# this is the file with the lmer multi-level rddAnalysis library(tidyverse) library(plyr) # 0 loading the readme data in try(setwd(dirname(rstudioapi::getActiveDocumentContext()$path))) readme_df <- read_csv("../final_data/deb_readme_did.csv") # 1 preprocessing #colnames(readme_df) <- c("upstream_vcs_link", "event_date", "event_hash", "before_all_ct", "before_mrg_ct", "after_all_ct", "after_mrg_ct", "before_auth_new", "after_commit_new", "after_auth_new", "before_commit_new") col_order <- c("upstream_vcs_link", "age_of_project", "event_date", "event_hash", "before_all_ct", "after_all_ct", "before_mrg_ct", "after_mrg_ct", "before_auth_new", "after_auth_new", "before_commit_new", "after_commit_new") readme_df <- readme_df[,col_order] readme_df$ct_before_all <- str_split(gsub("[][]","", readme_df$before_all_ct), ", ") readme_df$ct_after_all <- str_split(gsub("[][]","", readme_df$after_all_ct), ", ") readme_df$ct_before_mrg <- str_split(gsub("[][]","", readme_df$before_mrg_ct), ", ") readme_df$ct_after_mrg <- str_split(gsub("[][]","", readme_df$after_mrg_ct), ", ") drop <- c("before_all_ct", "before_mrg_ct", "after_all_ct", "after_mrg_ct") readme_df = readme_df[,!(names(readme_df) %in% drop)] # 2 some expansion needs to happens for each project expand_timeseries <- function(project_row) { longer <- project_row |> pivot_longer(cols = starts_with("ct"), names_to = "window", values_to = "count") |> unnest(count) longer$observation_type <- gsub("^.*_", "", longer$window) longer <- ddply(longer, "observation_type", transform, week=seq(from=0, by=1, length.out=length(observation_type))) longer$count <- as.numeric(longer$count) #longer <- longer[which(longer$observation_type == "all"),] return(longer) } expanded_data <- expand_timeseries(readme_df[1,]) for (i in 2:nrow(readme_df)){ expanded_data <- rbind(expanded_data, expand_timeseries(readme_df[i,])) } #filter out the windows of time that we're looking at window_num <- 8 windowed_data <- expanded_data |> filter(week >= (27 - window_num) & week <= (27 + window_num)) |> mutate(D = ifelse(week > 27, 1, 0)) #scale the age numbers windowed_data$scaled_project_age <- scale(windowed_data$age_of_project) windowed_data$week_offset <- windowed_data$week - 27 #break out the different types of commit actions that are studied all_actions_data <- windowed_data[which(windowed_data$observation_type == "all"),] mrg_actions_data <- windowed_data[which(windowed_data$observation_type == "mrg"),] #log the dependent all_actions_data$logged_count <- log(all_actions_data$count) all_actions_data$log1p_count <- log1p(all_actions_data$count) range(all_actions_data$log1p_count) # 3 rdd in lmer analysis # rdd: https://rpubs.com/phle/r_tutorial_regression_discontinuity_design # lmer: https://www.youtube.com/watch?v=LzAwEKrn2Mc # https://www.bristol.ac.uk/cmm/learning/videos/random-intercepts.html#exvar library(lme4) library(optimx) library(lattice) #some more EDA to go between Poisson and neg binomial var(all_actions_data$log1p_count) # 1.125429 mean (all_actions_data$log1p_count) # 0.6426873 median(all_actions_data$log1p_count) #0 var(all_actions_data$count) # 268.4449 mean (all_actions_data$count) # 3.757298 median(all_actions_data$count) # 0 #all_log1p_gmodel <- glmer.nb(log1p_count ~ D * week_offset+ scaled_project_age + (D * week_offset | upstream_vcs_link), data=all_actions_data, nAGQ=1, control=glmerControl(optimizer="bobyqa", # optCtrl=list(maxfun=1e5))) all_log1p_gmodel <- readRDS("final_models/0510_rm_all.rda") summary(all_log1p_gmodel) #saveRDS(all_log1p_gmodel, "0510_log1p_nagq_gmodel_backup.rda") #I grouped the ranef D effects on 0512 all_residuals <- residuals(all_log1p_gmodel) qqnorm(all_residuals) library(broom.mixed) test_condvals <- broom.mixed::tidy(all_log1p_gmodel, effects = "ran_vals", conf.int = TRUE) test_glmer_ranef_D <- test_condvals [which(test_condvals $term == "D"),] has_zero <- function(estimate, low, high){ return(ifelse((low < 0),ifelse((high > 0), 1, 0), 2)) } test_glmer_ranef_D <- test_glmer_ranef_D |> mutate(ranef_grouping = has_zero(estimate, conf.low, conf.high)) |> mutate(rank = rank(estimate)) g <- test_glmer_ranef_D |> ggplot(aes(x=rank, y=estimate, col = as.factor(ranef_grouping))) + geom_linerange(aes(ymin= conf.low, ymax= conf.high)) + theme_bw() g write.csv(test_glmer_ranef_D, "051224_readme_grouped.csv") ggsave("0509caterpillar.png", g) # NOTE: below is the merge model for the same analysis, but it won't converge mrg_actions_data$log1p_count <- log1p(mrg_actions_data$count) mrg_model <- glmer.nb(log1p_count ~ D * week_offset + scaled_project_age + (D * week_offset | upstream_vcs_link), control=glmerControl(optimizer="bobyqa", optCtrl=list(maxfun=2e5)), data=mrg_actions_data) summary(mrg_model) saveRDS(mrg, "0510_rm_mrg.rda")