#trying to make a time plot showing the over-time shift library(plyr) contrib_df <- read_csv('../final_data/deb_contrib_did.csv') readme_df <- read_csv("../final_data/deb_readme_did.csv") col_order <- c("upstream_vcs_link", "age_in_days", "first_commit", "first_commit_dt", "event_gap", "event_date", "event_hash", "before_all_ct", "after_all_ct", "before_mrg_ct", "after_mrg_ct", "before_auth_new", "after_auth_new", "before_commit_new", "after_commit_new") #first contrib contrib_df <- contrib_df[,col_order] contrib_df$ct_before_all <- str_split(gsub("[][]","", contrib_df$before_all_ct), ", ") contrib_df$ct_after_all <- str_split(gsub("[][]","", contrib_df$after_all_ct), ", ") contrib_df$ct_before_mrg <- str_split(gsub("[][]","", contrib_df$before_mrg_ct), ", ") contrib_df$ct_after_mrg <- str_split(gsub("[][]","", contrib_df$after_mrg_ct), ", ") drop <- c("before_all_ct", "before_mrg_ct", "after_all_ct", "after_mrg_ct") contrib_df = contrib_df[,!(names(contrib_df) %in% drop)] #then readme readme_df <- readme_df[,col_order] readme_df$ct_before_all <- str_split(gsub("[][]","", readme_df$before_all_ct), ", ") readme_df$ct_after_all <- str_split(gsub("[][]","", readme_df$after_all_ct), ", ") readme_df$ct_before_mrg <- str_split(gsub("[][]","", readme_df$before_mrg_ct), ", ") readme_df$ct_after_mrg <- str_split(gsub("[][]","", readme_df$after_mrg_ct), ", ") drop <- c("before_all_ct", "before_mrg_ct", "after_all_ct", "after_mrg_ct") readme_df = readme_df[,!(names(readme_df) %in% drop)] # 2 some expansion needs to happens for each project expand_timeseries <- function(project_row) { longer <- project_row |> pivot_longer(cols = starts_with("ct"), names_to = "window", values_to = "count") |> unnest(count) longer$observation_type <- gsub("^.*_", "", longer$window) longer <- ddply(longer, "observation_type", transform, week=seq(from=0, by=1, length.out=length(observation_type))) longer$count <- as.numeric(longer$count) #longer <- longer[which(longer$observation_type == "all"),] return(longer) } expanded_contrib_data <- expand_timeseries(contrib_df[1,]) for (i in 2:nrow(contrib_df)){ expanded_contrib_data <- rbind(expanded_contrib_data, expand_timeseries(contrib_df[i,])) } expanded_readme_data <- expand_timeseries(readme_df[1,]) for (i in 2:nrow(readme_df)){ expanded_readme_data <- rbind(expanded_readme_data, expand_timeseries(readme_df[i,])) } window_num <- 8 windowed_contrib_data <- expanded_contrib_data |> filter(week >= (27 - window_num) & week <= (27 + window_num)) |> mutate(D = ifelse(week > 27, 1, 0)) windowed_readme_data <- expanded_readme_data |> filter(week >= (27 - window_num) & week <= (27 + window_num)) |> mutate(D = ifelse(week > 27, 1, 0)) windowed_contrib_data$week_offset <- windowed_contrib_data$week - 27 all_actions_contrib_data <- windowed_contrib_data[which(windowed_contrib_data$observation_type == "all"),] all_actions_contrib_data$document_type <- rep("CONTRIBUTING", length(all_actions_contrib_data$count)) windowed_readme_data$week_offset <- windowed_readme_data$week - 27 all_actions_readme_data <- windowed_readme_data[which(windowed_readme_data$observation_type == "all"),] all_actions_readme_data$document_type <- rep("README", length(all_actions_readme_data$count)) all_actions_data <- rbind(all_actions_contrib_data, all_actions_readme_data) all_actions_data$log1p_count <- log1p(all_actions_data$count) library(scales) expm1_trans <- trans_new( name = 'expm1', transform = function(x) expm1(x), inverse = function(x) log1p(x) ) doctypeColors <- setNames( c('#5da2d8', '#c7756a') , c("CONTRIBUTING", "README")) time_plot <- all_actions_data |> ggplot(aes(x=week_offset, y=count, color=factor(document_type))) + scale_y_continuous(trans = 'log1p', labels = scales::comma) + labs(x="Weekly Offset", y="Commit Count", color="Document Type: ") + scale_color_manual(values = doctypeColors) + geom_smooth() + geom_vline(xintercept = 0)+ theme_bw() + theme(legend.position = "top") time_plot ggsave(filename = "012825_gam_introduction.png", plot = time_plot, width = 8, height = 6, dpi = 500) #code to change the axes #scale_y_continuous(breaks = c(0, 0.5, 1.0, 1.5), # labels = round(c(expm1(0), expm1(0.5), expm1(1.0), expm1(1.5)), 1)) + #looking at event gap mean(all_actions_readme_data$event_gap) sd(all_actions_readme_data$event_gap) mean(all_actions_contrib_data$event_gap) sd(all_actions_contrib_data$event_gap) #all_actions_contrib_data$log1p_count <- log1p(all_actions_contrib_data$count) #contrib_time_plot <- all_actions_contrib_data |> # ggplot(aes(x=week_offset, y=log1p_count)) + # geom_smooth(color=forestgreen) + # geom_vline(xintercept = 0)+ # annotate("text", x=3, y=1, label="CONTRIBUTING.md Publication", angle=0)+ # theme_bw() + # ylab("Log Transformed Count of Contributions") + # xlab("Offset Weeks") + # theme(legend.position = "top") #contrib_time_plot