# this is the file with the lmer multi-level rddAnalysis library(tidyverse) library(plyr) # 0 loading the readme data in try(setwd(dirname(rstudioapi::getActiveDocumentContext()$path))) readme_df <- read_csv("../final_data/deb_readme_did.csv") # 1 preprocessing #colnames(readme_df) <- c("upstream_vcs_link", "event_date", "event_hash", "before_all_ct", "before_mrg_ct", "after_all_ct", "after_mrg_ct", "before_auth_new", "after_commit_new", "after_auth_new", "before_commit_new") col_order <- c("upstream_vcs_link", "age_of_project", "event_date", "event_hash", "before_all_ct", "after_all_ct", "before_mrg_ct", "after_mrg_ct", "before_auth_new", "after_auth_new", "before_commit_new", "after_commit_new") readme_df <- readme_df[,col_order] readme_df$ct_before_all <- str_split(gsub("[][]","", readme_df$before_all_ct), ", ") readme_df$ct_after_all <- str_split(gsub("[][]","", readme_df$after_all_ct), ", ") readme_df$ct_before_mrg <- str_split(gsub("[][]","", readme_df$before_mrg_ct), ", ") readme_df$ct_after_mrg <- str_split(gsub("[][]","", readme_df$after_mrg_ct), ", ") drop <- c("before_all_ct", "before_mrg_ct", "after_all_ct", "after_mrg_ct") readme_df = readme_df[,!(names(readme_df) %in% drop)] # 2 some expansion needs to happens for each project expand_timeseries <- function(project_row) { longer <- project_row |> pivot_longer(cols = starts_with("ct"), names_to = "window", values_to = "count") |> unnest(count) longer$observation_type <- gsub("^.*_", "", longer$window) longer <- ddply(longer, "observation_type", transform, week=seq(from=0, by=1, length.out=length(observation_type))) longer$count <- as.numeric(longer$count) #longer <- longer[which(longer$observation_type == "all"),] return(longer) } expanded_data <- expand_timeseries(readme_df[1,]) for (i in 2:nrow(readme_df)){ expanded_data <- rbind(expanded_data, expand_timeseries(readme_df[i,])) } #filter out the windows of time that we're looking at window_num <- 8 windowed_data <- expanded_data |> filter(week >= (27 - window_num) & week <= (27 + window_num)) |> mutate(D = ifelse(week > 27, 1, 0)) #scale the age numbers windowed_data$scaled_project_age <- scale(windowed_data$age_of_project) windowed_data$week_offset <- windowed_data$week - 27 #separate out the cleaning d all_actions_data <- windowed_data[which(windowed_data$observation_type == "all"),] mrg_actions_data <- windowed_data[which(windowed_data$observation_type == "mrg"),] #find some EDA to identify which types of models might be the best for this hist(log(all_actions_data$count)) median(all_actions_data$count) table(all_actions_data$count) var(all_actions_data$count) qqnorm(all_actions_data$count) y <- qunif(ppoints(length(all_actions_data$count))) qqplot(all_actions_data$count, y) all_actions_data$logged_count <- log(all_actions_data$count) all_actions_data$log1p_count <- log1p(all_actions_data$count) # 3 rdd in lmer analysis # rdd: https://rpubs.com/phle/r_tutorial_regression_discontinuity_design # lmer: https://www.youtube.com/watch?v=LzAwEKrn2Mc library(lme4) # https://www.bristol.ac.uk/cmm/learning/videos/random-intercepts.html#exvar library(optimx) library(lattice) all_model <- lmer(log1p_count ~ D * I(week_offset)+ scaled_project_age + (D * I(week_offset)| upstream_vcs_link), data=all_actions_data, REML=FALSE, control = lmerControl( optimizer ='optimx', optCtrl=list(method='L-BFGS-B'))) summary_of_all <- summary(all_model) #identifying the quartiles of effect for D mmcm = coef(all_model)$upstream_vcs_link fixed_impacts = fixef(all_model) summary(all_model)$coef[,2] variance_components <- VarCorr(all_model) all_model_ranef_condvar <- ranef(all_model, condVar = TRUE) dotplot(all_model_ranef_condvar) test <- broom.mixed::tidy(all_model, effects = "ran_vals", conf.int = TRUE) attr(all_model_ranef_condvar$upstream_vcs_link, "postVar") all_coefficients <- coef(all_model) all_standard_errors <- sqrt(diag(vcov(all_model)))[1] var(all_actions_data$log1p_count) # 1.125429 mean (all_actions_data$log1p_count) # 0.6426873 var(all_actions_data$count) # 268.4449 mean (all_actions_data$count) # 3.757298 summary(all_actions_data$week_offset) #all_gmodel <- glmer(count ~ D * I(week_offset)+ scaled_project_age + (D * I(week_offset)| upstream_vcs_link), data=all_actions_data, nAGQ=0, family = poisson) all_gmodel <- glmer.nb(count ~ D * week_offset + scaled_project_age + (D * week_offset | upstream_vcs_link), control=glmerControl(optimizer="bobyqa", optCtrl=list(maxfun=2e5)), data=all_actions_data) #all_log1p_gmodel <- glmer.nb(log1p_count ~ D * week_offset+ scaled_project_age + (D * week_offset | upstream_vcs_link), data=all_actions_data, nAGQ=0, control=glmerControl(optimizer="bobyqa", # optCtrl=list(maxfun=1e5))) all_log1p_gmodel <- glmer.nb(log1p_count ~ D * week_offset+ scaled_project_age + (D * week_offset | upstream_vcs_link), data=all_actions_data, nAGQ=1, control=glmerControl(optimizer="bobyqa", optCtrl=list(maxfun=1e5))) summary(all_log1p_gmodel) warnings(all_log1p_gmodel) saveRDS(all_log1p_gmodel, "0510_log1p_nagq_gmodel_backup.rda") #yesterdays_model <- readRDS("0509_log1p_gmodel.rda") all_residuals <- residuals(all_log1p_gmodel) qqnorm(all_residuals) library(broom.mixed) test_condvals <- broom.mixed::tidy(all_log1p_gmodel, effects = "ran_vals", conf.int = TRUE) test_glmer_ranef_D <- test_condvals [which(test_condvals $term == "D"),] has_zero <- function(estimate, low, high){ return(ifelse((low < 0),ifelse((high > 0), 1, 0), 2)) } test_glmer_ranef_D <- test_glmer_ranef_D |> mutate(ranef_grouping = has_zero(estimate, conf.low, conf.high)) |> mutate(rank = rank(estimate)) g <- test_glmer_ranef_D |> ggplot(aes(x=rank, y=estimate, col = as.factor(ranef_grouping))) + geom_linerange(aes(ymin= conf.low, ymax= conf.high)) + theme_bw() g ggsave("0509caterpillar.png", g) #below this groups the ranefs """ has_zero <- function(condval, condsd){ bounds <- condsd * 1.96 return(ifelse(((condval - bounds) < 0),ifelse(((condval + bounds) > 0), 1, 0), 2)) } df_ranefs <- df_ranefs |> mutate(ranef_grouping = has_zero(condval, condsd)) |> mutate(rank = rank(condval)) D_df_ranef <- df_ranefs[which(df_ranefs$term == ),] D_df_ranef <- D_df_ranef |> mutate(rank = rank(condval)) hist(D_df_ranef$ranef_grouping) #plot the ranefs library(ggplot2) D_df_ranef |> ggplot(aes(x=rank, y=condval, col = as.factor(ranef_grouping))) + geom_linerange(aes(ymin= condval - (1.96 * condsd), ymax= condval + (1.96 * condsd))) + theme_bw() """ #d_effect_ranef_all <- all_model_ranef$upstream_vcs_link #d_effect_ranef_all$quartile <- ntile(d_effect_ranef_all$condval, 4) #model residuals all_residuals <- residuals(all_model) qqnorm(all_residuals) # mrg behavior for this mrg_model <- lmer(log1p_count ~ D * I(week_offset)+ scaled_project_age + (D * I(week_offset)| upstream_vcs_link), data=all_actions_data, REML=FALSE, control = lmerControl( optimizer ='optimx', optCtrl=list(method='L-BFGS-B'))) summary(mrg_model) #identifying the quartiles of effect for D mrg_model_ranef <- ranef(mrg_model, condVar=TRUE) df_mrg_ranefs <- as.data.frame(mrg_model_ranef) dotplot(mrg_model_ranef) d_effect_ranef_mrg <- mrg_model_ranef[mrg_model_ranef$term=="D",] d_effect_ranef_mrg$quartile <- ntile(d_effect_ranef_mrg$condval, 4) #doing similar random effect analysis for this df_mrg_ranefs <- df_mrg_ranefs |> mutate(ranef_grouping = has_zero(condval, condsd)) |> mutate(rank = rank(condval)) D_df_mrg_ranefs <- df_mrg_ranefs[which(df_mrg_ranefs$term == "D"),] D_df_mrg_ranefs |> ggplot(aes(x=rank, y=condval, col = as.factor(ranef_grouping))) + geom_linerange(aes(ymin= condval - (1.96 * condsd), ymax= condval + (1.96 * condsd))) #merge model residuals mrg_residuals <- residuals(mrg_model) qqnorm(mrg_residuals) # Performance: