# this is the file with the lmer multi-level rddAnalysis library(tidyverse) library(plyr) # 0 loading the readme data in try(setwd(dirname(rstudioapi::getActiveDocumentContext()$path))) readme_df <- read_csv("../final_data/deb_readme_did.csv") # 1 preprocessing #colnames(readme_df) <- c("upstream_vcs_link", "event_date", "event_hash", "before_all_ct", "before_mrg_ct", "after_all_ct", "after_mrg_ct", "before_auth_new", "after_commit_new", "after_auth_new", "before_commit_new") col_order <- c("upstream_vcs_link", "age_of_project", "event_date", "event_hash", "before_all_ct", "after_all_ct", "before_mrg_ct", "after_mrg_ct", "before_auth_new", "after_auth_new", "before_commit_new", "after_commit_new") readme_df <- readme_df[,col_order] readme_df$ct_before_all <- str_split(gsub("[][]","", readme_df$before_all_ct), ", ") readme_df$ct_after_all <- str_split(gsub("[][]","", readme_df$after_all_ct), ", ") readme_df$ct_before_mrg <- str_split(gsub("[][]","", readme_df$before_mrg_ct), ", ") readme_df$ct_after_mrg <- str_split(gsub("[][]","", readme_df$after_mrg_ct), ", ") drop <- c("before_all_ct", "before_mrg_ct", "after_all_ct", "after_mrg_ct") readme_df = readme_df[,!(names(readme_df) %in% drop)] # 2 some expansion needs to happens for each project expand_timeseries <- function(project_row) { longer <- project_row |> pivot_longer(cols = starts_with("ct"), names_to = "window", values_to = "count") |> unnest(count) longer$observation_type <- gsub("^.*_", "", longer$window) longer <- ddply(longer, "observation_type", transform, week=seq(from=0, by=1, length.out=length(observation_type))) longer$count <- as.numeric(longer$count) #longer <- longer[which(longer$observation_type == "all"),] return(longer) } expanded_data <- expand_timeseries(readme_df[1,]) for (i in 2:nrow(readme_df)){ expanded_data <- rbind(expanded_data, expand_timeseries(readme_df[i,])) } #filter out the windows of time that we're looking at window_num <- 8 windowed_data <- expanded_data |> filter(week >= (26 - window_num) & week <= (26 + window_num)) |> mutate(D = ifelse(week > 26, 1, 0)) #scale the age numbers windowed_data$scaled_project_age <- scale(windowed_data$age_of_project) #separate out the cleaning d all_actions_data <- windowed_data[which(windowed_data$observation_type == "all"),] mrg_actions_data <- windowed_data[which(windowed_data$observation_type == "mrg"),] #find some EDA to identify which types of models might be the best for this mean(all_actions_data$count) median(all_actions_data$count) table(all_actions_data$count) var(all_actions_data$count) qqnorm(all_actions_data$count) y <- qunif(ppoints(length(all_actions_data$count))) qqplot(all_actions_data$count, y) # 3 rdd in lmer analysis # rdd: https://rpubs.com/phle/r_tutorial_regression_discontinuity_design # lmer: https://www.youtube.com/watch?v=LzAwEKrn2Mc library(lme4) lmer_all_model <- lmer(count ~ D + I(week - 26) + D:I(week - 26) + scaled_project_age + (D ||upstream_vcs_link), REML=FALSE, data=all_actions_data) summary(lmer_all_model) lmer_residuals <- residuals(lmer_all_model) qqnorm(lmer_residuals) #if I'm reading the residuals right, the poisson is better? # there's a conversation to be had between whether (D |upstream_vcs_link) or (D || upstream_vcs_link) poisson_all_model <- glmer(count ~ D + I(week - 26) + D:I(week - 26) + scaled_project_age + (D |upstream_vcs_link), data=all_actions_data, family = poisson(link = "log")) summary(poisson_all_model) poisson_residuals <- residuals(poisson_all_model) qqnorm(poisson_residuals) # Performance: draft_mrg_model <- lmer(count ~ D * I(week - 26) + scaled_project_age + (1 + D |upstream_vcs_link), REML=FALSE, data=mrg_actions_data) summary(draft_mrg_model) # Performance: library(merTools) ICC(outcome="count", group="week", data=all_actions_data) #testing for different types of models