded_sample_data, expand_timeseries(sampled_data[i,])) } windowed_sample_data <- expanded_sample_data |> filter(week >= (27 - window_num) & week <= (27 + window_num)) |> mutate(D = ifelse(week > 27, 1, 0)) windowed_sample_data$scaled_project_age <- scale(windowed_sample_data$age_of_project) windowed_sample_data$week_offset <- windowed_sample_data$week - 27 all_actions_sample_data <- windowed_sample_data[which(windowed_sample_data$observation_type == "all"),] #test model test_model <- lmer(count ~ D * I(week_offset) + scaled_project_age + (D * I(week_offset)|upstream_vcs_link), data=all_actions_sample_data, REML=FALSE) summary(test_model) #plot results p <- ggplot(all_actions_sample_data, aes(x=week_offset, y=count, color=upstream_vcs_link), show.legend = FALSE) + geom_point(size=3, show.legend = FALSE) + geom_line(aes(y=predict(test_model), group=upstream_vcs_link), show.legend = FALSE) + theme_bw() p #test model test_model <- lmer(count ~ D * I(week_offset) + scaled_project_age + (week_offset|upstream_vcs_link), data=all_actions_sample_data, REML=FALSE) summary(test_model) #plot results p <- ggplot(all_actions_sample_data, aes(x=week_offset, y=count, color=upstream_vcs_link), show.legend = FALSE) + geom_point(size=3, show.legend = FALSE) + geom_line(aes(y=predict(test_model), group=upstream_vcs_link), show.legend = FALSE) + theme_bw() p #test model test_model <- lmer(count ~ D * I(week_offset) + scaled_project_age + (D * I(week_offset)|upstream_vcs_link), data=all_actions_sample_data, REML=FALSE) summary(test_model) #plot results p <- ggplot(all_actions_sample_data, aes(x=week_offset, y=count, color=upstream_vcs_link), show.legend = FALSE) + geom_point(size=3, show.legend = FALSE) + geom_line(aes(y=predict(test_model), group=upstream_vcs_link), show.legend = FALSE) + theme_bw() p #plot results p <- ggplot(all_actions_sample_data, aes(x=week_offset, y=count, color=upstream_vcs_link), show.legend = FALSE) + geom_point(size=3, show.legend = FALSE) + geom_line(aes(y=predict(test_model)), show.legend = FALSE) + theme_bw() p # for visualization, may have to run model for each project and then identify top 5 projects for RDD graphs mrg_model <- lmer(count ~ D * I(week_offset)+ scaled_project_age + (D * I(week_offset)| upstream_vcs_link), data=mrg_actions_data, REML=FALSE) summary(mrg_model) summary(all_model) #test model test_model <- lmer(count ~ D * I(week_offset) + scaled_project_age + (D * I(week_offset)||upstream_vcs_link), data=all_actions_sample_data, REML=FALSE) summary(test_model) #plot results p <- ggplot(all_actions_sample_data, aes(x=week_offset, y=count, color=upstream_vcs_link), show.legend = FALSE) + geom_point(size=3, show.legend = FALSE) + geom_line(aes(y=predict(test_model)), show.legend = FALSE) + theme_bw() p #test model test_model <- lmer(count ~ D * I(week_offset) + scaled_project_age + (D * I(week_offset)|upstream_vcs_link), data=all_actions_sample_data, REML=FALSE) summary(test_model) #plot results p <- ggplot(all_actions_sample_data, aes(x=week_offset, y=count, color=upstream_vcs_link), show.legend = FALSE) + geom_point(size=3, show.legend = FALSE) + geom_line(aes(y=predict(test_model)), show.legend = FALSE) + theme_bw() p # https://www.bristol.ac.uk/cmm/learning/videos/random-intercepts.html#exvar #making some random data sampled_data <- readme_df[sample(nrow(readme_df), 220), ] expanded_sample_data <- expand_timeseries(sampled_data[1,]) for (i in 2:nrow(sampled_data)){ expanded_sample_data <- rbind(expanded_sample_data, expand_timeseries(sampled_data[i,])) } windowed_sample_data <- expanded_sample_data |> filter(week >= (27 - window_num) & week <= (27 + window_num)) |> mutate(D = ifelse(week > 27, 1, 0)) windowed_sample_data$scaled_project_age <- scale(windowed_sample_data$age_of_project) windowed_sample_data$week_offset <- windowed_sample_data$week - 27 all_actions_sample_data <- windowed_sample_data[which(windowed_sample_data$observation_type == "all"),] #test model test_model <- lmer(count ~ D * I(week_offset) + scaled_project_age + (D * I(week_offset)|upstream_vcs_link), data=all_actions_sample_data, REML=FALSE) summary(test_model) #plot results p <- ggplot(all_actions_sample_data, aes(x=week_offset, y=count, color=upstream_vcs_link), show.legend = FALSE) + geom_point(size=3, show.legend = FALSE) + geom_line(aes(y=predict(test_model)), show.legend = FALSE) + theme_bw() p #plot results p <- ggplot(all_actions_sample_data, aes(x=week_offset, y=count, color=upstream_vcs_link), show.legend = FALSE) + geom_point(size=3, show.legend = FALSE) + geom_line(aes(y=mean(predict(test_model)), show.legend = FALSE)) + theme_bw() p #plot results p <- ggplot(all_actions_sample_data, aes(x=week_offset, y=count, color=upstream_vcs_link), show.legend = FALSE) + geom_point(size=3, show.legend = FALSE) + geom_line(aes(y=predict(test_model), show.legend = FALSE)) + theme_bw() p #plot results p <- ggplot(all_actions_sample_data, aes(x=week_offset, y=count, color=upstream_vcs_link), show.legend = FALSE) + geom_point(size=3, show.legend = FALSE) + geom_line(aes(y=mean(predict(test_model))), show.legend = FALSE) + theme_bw() p #plot results p <- ggplot(all_actions_sample_data, aes(x=week_offset, y=count, color=upstream_vcs_link), show.legend = FALSE) + geom_point(size=3, show.legend = FALSE) + geom_line(aes(y=median(predict(test_model))), show.legend = FALSE) + theme_bw() p #plot results p <- ggplot(all_actions_sample_data, aes(x=week_offset, y=count, color=upstream_vcs_link), show.legend = FALSE) + geom_point(size=3, show.legend = FALSE) + geom_line(aes(y=predict(test_model)), show.legend = FALSE) + theme_bw() p #test model test_model <- lmer(count ~ D * I(week_offset) + scaled_project_age + (D * I(week_offset) + scaled_project_age|upstream_vcs_link), data=all_actions_sample_data, REML=FALSE) summary(test_model) #plot results p <- ggplot(all_actions_sample_data, aes(x=week_offset, y=count, color=upstream_vcs_link), show.legend = FALSE) + geom_point(size=3, show.legend = FALSE) + geom_line(aes(y=predict(test_model)), show.legend = FALSE) + theme_bw() p #test model test_model <- lmer(count ~ D * I(week_offset) + scaled_project_age + (D * I(week_offset)|upstream_vcs_link), data=all_actions_sample_data, REML=FALSE) summary(test_model) #plot results p <- ggplot(all_actions_sample_data, aes(x=week_offset, y=count, color=upstream_vcs_link), show.legend = FALSE) + geom_point(size=3, show.legend = FALSE) + geom_line(aes(y=predict(test_model)), show.legend = FALSE) + theme_bw() p # https://www.bristol.ac.uk/cmm/learning/videos/random-intercepts.html#exvar #making some random data sampled_data <- readme_df[sample(nrow(readme_df), 22), ] expanded_sample_data <- expand_timeseries(sampled_data[1,]) for (i in 2:nrow(sampled_data)){ expanded_sample_data <- rbind(expanded_sample_data, expand_timeseries(sampled_data[i,])) } windowed_sample_data <- expanded_sample_data |> filter(week >= (27 - window_num) & week <= (27 + window_num)) |> mutate(D = ifelse(week > 27, 1, 0)) windowed_sample_data$scaled_project_age <- scale(windowed_sample_data$age_of_project) windowed_sample_data$week_offset <- windowed_sample_data$week - 27 all_actions_sample_data <- windowed_sample_data[which(windowed_sample_data$observation_type == "all"),] #test model test_model <- lmer(count ~ D * I(week_offset) + scaled_project_age + (D * I(week_offset)|upstream_vcs_link), data=all_actions_sample_data, REML=FALSE) summary(test_model) #plot results p <- ggplot(all_actions_sample_data, aes(x=week_offset, y=count, color=upstream_vcs_link), show.legend = FALSE) + geom_point(size=3, show.legend = FALSE) + geom_line(aes(y=predict(test_model)), show.legend = FALSE) + theme_bw() p # https://www.bristol.ac.uk/cmm/learning/videos/random-intercepts.html#exvar #making some random data sampled_data <- readme_df[sample(nrow(readme_df), 220), ] expanded_sample_data <- expand_timeseries(sampled_data[1,]) for (i in 2:nrow(sampled_data)){ expanded_sample_data <- rbind(expanded_sample_data, expand_timeseries(sampled_data[i,])) } windowed_sample_data <- expanded_sample_data |> filter(week >= (27 - window_num) & week <= (27 + window_num)) |> mutate(D = ifelse(week > 27, 1, 0)) windowed_sample_data$scaled_project_age <- scale(windowed_sample_data$age_of_project) windowed_sample_data$week_offset <- windowed_sample_data$week - 27 all_actions_sample_data <- windowed_sample_data[which(windowed_sample_data$observation_type == "all"),] #test model test_model <- lmer(count ~ D * I(week_offset) + scaled_project_age + (D * I(week_offset)|upstream_vcs_link), data=all_actions_sample_data, REML=FALSE) summary(test_model) #plot results p <- ggplot(all_actions_sample_data, aes(x=week_offset, y=count, color=upstream_vcs_link), show.legend = FALSE) + geom_point(size=3, show.legend = FALSE) + geom_line(aes(y=predict(test_model)), show.legend = FALSE) + theme_bw() p # https://www.bristol.ac.uk/cmm/learning/videos/random-intercepts.html#exvar #making some random data sampled_data <- readme_df[sample(nrow(readme_df), 220), ] expanded_sample_data <- expand_timeseries(sampled_data[1,]) for (i in 2:nrow(sampled_data)){ expanded_sample_data <- rbind(expanded_sample_data, expand_timeseries(sampled_data[i,])) } windowed_sample_data <- expanded_sample_data |> filter(week >= (27 - window_num) & week <= (27 + window_num)) |> mutate(D = ifelse(week > 27, 1, 0)) windowed_sample_data$scaled_project_age <- scale(windowed_sample_data$age_of_project) windowed_sample_data$week_offset <- windowed_sample_data$week - 27 all_actions_sample_data <- windowed_sample_data[which(windowed_sample_data$observation_type == "all"),] #test model test_model <- lmer(count ~ D * I(week_offset) + scaled_project_age + (D * I(week_offset)|upstream_vcs_link), data=all_actions_sample_data, REML=FALSE) summary(test_model) #plot results p <- ggplot(all_actions_sample_data, aes(x=week_offset, y=count, color=upstream_vcs_link), show.legend = FALSE) + geom_point(size=3, show.legend = FALSE) + geom_line(aes(y=predict(test_model)), show.legend = FALSE) + theme_bw() p summary(all_model) all_residuals <- residuals(all_model) qqnorm(all_residuals) mrg_residuals <- residuals(mrg_model) qqnorm(mrg_residuals) summary(all_model) ##end of the model testing and plotting section all_model <- lmer(count ~ D * I(week_offset)+ scaled_project_age + (D * I(week_offset)| upstream_vcs_link), data=all_actions_data, REML=TRUE) summary(all_model) ##end of the model testing and plotting section all_model <- lmer(count ~ D * I(week_offset)+ scaled_project_age + (D * I(week_offset)| upstream_vcs_link), data=all_actions_data, REML=FALSE) summary(all_model) # this is the file with the lmer multi-level rddAnalysis library(tidyverse) library(plyr) # 0 loading the readme data in try(setwd(dirname(rstudioapi::getActiveDocumentContext()$path))) readme_df <- read_csv("../final_data/deb_readme_did.csv") # 1 preprocessing #colnames(readme_df) <- c("upstream_vcs_link", "event_date", "event_hash", "before_all_ct", "before_mrg_ct", "after_all_ct", "after_mrg_ct", "before_auth_new", "after_commit_new", "after_auth_new", "before_commit_new") col_order <- c("upstream_vcs_link", "age_of_project", "event_date", "event_hash", "before_all_ct", "after_all_ct", "before_mrg_ct", "after_mrg_ct", "before_auth_new", "after_auth_new", "before_commit_new", "after_commit_new") readme_df <- readme_df[,col_order] readme_df$ct_before_all <- str_split(gsub("[][]","", readme_df$before_all_ct), ", ") readme_df$ct_after_all <- str_split(gsub("[][]","", readme_df$after_all_ct), ", ") readme_df$ct_before_mrg <- str_split(gsub("[][]","", readme_df$before_mrg_ct), ", ") readme_df$ct_after_mrg <- str_split(gsub("[][]","", readme_df$after_mrg_ct), ", ") drop <- c("before_all_ct", "before_mrg_ct", "after_all_ct", "after_mrg_ct") readme_df = readme_df[,!(names(readme_df) %in% drop)] # 2 some expansion needs to happens for each project expand_timeseries <- function(project_row) { longer <- project_row |> pivot_longer(cols = starts_with("ct"), names_to = "window", values_to = "count") |> unnest(count) longer$observation_type <- gsub("^.*_", "", longer$window) longer <- ddply(longer, "observation_type", transform, week=seq(from=0, by=1, length.out=length(observation_type))) longer$count <- as.numeric(longer$count) #longer <- longer[which(longer$observation_type == "all"),] return(longer) } expanded_data <- expand_timeseries(readme_df[1,]) for (i in 2:nrow(readme_df)){ expanded_data <- rbind(expanded_data, expand_timeseries(readme_df[i,])) } #filter out the windows of time that we're looking at window_num <- 8 windowed_data <- expanded_data |> filter(week >= (27 - window_num) & week <= (27 + window_num)) |> mutate(D = ifelse(week > 27, 1, 0)) #scale the age numbers windowed_data$scaled_project_age <- scale(windowed_data$age_of_project) windowed_data$week_offset <- windowed_data$week - 27 #separate out the cleaning d all_actions_data <- windowed_data[which(windowed_data$observation_type == "all"),] mrg_actions_data <- windowed_data[which(windowed_data$observation_type == "mrg"),] #find some EDA to identify which types of models might be the best for this hist(all_actions_data$count) #find some EDA to identify which types of models might be the best for this hist(log1p(all_actions_data$count)) #find some EDA to identify which types of models might be the best for this hist(log(all_actions_data$count)) # 3 rdd in lmer analysis # rdd: https://rpubs.com/phle/r_tutorial_regression_discontinuity_design # lmer: https://www.youtube.com/watch?v=LzAwEKrn2Mc library(lme4) ##end of the model testing and plotting section all_model <- lmer(log(count) ~ D * I(week_offset)+ scaled_project_age + (D * I(week_offset)| upstream_vcs_link), data=all_actions_data, REML=FALSE) all_actions_data$logged_count <- log(all_actions_data$count) all_actions_data$log1p_count <- log1p(all_actions_data$count) ##end of the model testing and plotting section all_model <- lmer(log1p_count ~ D * I(week_offset)+ scaled_project_age + (D * I(week_offset)| upstream_vcs_link), data=all_actions_data, REML=FALSE) summary(all_model) all_residuals <- residuals(all_model) qqnorm(all_residuals) ##end of the model testing and plotting section all_model <- lmer(logged_count ~ D * I(week_offset)+ scaled_project_age + (D * I(week_offset)| upstream_vcs_link), data=all_actions_data, REML=FALSE) ##end of the model testing and plotting section all_model <- lmer(log1p_count ~ D * I(week_offset)+ scaled_project_age + (D * I(week_offset)| upstream_vcs_link), data=all_actions_data, REML=FALSE) ##end of the model testing and plotting section all_model <- lmer(log1p_count ~ D * I(week_offset)+ scaled_project_age + (week_offset| upstream_vcs_link), data=all_actions_data, REML=FALSE) ##end of the model testing and plotting section all_model <- lmer(log1p_count ~ D * I(week_offset)+ scaled_project_age + (D * I(week_offset)| upstream_vcs_link), data=all_actions_data, REML=FALSE) # https://www.bristol.ac.uk/cmm/learning/videos/random-intercepts.html#exvar #making some random data sampled_data <- readme_df[sample(nrow(readme_df), 220), ] expanded_sample_data <- expand_timeseries(sampled_data[1,]) for (i in 2:nrow(sampled_data)){ expanded_sample_data <- rbind(expanded_sample_data, expand_timeseries(sampled_data[i,])) } windowed_sample_data <- expanded_sample_data |> filter(week >= (27 - window_num) & week <= (27 + window_num)) |> mutate(D = ifelse(week > 27, 1, 0)) windowed_sample_data$scaled_project_age <- scale(windowed_sample_data$age_of_project) windowed_sample_data$week_offset <- windowed_sample_data$week - 27 all_actions_sample_data <- windowed_sample_data[which(windowed_sample_data$observation_type == "all"),] #test model test_model <- lmer(log1p_count ~ D * I(week_offset) + scaled_project_age + (D * I(week_offset)|upstream_vcs_link), data=all_actions_sample_data, REML=FALSE) all_actions_sample_data$log1p_count <- log1p(all_actions_sample_data$count) #test model test_model <- lmer(log1p_count ~ D * I(week_offset) + scaled_project_age + (D * I(week_offset)|upstream_vcs_link), data=all_actions_sample_data, REML=FALSE) summary(test_model) #plot results p <- ggplot(all_actions_sample_data, aes(x=week_offset, y=count, color=upstream_vcs_link), show.legend = FALSE) + geom_point(size=3, show.legend = FALSE) + geom_line(aes(y=predict(test_model)), show.legend = FALSE) + theme_bw() p #plot results p <- ggplot(all_actions_sample_data, aes(x=week_offset, y=count, color=upstream_vcs_link), show.legend = FALSE) + geom_point(size=3, show.legend = FALSE) + geom_line(aes(y=predict(test_model)), show.legend = FALSE) + theme_bw() p library(merTools) ICC(outcome="count", group="week", data=all_actions_data) ICC(outcome="count", group="upstream_vcs_link", data=all_actions_data) ICC(outcome="count", group="week", data=all_actions_data)