time_plot <- all_actions_data |> ggplot(aes(x=week_offset, y=log1p_count, color=factor(document_type))) + geom_smooth() + geom_vline(x=0)+ theme_bw() + theme(legend.position = "top") time_plot time_plot <- all_actions_data |> ggplot(aes(x=week_offset, y=log1p_count, color=factor(document_type))) + geom_smooth() + geom_vline(x=0)+ theme_bw() + theme(legend.position = "top") time_plot <- all_actions_data |> ggplot(aes(x=week_offset, y=log1p_count, color=factor(document_type))) + geom_smooth() + geom_vline(0)+ theme_bw() + theme(legend.position = "top") time_plot time_plot <- all_actions_data |> ggplot(aes(x=week_offset, y=log1p_count, color=factor(document_type))) + geom_smooth() + geom_vline(xintercept = 0)+ theme_bw() + theme(legend.position = "top") time_plot #looking at event gap document_event_gap <- ggplot(all_actions_data, aes(x=event_gap, group=as.factor(document_type))) + geom_density(aes(color = as.factor(document_type), fill=as.factor(document_type)), alpha=0.2, position="identity") + theme_bw() document_event_gap #looking at event gap document_event_gap <- ggplot(all_actions_data, aes(x=scale(event_gap), group=as.factor(document_type))) + geom_density(aes(color = as.factor(document_type), fill=as.factor(document_type)), alpha=0.2, position="identity") + theme_bw() document_event_gap #looking at event gap mean(all_actions_readme_data$event_gap) sd(all_actions_readme_data$event_gap) mean(all_actions_contrib_data$event_gap) sd(all_actions_contrib_data$event_gap) mode(all_actions_contrib_data$event_gap) mean(all_actions_contrib_data$event_gap) library(tidyverse) contrib_df <- read_csv("../final_data/deb_contrib_did.csv") readme_df <- read_csv("../final_data/deb_readme_did.csv") hist(readme_df$event_gap) hist(readme_df$event_gap) mean(readme_df$event_gap) sd(readme_df$event_gap) min(readme_df$event_gap) count(readme_df$event_gap < 0) length(readme_df$event_gap < 0) table(readme_df$event_gap) table(contrib_df$event_gap) sum(readme_df$event_gap < 0) table(readme_df$event_gap) delta <- as.POSIXct(readme_df$event_date) - as.POSIXct(readme_df$first_commit_dt) - delta <- as.POSIXct(readme_df$event_date) - as.POSIXct(readme_df$first_commit_dt) delta <- as.POSIXct(readme_df$event_date) - as.POSIXct(readme_df$first_commit_dt) readme_df$asposixctED <- as.POSIXct(readme_df$event_date) View(readme_df) readme_df$asposixctFC <- as.POSIXct(readme_df$first_commit_dt) readme_df$new_delta <- readme_df$asposixctED - readme_df$asposixctFC View(readme_df) readme_df$new_delta <- as.numeric(readme_df$asposixctED - readme_df$asposixctFC, units="days") View(readme_df) readme_df$new_delta <- readme_df$asposixctED - readme_df$asposixctFC, units="days" readme_df$new_delta <- readme_df$asposixctED - readme_df$asposixctFC contrib_df <- read_csv("../final_data/deb_contrib_did.csv") readme_df <- read_csv("../final_data/deb_readme_did.csv") contrib_df <- contrib_df |> filter(event_gap >= 0) readme_df <- readme_df |> filter(event_gap >= 0) readme_df <- read_csv("../final_data/deb_readme_did.csv") sum(readme_df$event_gap < 0) sum(contrib_df$event_gap < 0) contrib_df <- read_csv("../final_data/deb_contrib_did.csv") sum(contrib_df$event_gap < 0) as.POSIXct(2016-02-20 02:31:00)-as.POSIXct(2009-02-06 16:31:05) as.POSIXct("2016-02-20 02:31:00")-as.POSIXct("2009-02-06 16:31:05") as.POSIXct("2016-11-29 13:34:52")-as.POSIXct("2014-07-11 08:36:39") as.POSIXct("2017-02-04 21:15:52")-as.POSIXct("2009-04-23 17:11:15") as.POSIXct("2019-01-17 23:15:08")-as.POSIXct("2007-11-28 09:50:01") contrib_df <- read_csv("../final_data/deb_contrib_did.csv") sum(contrib_df$event_gap < 0) as.POSIXct("2019-07-31 17:38:52")-as.POSIXct("2019-07-31 13:38:52") as.numeric(as.POSIXct("2019-07-31 17:38:52")-as.POSIXct("2019-07-31 13:38:52"), unit=days) as.numeric(as.POSIXct("2019-07-31 17:38:52")-as.POSIXct("2019-07-31 13:38:52"), unit="days") as.numeric(as.POSIXct("1998-08-13 15:43:39")-as.POSIXct("1998-08-13 11:43:39"), unit="days") as.numeric(as.POSIXct("2009-05-08 15:26:27")-as.POSIXct("2009-02-05 19:06:44"), unit="days") readme_df <- read_csv("../final_data/deb_readme_did.csv") results <- as.numeric(as.POSIXct(readme_df$event_date) - as.POSIXct(readme_df$first_commit_dt), unit="days") min(results) L1 <- as.POSIXct(c( "2019-07-31 17:38:52", "1998-08-13 15:43:39", "2009-05-08 15:26:27", "2011-03-22 14:02:38", "2009-10-09 09:54:44", "2009-04-29 23:16:59", "2009-08-15 08:12:16", "2014-07-11 19:14:56", "2008-10-21 14:00:00", "2016-08-15 21:55:21", "2000-06-18 14:00:37", "2000-11-05 00:12:44", "2009-04-23 21:23:12", "2010-09-19 12:36:20", "2007-11-28 14:50:01", "2013-08-09 18:25:49", "2005-05-07 21:52:07", "2004-01-27 19:53:06", "2015-11-16 04:44:13", "2014-06-11 23:19:07", "2008-04-15 05:23:34", "2015-02-08 10:08:15", "2008-06-20 10:52:21" )) # L2 (provided list of ordered datetime values) L2 <- as.POSIXct(c( "2019-07-31 13:38:52", "1998-08-13 11:43:39", "2009-02-05 19:06:44", "2011-01-27 10:48:48", "2009-10-09 05:54:44", "2009-04-29 19:16:59", "2009-08-15 04:12:16", "2014-07-11 08:36:39", "2008-10-21 10:00:00", "2016-04-14 14:41:36", "2000-06-18 10:00:37", "2000-11-04 19:12:44", "2009-04-23 17:11:15", "2010-09-15 20:20:35", "2007-11-28 09:50:01", "2013-08-09 14:25:49", "2005-05-01 18:31:26", "2004-01-27 14:53:06", "2015-10-09 02:31:15", "2014-06-13 22:35:34", "2008-04-15 01:23:34", "2010-03-07 00:58:08", "2008-06-20 06:30:10" )) # Calculate differences in days differences <- as.numeric(L2 - L1, units = "days") # Print the resulting differences print(differences) as.numeric(as.POSIXct("2011-03-22 14:02:38 ")-as.POSIXct("2011-01-27 10:48:48"), unit="days") as.numeric(as.POSIXct("2009-10-09 09:54:44 ")-as.POSIXct("2009-10-09 05:54:44 "), unit="days") as.numeric(as.POSIXct("2009-04-29 23:16:59 ")-as.POSIXct("2009-04-29 19:16:59 "), unit="days") as.numeric(as.POSIXct("2009-08-15 08:12:16 ")-as.POSIXct("2009-08-15 04:12:16 "), unit="days") as.numeric(as.POSIXct("2014-07-11 19:14:56 ")-as.POSIXct("2014-07-11 08:36:39 "), unit="days") as.numeric(as.POSIXct("2008-10-21 14:00:00 ")-as.POSIXct("2008-10-21 10:00:00 "), unit="days") as.numeric(as.POSIXct("2016-08-15 21:55:21 ")-as.POSIXct("2016-04-14 14:41:36 "), unit="days") as.numeric(as.POSIXct("2000-06-18 14:00:37 ")-as.POSIXct("2000-06-18 10:00:37 "), unit="days") as.numeric(as.POSIXct("2000-11-05 00:12:44 ")-as.POSIXct("2000-11-04 19:12:44 "), unit="days") as.numeric(as.POSIXct("2009-04-23 21:23:12 ")-as.POSIXct("2009-04-23 17:11:15 "), unit="days") as.numeric(as.POSIXct("2010-09-19 12:36:20 ")-as.POSIXct("2010-09-15 20:20:35 "), unit="days") as.numeric(as.POSIXct("2007-11-28 14:50:01 ")-as.POSIXct("2007-11-28 09:50:01 "), unit="days") as.numeric(as.POSIXct("2013-08-09 18:25:49 ")-as.POSIXct("2013-08-09 14:25:49 "), unit="days") as.numeric(as.POSIXct("2005-05-07 21:52:07 ")-as.POSIXct("2005-05-01 18:31:26 "), unit="days") as.numeric(as.POSIXct("2004-01-27 19:53:06 ")-as.POSIXct("2004-01-27 14:53:06 "), unit="days") as.numeric(as.POSIXct("2015-11-16 04:44:13 ")-as.POSIXct("2015-10-09 02:31:15 "), unit="days") as.numeric(as.POSIXct("2014-06-11 23:19:07 ")-as.POSIXct("2014-06-13 22:35:34 "), unit="days") as.numeric(as.POSIXct("2014-06-11 23:19:07 ")-as.POSIXct("2014-06-13 22:35:34 "), unit="days") as.numeric(as.POSIXct("2008-04-15 05:23:34 ")-as.POSIXct("2008-04-15 01:23:34 "), unit="days") as.numeric(as.POSIXct("2015-02-08 10:08:15 ")-as.POSIXct("2010-03-07 00:58:08 "), unit="days") as.numeric(as.POSIXct("2008-06-20 10:52:21 ")-as.POSIXct("2008-06-20 06:30:10 "), unit="days") as.numeric(as.POSIXct("2001-06-22 17:39:29 ")-as.POSIXct("2001-06-22 13:39:29 "), unit="days") as.numeric(as.POSIXct("2013-05-15 12:13:50 ")-as.POSIXct("2013-05-15 08:13:50 "), unit="days") as.numeric(as.POSIXct("2015-12-10 12:31:14 ")-as.POSIXct("2015-12-10 07:31:14 "), unit="days") as.numeric(as.POSIXct("2013-02-07 15:58:18 ")-as.POSIXct("2013-02-07 10:58:18 "), unit="days") as.numeric(as.POSIXct("2013-06-05 15:19:59 ")-as.POSIXct("2013-06-05 11:19:59 "), unit="days") as.numeric(as.POSIXct("2016-02-24 21:54:34 ")-as.POSIXct("2016-02-24 16:54:34 "), unit="days") as.numeric(as.POSIXct("2013-09-09 16:52:04 ")-as.POSIXct("2013-08-08 20:07:23 "), unit="days") #all_gmodel <- glmer.nb(log1p_count ~ D * week_offset + scaled_project_age + scaled_event_gap + (D * week_offset | upstream_vcs_link), # control=glmerControl(optimizer="bobyqa", # optCtrl=list(maxfun=2e5)), nAGQ=0, data=all_actions_data) all_gmodel <- readRDS("0710_contrib_all.rda") "), unit="days") #all_gmodel <- glmer.nb(log1p_count ~ D * week_offset + scaled_project_age + scaled_event_gap + (D * week_offset | upstream_vcs_link), # control=glmerControl(optimizer="bobyqa", # optCtrl=list(maxfun=2e5)), nAGQ=0, data=all_actions_data) all_gmodel <- readRDS("0710_contrib_all.rda") summary(all_gmodel) as.numeric(as.POSIXct("2014-09-28 09:39:20 ")-as.POSIXct("2014-09-28 03:41:27 "), unit="days") as.numeric(as.POSIXct("2011-08-27 03:10:24 ")-as.POSIXct("2011-08-26 23:10:24 "), unit="days") as.numeric(as.POSIXct("2011-05-31 21:58:54 ")-as.POSIXct("2011-05-31 18:00:13 "), unit="days") as.numeric(as.POSIXct("2015-11-10 20:33:50 ")-as.POSIXct("2015-11-10 15:33:50 "), unit="days") as.numeric(as.POSIXct("2019-12-02 10:59:23 ")-as.POSIXct("2019-12-02 05:59:23 "), unit="days") as.numeric(as.POSIXct("2019-12-02 11:00:24 ")-as.POSIXct("2019-12-02 06:00:24 "), unit="days") as.numeric(as.POSIXct("2014-10-15 07:41:16 ")-as.POSIXct("2014-09-20 06:22:40 "), unit="days") as.numeric(as.POSIXct("2015-05-13 13:28:36 ")-as.POSIXct("2015-05-13 09:28:36 "), unit="days") as.numeric(as.POSIXct("2017-06-23 09:04:49 ")-as.POSIXct("2017-06-23 05:04:49 "), unit="days") as.numeric(as.POSIXct("2015-09-22 16:31:10 ")-as.POSIXct("2015-09-01 14:47:44 "), unit="days") as.numeric(as.POSIXct("2011-08-11 19:19:12 ")-as.POSIXct("2011-07-05 16:09:48 "), unit="days") as.numeric(as.POSIXct("2017-02-02 11:34:37 ")-as.POSIXct("2017-02-01 05:48:49 "), unit="days") as.numeric(as.POSIXct("1988-08-07 21:49:56 ")-as.POSIXct("1988-06-05 13:51:08 "), unit="days") as.numeric(as.POSIXct("2013-01-26 21:18:26 ")-as.POSIXct("2013-01-26 16:18:26 "), unit="days") as.numeric(as.POSIXct("2010-07-24 20:27:20 ")-as.POSIXct("2010-07-24 16:27:20 "), unit="days") as.numeric(as.POSIXct("2008-04-20 04:45:51 ")-as.POSIXct("2008-02-23 06:53:28 "), unit="days") as.numeric(as.POSIXct("2014-07-15 11:41:30 ")-as.POSIXct("2014-01-28 15:47:41 "), unit="days") as.numeric(as.POSIXct("2019-05-28 14:40:24 ")-as.POSIXct("2019-05-28 10:29:07 "), unit="days") as.numeric(as.POSIXct("2009-02-03 09:41:14 ")-as.POSIXct("2009-02-01 17:37:33 "), unit="days") as.numeric(as.POSIXct("2011-08-24 09:46:11 ")-as.POSIXct("2010-07-24 17:09:50 "), unit="days") as.numeric(as.POSIXct("2017-03-29 07:30:12 ")-as.POSIXct("2017-03-28 20:24:14 "), unit="days") as.numeric(as.POSIXct("2013-04-04 21:58:36 ")-as.POSIXct("2013-04-04 17:58:36 "), unit="days") as.numeric(as.POSIXct("2018-02-06 08:23:27 ")-as.POSIXct("2018-02-04 20:54:04 "), unit="days") as.numeric(as.POSIXct("2017-07-08 09:55:34 ")-as.POSIXct("2017-07-08 05:30:53 "), unit="days") as.numeric(as.POSIXct("2014-02-08 21:43:05 ")-as.POSIXct("2014-02-08 16:43:05 "), unit="days") as.numeric(as.POSIXct("2012-12-06 20:08:36 ")-as.POSIXct("2012-12-06 15:08:36 "), unit="days") as.numeric(as.POSIXct("2006-01-20 16:13:23 ")-as.POSIXct("2006-01-20 11:13:23 "), unit="days") as.numeric(as.POSIXct("2009-04-25 13:02:20 ")-as.POSIXct("2009-04-25 09:02:20 "), unit="days") as.numeric(as.POSIXct("2015-11-06 19:02:05 ")-as.POSIXct("2015-11-06 14:02:05 "), unit="days") as.numeric(as.POSIXct("2015-09-07 03:35:11 ")-as.POSIXct("2015-09-06 23:30:43 "), unit="days") as.numeric(as.POSIXct("2010-07-15 09:55:52 ")-as.POSIXct("2010-07-15 05:55:52 "), unit="days") as.numeric(as.POSIXct("2007-09-21 09:19:24 ")-as.POSIXct("2007-09-21 05:02:27 "), unit="days") as.numeric(as.POSIXct("2013-05-28 18:52:41 ")-as.POSIXct("2007-04-01 16:01:20 "), unit="days") as.numeric(as.POSIXct("2013-05-02 23:54:17 ")-as.POSIXct("2013-05-02 19:54:17 "), unit="days") as.numeric(as.POSIXct("2013-04-02 17:43:49 ")-as.POSIXct("2013-04-02 13:43:49 "), unit="days") as.numeric(as.POSIXct("2011-04-03 11:15:21 ")-as.POSIXct("2011-04-03 07:15:21 "), unit="days") as.numeric(as.POSIXct("2018-09-03 14:19:31 ")-as.POSIXct("2018-09-03 10:19:31 "), unit="days") as.numeric(as.POSIXct("2008-10-31 18:50:55 ")-as.POSIXct("2008-10-21 10:34:54 "), unit="days") as.numeric(as.POSIXct("2012-03-31 21:02:17 ")-as.POSIXct("2012-03-31 17:02:17 "), unit="days") as.numeric(as.POSIXct("2014-04-15 08:31:16 ")-as.POSIXct("2014-04-15 04:31:16 "), unit="days") as.numeric(as.POSIXct("2013-08-30 08:25:52 ")-as.POSIXct("2013-08-30 04:25:52 "), unit="days") as.numeric(as.POSIXct("2012-06-28 12:02:58 ")-as.POSIXct("2012-06-28 04:41:05 "), unit="days") as.numeric(as.POSIXct("2012-03-12 11:32:41 ")-as.POSIXct("2012-03-08 07:32:06 "), unit="days") as.numeric(as.POSIXct("2012-07-14 19:06:01 ")-as.POSIXct("2012-07-14 15:06:01 "), unit="days") as.numeric(as.POSIXct("2012-09-23 03:41:35 ")-as.POSIXct("2012-09-22 23:41:35 "), unit="days") as.numeric(as.POSIXct("2012-11-04 22:57:59 ")-as.POSIXct("2012-11-04 09:36:27 "), unit="days") as.numeric(as.POSIXct("2015-04-02 12:37:04 ")-as.POSIXct("2014-02-17 09:19:10 "), unit="days") as.numeric(as.POSIXct("2011-09-23 05:37:51 ")-as.POSIXct("2007-03-09 11:17:14 "), unit="days") as.numeric(as.POSIXct("2014-05-10 14:17:37 ")-as.POSIXct("2014-03-15 09:47:58 "), unit="days") as.numeric(as.POSIXct("2013-09-09 01:53:53 ")-as.POSIXct("2013-09-08 21:53:53 "), unit="days") as.numeric(as.POSIXct("2015-06-30 20:49:36 ")-as.POSIXct("2015-06-30 16:49:36 "), unit="days") as.numeric(as.POSIXct("2011-02-02 11:56:48 ")-as.POSIXct("2011-02-02 05:57:37 "), unit="days") as.numeric(as.POSIXct("2011-02-02 11:56:48 ")-as.POSIXct("2011-11-04 09:43:27 "), unit="days") as.numeric(as.POSIXct("2011-11-04 13:43:27 ")-as.POSIXct("2011-11-04 09:43:27 "), unit="days") as.numeric(as.POSIXct("2009-01-22 01:08:05 ")-as.POSIXct("2007-03-23 16:50:26 "), unit="days") contrib_df <- read_csv("../final_data/deb_contrib_did.csv") readme_df <- read_csv("../final_data/deb_readme_did.csv") contrib_df <- contrib_df |> filter(event_gap >= 0) readme_df <- readme_df |> filter(event_gap >= 0) hist(readme_df$event_gap) mean(readme_df$event_gap) sd(readme_df$event_gap) median(readme_df$event_gap) max(readme_df$event_gap) 13871.64 / 365 true_gap <- c() for (i in len(readme_df$event_date)){ delta <- as.numeric(as.POSIXct(readme_df$event_date[i,])-as.POSIXct(readme_df$first_commit_dt[i,]), unit="days") true_gap <- c(true_gap, delta) } for (i in length(readme_df$event_date)){ delta <- as.numeric(as.POSIXct(readme_df$event_date[i,])-as.POSIXct(readme_df$first_commit_dt[i,]), unit="days") true_gap <- c(true_gap, delta) } delta <- as.numeric(as.POSIXct(readme_df$event_date[i])-as.POSIXct(readme_df$first_commit_dt[i]), unit="days") for (i in length(readme_df$event_date)){ delta <- as.numeric(as.POSIXct(readme_df$event_date[i])-as.POSIXct(readme_df$first_commit_dt[i]), unit="days") true_gap <- c(true_gap, delta) } true_gap for (i in length(readme_df$event_date)){ delta <- as.numeric(as.POSIXct(readme_df$event_date[i])-as.POSIXct(readme_df$first_commit_dt[i]), unit="days") true_gap <- c(true_gap, delta) } true_gap length(readme_df$event_date) true_gap <- c() for (i in length(readme_df$event_date)){ delta <- as.numeric(as.POSIXct(readme_df$event_date[i])-as.POSIXct(readme_df$first_commit_dt[i]), unit="days") true_gap <- c(true_gap, delta) } true_gap length(readme_df$event_date) true_gap <- c() for (i in 1:length(readme_df$event_date)){ delta <- as.numeric(as.POSIXct(readme_df$event_date[i])-as.POSIXct(readme_df$first_commit_dt[i]), unit="days") true_gap <- c(true_gap, delta) } true_gap library(tidyverse) readme_df <- read_csv("../final_data/deb_readme_did.csv") readme_df <- readme_df |> filter(event_gap >= 0) hist(readme_df$event_gap) median(readme_df$event_gap) sd(readme_df$event_gap) max(readme_df$event_gap) table(readme_df$event_gap) contrib_df <- read_csv("../final_data/deb_contrib_did.csv") contrib_df <- contrib_df |> filter(event_gap >= 0) median(readme_df$event_gap) sd(readme_df$event_gap) hist(contrib_df$event_gap) median(contrib_df$event_gap) 1786.431 / 265 1786.431 / 365 sd(contrib_df$event_gap) sd(contrib_df$event_gap) max(readme_df$event_gap) #all_gmodel <- glmer.nb(log1p_count ~ D * week_offset + scaled_project_age + scaled_event_gap + (D * week_offset | upstream_vcs_link), # control=glmerControl(optimizer="bobyqa", # optCtrl=list(maxfun=2e5)), nAGQ=0, data=all_actions_data) all_gmodel <- readRDS("0710_contrib_all.rda") summary(all_gmodel) library(tidyverse) library(texreg) readme_rdd <- readRDS("final_models/0624_readme_all_rdd.rda") contrib_rdd <- readRDS("final_models/0710_contrib_all.rda") contrib_rdd <- readRDS("final_models/0710_contrib_all_rdd.rda") texreg(list(readme_rdd, contrib_rdd), stars=NULL, digits=3, use.packages=FALSE, custom.model.names=c( 'README','CONTRIBUTING'), custom.coef.names=c('(Intercept)', 'Indtroduction', 'Week (Time)', 'Project Age', 'Introduction:Week', 'Event Gap'), table=FALSE, ci.force = TRUE) source("~/Desktop/git/24_deb_gov/R/contribCrescAnalysis.R") #all_gmodel <- readRDS("0710_contrib_all.rda") summary(all_gmodel) saveRDS(all_gmodel, "0710_contrib_cresc.rda") range(all_actions_data$log1p_count) source("~/Desktop/git/24_deb_gov/R/contribRDDAnalysis.R") source("~/Desktop/git/24_deb_gov/R/contribRDDAnalysis.R") all_gmodel <- readRDS("0711_contrib_all.rda") summary(all_gmodel) library(tidyverse) library(texreg) library(tidyverse) library(texreg) readme_rdd <- readRDS("final_models/0624_readme_all_rdd.rda") contrib_rdd <- readRDS("final_models/0711_contrib_all_rdd.rda") summary(readme_rdd) texreg(list(readme_rdd, contrib_rdd), stars=NULL, digits=3, use.packages=FALSE, custom.model.names=c( 'README','CONTRIBUTING'), custom.coef.names=c('(Intercept)', 'Indtroduction', 'Week (Time)', 'Project Age', 'Introduction:Week', 'Event Gap'), table=FALSE, ci.force = TRUE) contrib_rdd <- readRDS("final_models/0711_contrib_all_rdd.rda") contrib_rdd <- readRDS("final_models/0711_contrib_all_rdd.rda") texreg(list(readme_rdd, contrib_rdd), stars=NULL, digits=3, use.packages=FALSE, custom.model.names=c( 'README','CONTRIBUTING'), custom.coef.names=c('(Intercept)', 'Indtroduction', 'Week (Time)', 'Project Age', 'Introduction:Week', 'Event Gap'), table=FALSE, ci.force = TRUE) texreg(list(readme_rdd, contrib_rdd), stars=NULL, digits=3, use.packages=FALSE, custom.model.names=c( 'README','CONTRIBUTING'), custom.coef.names=c('(Intercept)', 'Indtroduction', 'Week (Time)', 'Project Age', 'Introduction:Week'), table=FALSE, ci.force = TRUE) readme_groupings <- read.csv('../final_data/deb_readme_interaction_groupings.csv') contrib_groupings <- read.csv('../final_data/0711_contrib_inter_groupings.csv') subdirColors <- setNames( c('firebrick1', 'forestgreen', 'cornflowerblue') , c(0,1,2) ) readme_g <- readme_groupings |> ggplot(aes(x=rank, y=estimate, col = as.factor(ranef_grouping))) + geom_linerange(aes(ymin= conf.low, ymax= conf.high)) + scale_color_manual(values = subdirColors) + guides(fill="none", color="none")+ theme_bw() readme_g contrib_g <- contrib_groupings |> ggplot(aes(x=rank, y=estimate, col = as.factor(ranef_grouping))) + geom_linerange(aes(ymin= conf.low, ymax= conf.high)) + scale_color_manual(values = subdirColors) + theme_bw() + theme(legend.position = "top") contrib_g library(gridExtra) grid.arrange(contrib_g, readme_g, nrow = 1) source("~/Desktop/git/24_deb_gov/R/contribRDDAnalysis.R")