library(tidyverse) library(plyr) #get the contrib data instead try(setwd(dirname(rstudioapi::getActiveDocumentContext()$path))) contrib_df <- read_csv("../final_data/deb_contrib_did.csv") #some preprocessing and expansion col_order <- c("upstream_vcs_link", "age_in_days", "first_commit", "first_commit_dt", "event_gap", "event_date", "event_hash", "before_all_ct", "after_all_ct", "before_mrg_ct", "after_mrg_ct", "before_auth_new", "after_auth_new", "before_commit_new", "after_commit_new") contrib_df <- contrib_df[,col_order] contrib_df$ct_before_all <- str_split(gsub("[][]","", contrib_df$before_all_ct), ", ") contrib_df$ct_after_all <- str_split(gsub("[][]","", contrib_df$after_all_ct), ", ") contrib_df$ct_before_mrg <- str_split(gsub("[][]","", contrib_df$before_mrg_ct), ", ") contrib_df$ct_after_mrg <- str_split(gsub("[][]","", contrib_df$after_mrg_ct), ", ") drop <- c("before_all_ct", "before_mrg_ct", "after_all_ct", "after_mrg_ct") contrib_df = contrib_df[,!(names(contrib_df) %in% drop)] # 2 some expansion needs to happens for each project expand_timeseries <- function(project_row) { longer <- project_row |> pivot_longer(cols = starts_with("ct"), names_to = "window", values_to = "count") |> unnest(count) longer$observation_type <- gsub("^.*_", "", longer$window) longer <- ddply(longer, "observation_type", transform, week=seq(from=0, by=1, length.out=length(observation_type))) longer$count <- as.numeric(longer$count) #longer <- longer[which(longer$observation_type == "all"),] return(longer) } expanded_data <- expand_timeseries(contrib_df[1,]) for (i in 2:nrow(contrib_df)){ expanded_data <- rbind(expanded_data, expand_timeseries(contrib_df[i,])) } #filter out the windows of time that we're looking at window_num <- 8 windowed_data <- expanded_data |> filter(week >= (27 - window_num) & week <= (27 + window_num)) |> mutate(D = ifelse(week > 27, 1, 0)) #scale the age numbers and calculate the week offset here windowed_data$scaled_project_age <- scale(windowed_data$age_in_days) windowed_data$scaled_event_gap <- scale(windowed_data$event_gap) windowed_data$week_offset <- windowed_data$week - 27 #break out the different type of commit actions all_actions_data <- windowed_data[which(windowed_data$observation_type == "all"),] mrg_actions_data <- windowed_data[which(windowed_data$observation_type == "mrg"),] #logging all_actions_data$logged_count <- log(all_actions_data$count) all_actions_data$log1p_count <- log1p(all_actions_data$count) #EDA sd(all_actions_data$count) grouped_averages <- aggregate(all_actions_data$count, list(all_actions_data$upstream_vcs_link), mean) quantile(grouped_averages$x) quantile(all_actions_data$before_auth_new) quantile(all_actions_data$after_auth_new) mean(all_actions_data$count) # 8.440981 var(all_actions_data$count) #] 542.9546 # now for merge mrg_actions_data$logged_count <- log(mrg_actions_data$count) mrg_actions_data$log1p_count <- log1p(mrg_actions_data$count) #imports for models library(lme4) library(optimx) library(lattice) #model print("fitting model") #all_gmodel <- glmer.nb(log1p_count ~ D * week_offset + scaled_project_age + scaled_event_gap + (D * week_offset | upstream_vcs_link), # control=glmerControl(optimizer="bobyqa", # optCtrl=list(maxfun=2e5)), nAGQ=0, data=all_actions_data) library(car) library(forecast) all_gmodel <- readRDS("final_models/0711_contrib_all_rdd.rda") summary(all_gmodel) #saveRDS(all_gmodel, "0711_contrib_all_01.rda") #autocorrelation tes <- vif(all_gmodel) tes all_residuals <- residuals(all_gmodel) acf(all_residuals) qqnorm(all_residuals) #identifying the quartiles of effect for D test_condvals <- broom.mixed::tidy(all_gmodel, effects = "ran_vals", conf.int = TRUE) test_glmer_ranef_D <- test_condvals [which(test_condvals $term == "D:week_offset"),] has_zero <- function(estimate, low, high){ return(ifelse((low < 0),ifelse((high > 0), 1, 0), 2)) } test_glmer_ranef_D <- test_glmer_ranef_D |> mutate(ranef_grouping = has_zero(estimate, conf.low, conf.high)) |> mutate(rank = rank(estimate)) g <- test_glmer_ranef_D |> ggplot(aes(x=rank, y=estimate, col = as.factor(ranef_grouping))) + geom_linerange(aes(ymin= conf.low, ymax= conf.high)) + theme_bw() g ggsave("0711contrib_d_goups.png", g) write.csv(test_glmer_ranef_D, "0711_contrib_inter_groupings.csv") print("all pau")