data1$new_milestones <- as.numeric(data1$milestones > 0) + 1 # (2) - Run the model on the pilot data data1$formal.score <- data1$mmt / (data1$old_milestones/data1$age) table(data1$milestones) table(data1$old_milestones) hist(data1$old_mmt, prob=TRUE) #inequality of participation hist(data1$formal.score) data1$new_mmt <- data1$mmt - 1 hist(data1$new_mmt, prob=TRUE) data1$new.age <- as.numeric(cut(data1$age/365, breaks=c(0,9,12,15,17), labels=c(1,2,3,4))) data1$new.formal.score <- data1$mmt / (data1$new_milestones/data1$new.age) hist(as.numeric(data1$new.age)) hist(data1$formal.score) hist(data1$new.formal.score) fsmodel1 <- lm(up.fac.mean ~ formal.score, data=data1) summary(kmodel1) summary(fsmodel1) kmodel3 <- lm(up.fac.mean ~ formal.score, data=data1) # (2) - Run the model on the pilot data data1$formal.score <- data1$mmt / (data1$old_milestones/data1$age) table(data1$formal.score) fsmodel1 <- lm(up.fac.mean ~ is.finite(formal.score), data=data1) summary(fsmodel1) fsmodel2 <- lm(up.fac.mean ~ new.formal.score, data=data1) summary(kmodel2) summary(fsmodel2) mmtmodel1 <- lm(up.fac.mean ~ mmt, data=data1) summary(mmtmodel1) agemodel1 <- lm(up.fac.mean ~ new.age, data=data1) summary(agemodel1) msmodel1 <- lm(up.fac.mean ~ old_milestones, data=data1) summary(msmodel1) msmodel2 <- lm(up.fac.mean ~ new_milestones, data=data1) summary(msmodel2) texreg(list(m1,m2,m3,m4), omit.coef = 'factor', stars=NULL, digits=2, custom.model.names=c('M1: no lang/network measures', 'M2: No language measures', 'M3: No network measures', 'M4: Full model'), custom.coef.names=c('(Intercept)', 'Package Age (years)', 'Uploader Count', 'Did maintainer change?', 'Team proportion', 'Eigenvector Centrality', 'Betweenness Centrality', 'Mean Language Age', 'Package Age : Mean Language Age'), use.packages=FALSE, table=FALSE, ci.force = TRUE) install.packages(textref) install.packages(textreg) library(textreg) install.packages("textreg_0.1.tar.gz", repos = NULL, type="source") install.packages("textreg_0.1.tar.gz", repos = NULL, type="source") install.packages("textreg_0.1.5.tar.gz", repos = NULL, type="source") import.packages(tm) import.package(tm) import.package("tm") install.package("tm") install.packages("tm") install.packages("nlp") yes install.packages("textreg_0.1.5.tar.gz", repos = NULL, type="source") library(textreg) texreg(list(m1,m2,m3,m4), omit.coef = 'factor', stars=NULL, digits=2, custom.model.names=c('M1: no lang/network measures', 'M2: No language measures', 'M3: No network measures', 'M4: Full model'), custom.coef.names=c('(Intercept)', 'Package Age (years)', 'Uploader Count', 'Did maintainer change?', 'Team proportion', 'Eigenvector Centrality', 'Betweenness Centrality', 'Mean Language Age', 'Package Age : Mean Language Age'), use.packages=FALSE, table=FALSE, ci.force = TRUE) textreg(list(m1,m2,m3,m4), omit.coef = 'factor', stars=NULL, digits=2, custom.model.names=c('M1: no lang/network measures', 'M2: No language measures', 'M3: No network measures', 'M4: Full model'), custom.coef.names=c('(Intercept)', 'Package Age (years)', 'Uploader Count', 'Did maintainer change?', 'Team proportion', 'Eigenvector Centrality', 'Betweenness Centrality', 'Mean Language Age', 'Package Age : Mean Language Age'), use.packages=FALSE, table=FALSE, ci.force = TRUE) textreg(list(fsmodel1,fsmodel2), omit.coef = 'factor', stars=NULL, digits=2, custom.model.names=c('M1: original formality score', 'M2: augmented formality score'), custom.coef.names=c('(Intercept)', 'Package Age (years)', 'Uploader Count', 'Did maintainer change?', 'Team proportion', 'Eigenvector Centrality', 'Betweenness Centrality', 'Mean Language Age', 'Package Age : Mean Language Age'), use.packages=FALSE, table=FALSE, ci.force = TRUE) coeff(fsmodel1) coef(fsmodel1) textreg(list(fsmodel1,fsmodel2), omit.coef = 'factor', stars=NULL, digits=2, custom.model.names=c('M1: original formality score', 'M2: augmented formality score'), custom.coef.names=c('(Intercept)', 'Package Age (years)'), use.packages=FALSE, table=FALSE, ci.force = TRUE) coef(fsmodel2) textreg(list(fsmodel1,fsmodel2), stars=NULL, digits=2, custom.model.names=c('M1: original formality score', 'M2: augmented formality score'), custom.coef.names=c('(Intercept)', 'Package Age (years)'), use.packages=FALSE, table=FALSE, ci.force = TRUE) textreg(list(fsmodel1,fsmodel2), stars=NULL, digits=2, custom.model.names=c('M1: original formality score', 'M2: augmented formality score'), custom.coef.names=c('(Intercept)', 'Package Age (years)'), use.packages=FALSE, table=FALSE, ci.force = TRUE) texreg(list(fsmodel1,fsmodel2), stars=NULL, digits=2, custom.model.names=c('M1: original formality score', 'M2: augmented formality score'), custom.coef.names=c('(Intercept)', 'Package Age (years)'), use.packages=FALSE, table=FALSE, ci.force = TRUE) install.packages(texreg) install.packages("texreg_1.39.3.tar.gz", repos = NULL, type="source") library(texreg) texreg(list(fsmodel1,fsmodel2), omit.coef = 'factor', stars=NULL, digits=2, custom.model.names=c('M1: original formality score', 'M2: augmented formality score'), custom.coef.names=c('(Intercept)', 'Package Age (years)'), use.packages=FALSE, table=FALSE, ci.force = TRUE) texreg(list(fsmodel1,fsmodel2), omit.coef = 'factor', stars=NULL, digits=2, custom.model.names=c('M1: original formality score', 'M2: augmented formality score'), custom.coef.names=c('(Intercept)', 'Package Age (years)', 'test'), use.packages=FALSE, table=FALSE, ci.force = TRUE) texreg(list(fsmodel1,fsmodel2, mmtmodel1, msmodel1, msmodel2, agemodel1), omit.coef = 'factor', stars=NULL, digits=2, custom.model.names=c('M1: original formality score', 'M2: augmented formality score', 'M3: original milestones', 'M4: binomial milestones', 'M5: age (grouped)' ), custom.coef.names=c('(Intercept)', 'Package Age (years)', 'test'), use.packages=FALSE, table=FALSE, ci.force = TRUE) texreg(list(fsmodel1,fsmodel2, mmtmodel1, msmodel1, msmodel2, agemodel1), omit.coef = 'factor', stars=NULL, digits=2, custom.model.names=c('M1: original formality score', 'M2: augmented formality score', 'M3: original milestones', 'M4: binomial milestones', 'M5: age (grouped)' ), custom.coef.names=c('(Intercept)', 'Package Age (years)', 'test', 'test', 'test', 'test', 'test', ), use.packages=FALSE, table=FALSE, ci.force = TRUE) texreg(list(fsmodel1,fsmodel2, mmtmodel1, msmodel1, msmodel2, agemodel1), omit.coef = 'factor', stars=NULL, digits=2, custom.model.names=c('M1: original formality score', 'M2: augmented formality score', 'M3: original milestones', 'M4: binomial milestones', 'M5: age (grouped)' ), custom.coef.names=c('(Intercept)', 'Package Age (years)', 'test', 'test', 'test', 'test', 'test' ), use.packages=FALSE, table=FALSE, ci.force = TRUE) texreg(list(fsmodel1,fsmodel2, mmtmodel1, msmodel1, msmodel2, agemodel1), omit.coef = 'factor', stars=NULL, digits=2, custom.model.names=c('M1: original formality score', 'M2: augmented formality score','M3: MMT', 'M4: original milestones', 'M5: binomial milestones', 'M6: age (grouped)' ), custom.coef.names=c('(Intercept)', 'Package Age (years)', 'test', 'test', 'test', 'test', 'test' ), use.packages=FALSE, table=FALSE, ci.force = TRUE) texreg(list(fsmodel1,fsmodel2, mmtmodel1, msmodel1, msmodel2, agemodel1), omit.coef = 'factor', stars=NULL, digits=2, custom.model.names=c('M1: original formality score', 'M2: augmented formality score','M3: MMT', 'M4: original milestones', 'M5: binomial milestones', 'M6: age (grouped)' ), custom.coef.names=c('(Intercept)', 'Package Age (years)', 'Relationship to Underproduction', 'test', 'test', 'test', 'test' ), use.packages=FALSE, table=FALSE, ci.force = TRUE) texreg(list(fsmodel1,fsmodel2, mmtmodel1, msmodel1, agemodel1), omit.coef = 'factor', stars=NULL, digits=2, custom.model.names=c('M1: original formality score', 'M2: augmented formality score','M3: MMT', 'M4: original milestones', 'M6: age (grouped)' ), custom.coef.names=c('Original formality relationship to underproduction', 'Augmented formality relationship to Underproduction', 'MMT relationship to underproduction', 'milestone usage relationship to underproduction', 'age group relationship to underproduction' ), use.packages=FALSE, table=FALSE, ci.force = TRUE) texreg(list(fsmodel1,fsmodel2, mmtmodel1, msmodel1, agemodel1), omit.coef = 'factor', stars=NULL, digits=2, custom.model.names=c('M1: original formality score', 'M2: augmented formality score','M3: MMT', 'M4: original milestones', 'M6: age (grouped)' ), custom.coef.names=c('Original formality relationship to underproduction', 'Augmented formality relationship to Underproduction', 'MMT relationship to underproduction', 'milestone usage relationship to underproduction', 'age group relationship to underproduction', 'test' ), use.packages=FALSE, table=FALSE, ci.force = TRUE) texreg(list(fsmodel1,fsmodel2, mmtmodel1, msmodel1, agemodel1), omit.coef = 'factor', stars=NULL, digits=2, custom.model.names=c('M1: original formality score', 'M2: augmented formality score','M3: MMT', 'M4: original milestones', 'M6: age (grouped)' ), custom.coef.names=c('(Intercept)', 'Original formality relationship to underproduction', 'Augmented formality relationship to Underproduction', 'MMT relationship to underproduction', 'Milestone usage relationship to underproduction', 'Age group relationship to underproduction'), use.packages=FALSE, table=FALSE, ci.force = TRUE) data5 <- subset(data1, is.finite(data1$formal.score)) fsmodel1 <- lm(up.fac.mean ~ formal.score, data=data5) summary(fsmodel1) texreg(list(fsmodel1,fsmodel2, mmtmodel1, msmodel1, agemodel1), omit.coef = 'factor', stars=NULL, digits=2, custom.model.names=c('M1: original formality score', 'M2: augmented formality score','M3: MMT', 'M4: original milestones', 'M6: age (grouped)' ), custom.coef.names=c('(Intercept)', 'Original formality relationship to underproduction', 'Augmented formality relationship to Underproduction', 'MMT relationship to underproduction', 'Milestone usage relationship to underproduction', 'Age group relationship to underproduction'), use.packages=FALSE, table=FALSE, ci.force = TRUE) texreg(list(fsmodel1,fsmodel2, mmtmodel1, msmodel1, agemodel1), omit.coef = 'factor', stars=NULL, digits=2, custom.model.names=c('M1: orig. formality', 'M2: augm. formality','M3: MMT', 'M4: milestones', 'M6: age (grouped)' ), custom.coef.names=c('(Intercept)', 'Original formality/underproduction', 'Augmented formality/Underproduction', 'MMT/underproduction', 'Milestones / underproduction', 'Age/underproduction'), use.packages=FALSE, table=FALSE, ci.force = TRUE) texreg(list(fsmodel1,fsmodel2, mmtmodel1, msmodel1, agemodel1), omit.coef = 'factor', stars=NULL, digits=2, custom.model.names=c('M1: orig. formality', 'M2: augm. formality','M3: MMT', 'M4: milestones', 'M5: age (grouped)' ), custom.coef.names=c('(Intercept)', 'Original formality', 'Augmented formality', 'MMT', 'Milestones', 'Age'), use.packages=FALSE, table=FALSE, ci.force = TRUE) texreg(list(fsmodel2, mmtmodel1, msmodel1, agemodel1), omit.coef = 'factor', stars=NULL, digits=2, custom.model.names=c( 'M1: augm. formality','M2: MMT', 'M3: milestones', 'M4: age (grouped)' ), custom.coef.names=c('(Intercept)', 'Original formality', 'Augmented formality', 'MMT', 'Milestones', 'Age'), use.packages=FALSE, table=FALSE, ci.force = TRUE) texreg(list(fsmodel2, mmtmodel1, msmodel1, agemodel1), omit.coef = 'factor', stars=NULL, digits=2, custom.model.names=c( 'M1: augm. formality','M2: MMT', 'M3: milestones', 'M4: age (grouped)' ), custom.coef.names=c('(Intercept)', 'Augmented formality', 'MMT', 'Milestones', 'Age'), use.packages=FALSE, table=FALSE, ci.force = TRUE) #Sample values powerCheck(300, 1000) source('powerAnalysis.R') #my little "lib" #Sample values powerCheck(300, 1000) powerCheck(200, 1000) powerCheck(250, 1000) powerCheck(275, 5000) powerCheck(275, 1000) source('powerAnalysis.R') #my little "lib" #Sample values powerCheck(300, 1000) powerCheck(275, 1000) powerCheck(500, 1000) powerCheck(700, 1000) powerCheck(7000, 1000) fsmodel2 <- lm(up.fac.mean ~ new.formal.score + as.factor(new.age), data=data1) summary(fsmodel2) mmtmodel1 <- lm(up.fac.mean ~ mmt + as.factor(new.age), data=data1) summary(mmtmodel1) mmtmodel1 <- lm(up.fac.mean ~ mmt + as.factor(age), data=data1) summary(mmtmodel1) mmtmodel1 <- lm(up.fac.mean ~ mmt + as.factor(new.age), data=data1) summary(mmtmodel1) msmodel1 <- lm(up.fac.mean ~ old_milestones + as.factor(new.age), data=data1) summary(msmodel1) fsmodel2 <- lm(up.fac.mean ~ new.formal.score + as.factor(new.age), data=data1) summary(fsmodel2) texreg(list(fsmodel2, mmtmodel1, msmodel1, agemodel1), omit.coef = 'factor', stars=NULL, digits=2, custom.model.names=c( 'M1: augm. formality','M2: MMT', 'M3: milestones' ), custom.coef.names=c('(Intercept)', 'Augmented formality', 'MMT', 'Milestones'), use.packages=FALSE, table=FALSE, ci.force = TRUE) texreg(list(fsmodel2, mmtmodel1, msmodel1, agemodel1), omit.coef = 'factor', stars=NULL, digits=2, custom.model.names=c( 'M1: augm. formality','M2: MMT', 'M3: milestones' ), custom.coef.names=c('(Intercept)', 'Augmented formality', 'MMT', 'Milestones', 'test'), use.packages=FALSE, table=FALSE, ci.force = TRUE) texreg(list(fsmodel2, mmtmodel1, msmodel1), omit.coef = 'factor', stars=NULL, digits=2, custom.model.names=c( 'M1: augm. formality','M2: MMT', 'M3: milestones' ), custom.coef.names=c('(Intercept)', 'Augmented formality', 'MMT', 'Milestones', 'test'), use.packages=FALSE, table=FALSE, ci.force = TRUE) texreg(list(fsmodel2, mmtmodel1, msmodel1), omit.coef = 'factor', stars=NULL, digits=2, custom.model.names=c( 'M1: augm. formality','M2: MMT', 'M3: milestones' ), custom.coef.names=c('(Intercept)', 'Augmented formality', 'MMT', 'Milestones'), use.packages=FALSE, table=FALSE, ci.force = TRUE) source('powerAnalysis.R') #my little "lib" powerCheck(250, 1000) powerCheck(275, 1000) #Sample values powerCheck(300, 1000) summary(mmtmodel1) texreg(list(fsmodel2, mmtmodel1, msmodel1), stars=NULL, digits=2, custom.model.names=c( 'M1: augm. formality','M2: MMT', 'M3: milestones' ), custom.coef.names=c('(Intercept)', 'Augmented formality', 'MMT', 'Milestones'), use.packages=FALSE, table=FALSE, ci.force = TRUE) texreg(list(fsmodel2, mmtmodel1, msmodel1), stars=NULL, digits=2, custom.model.names=c( 'M1: augm. formality','M2: MMT', 'M3: milestones' ), custom.coef.names=c('(Intercept)', 'Augmented formality', 'MMT', 'Milestones', 'age 2', 'age 3', 'age 4'), use.packages=FALSE, table=FALSE, ci.force = TRUE) mmtmodel1 <- lm(up.fac.mean ~ mmt + as.factor(new.age), data=data1) msmodel1 <- lm(up.fac.mean ~ old_milestones + as.factor(new.age), data=data1) fsmodel2 <- lm(up.fac.mean ~ new.formal.score, data=data1) texreg(list(fsmodel2, mmtmodel1, msmodel1), stars=NULL, digits=2, custom.model.names=c( 'M1: augm. formality','M2: MMT', 'M3: milestones' ), custom.coef.names=c('(Intercept)', 'Augmented formality', 'MMT', 'Milestones', 'age 2', 'age 3', 'age 4'), use.packages=FALSE, table=FALSE, ci.force = TRUE) texreg(list(fsmodel2, mmtmodel1, msmodel1), stars=NULL, digits=2, custom.model.names=c( 'M1: augm. formality','M2: MMT', 'M3: milestones' ), custom.coef.names=c('(Intercept)', 'Augmented formality', 'MMT', 'age 2', 'age 3', 'age 4', 'Milestones'), use.packages=FALSE, table=FALSE, ci.force = TRUE) summary(msmodel1) texreg(list(fsmodel2, mmtmodel1, msmodel1), stars=NULL, digits=2, custom.model.names=c( 'M1: augm. formality','M2: MMT', 'M3: milestones' ), custom.coef.names=c('(Intercept)', 'Augmented formality', 'MMT', 'Age-2', 'Age-3', 'Age-4', 'Milestones'), use.packages=FALSE, table=FALSE, ci.force = TRUE) g <- ggplot(data1, aes(x=mmt, y=up.fac.mean)) + geom_point() + aes(x=mmt, y=up.fac.mean, color=new.age)+ geom_smooth() + xlab("MMT") + ylab("Underproduction Factor") + theme_bw() g library(ggplot2) g <- ggplot(data1, aes(x=mmt, y=up.fac.mean)) + geom_point() + aes(x=mmt, y=up.fac.mean, color=new.age)+ geom_smooth() + xlab("MMT") + ylab("Underproduction Factor") + theme_bw() g msmodel1 <- lm(up.fac.mean ~ old_milestones + as.factor(new.age), data=data1) summary(msmodel1) g <- ggplot(data1, aes(x=mmt, y=up.fac.mean)) + geom_point() + aes(x=mmt, y=up.fac.mean, color=new.age)+ geom_smooth() + xlab("MMT") + ylab("Underproduction Factor") + theme_bw()+ scale_color_brewer(palette="Dark2") g g <- ggplot(data1, aes(x=mmt, y=up.fac.mean)) + geom_point() + aes(x=mmt, y=up.fac.mean, color=new.age)+ geom_smooth() + xlab("MMT") + ylab("Underproduction Factor") + theme_bw() g + scale_color_brewer(palette="Dark2") g + scale_color_viridis_b() g + scale_color_viridis_d() g g <- ggplot(data1, aes(x=mmt, y=up.fac.mean)) + geom_point() + aes(x=mmt, y=up.fac.mean, color=new.age)+ geom_smooth() + xlab("MMT") + ylab("Underproduction Factor") + theme_bw() g + scale_color_viridis_b() g g <- ggplot(data1, aes(x=mmt, y=up.fac.mean)) + geom_point() + aes(x=mmt, y=up.fac.mean, color=new.age)+ geom_smooth() + xlab("MMT") + ylab("Underproduction Factor") + theme_bw() g + scale_color_viridis_b() g + scale_color_viridis_b() scale_fill_continuous(name = "New Legend Title") g g <- ggplot(data1, aes(x=mmt, y=up.fac.mean)) + geom_point() + aes(x=mmt, y=up.fac.mean, color=new.age)+ geom_smooth() + xlab("MMT") + ylab("Underproduction Factor") + theme_bw() g + scale_color_viridis_b() scale_fill_continuous(name = "New Legend Title") g <- ggplot(data1, aes(x=mmt, y=up.fac.mean)) + geom_point() + aes(x=mmt, y=up.fac.mean, color=new.age)+ geom_smooth() + xlab("MMT") + ylab("Underproduction Factor") + theme_bw() g + scale_color_viridis_b() + scale_fill_continuous(name = "New Legend Title") g g <- ggplot(data1, aes(x=mmt, y=up.fac.mean)) + geom_point() + aes(x=mmt, y=up.fac.mean, color=new.age)+ geom_smooth() + xlab("MMT") + ylab("Underproduction Factor") + theme_bw() g + scale_color_viridis_b() + scale_fill_continuous(name = "New Legend Title") g + scale_color_viridis_b() + scale_color_continuous(name = "New Legend Title") g + scale_color_viridis_b() + scale_color_continuous(name = "Age Group") g <- ggplot(data1, aes(x=mmt, y=up.fac.mean)) + geom_point() + aes(x=mmt, y=up.fac.mean, color=new.age)+ geom_smooth() + xlab("MMT") + ylab("Underproduction Factor") + theme_bw() g + scale_color_viridis_b() + scale_color_continuous(name = "Age Group") g g + scale_color_viridis_b(name = "Age Group") g + scale_color_viridis_b(name = "Age Group", labels = c('1', '2', '3', '4')) g <- ggplot(data1, aes(x=mmt, y=up.fac.mean)) + geom_point() + aes(x=mmt, y=up.fac.mean, color=new.age)+ geom_smooth() + xlab("MMT") + ylab("Underproduction Factor") + theme_bw() g + scale_color_viridis_b(name = "Age Group", labels = c('1', '2', '3', '4')) g g + scale_fill_viridis_b(name = "Age Group", labels = c('1', '2', '3', '4')) g <- ggplot(data1, aes(x=mmt, y=up.fac.mean)) + geom_point() + aes(x=mmt, y=up.fac.mean, color=new.age)+ geom_smooth() + xlab("MMT") + ylab("Underproduction Factor") + theme_bw() g + scale_fill_viridis_b(name = "Age Group", labels = c('1', '2', '3', '4')) g g <- ggplot(data1, aes(x=mmt, y=up.fac.mean)) + geom_point() + aes(x=mmt, y=up.fac.mean, color=new.age)+ geom_smooth() + xlab("MMT") + ylab("Underproduction Factor") + theme_bw() g + scale_fill_viridis_b(name = "Age Group") g g + scale_fill_viridis_b(name = "Age Group") g <- ggplot(data1, aes(x=mmt, y=up.fac.mean)) + geom_point() + aes(x=mmt, y=up.fac.mean, color=new.age)+ geom_smooth() + xlab("MMT") + ylab("Underproduction Factor") + theme_bw() g + scale_colour_viridis_b(name = "Age Group") g + scale_fill_continuous(name = "Age Group") g g <- ggplot(data1, aes(x=mmt, y=up.fac.mean)) + geom_point() + aes(x=mmt, y=up.fac.mean, color=new.age)+ geom_smooth() + xlab("MMT") + ylab("Underproduction Factor") + theme_bw() g + scale_fill_continuous(name = "Age Group") g <- ggplot(data1, aes(x=mmt, y=up.fac.mean)) + geom_point() + aes(x=mmt, y=up.fac.mean, color=new.age)+ geom_smooth() + xlab("MMT") + ylab("Underproduction Factor") g + scale_fill_continuous(name = "Age Group") g + scale_fill_continuous(name = "Age Group", labels=c("Woman", "Man")) g + scale_color_continuous(name = "Age Group", labels=c("Woman", "Man")) g g <- ggplot(data1, aes(x=mmt, y=up.fac.mean)) + geom_point() + aes(x=mmt, y=up.fac.mean, color=new.age)+ geom_smooth() + xlab("MMT") + ylab("Underproduction Factor") + theme_bw() g + scale_color_continuous(name = "Age Group", labels=c("Woman", "Man")) g g <- ggplot(data1, aes(x=mmt, y=up.fac.mean)) + geom_point() + aes(x=mmt, y=up.fac.mean, color=new.age)+ geom_smooth() + xlab("MMT") + ylab("Underproduction Factor") + theme_bw() g + scale_color_continuous(type = "viridis", name = "Age Group", labels=c("Woman", "Man")) g g <- ggplot(data1, aes(x=mmt, y=up.fac.mean)) + geom_point() + aes(x=mmt, y=up.fac.mean, color=new.age)+ geom_smooth() + xlab("MMT") + ylab("Underproduction Factor") + theme_bw() + scale_color_continuous(type = "viridis", name = "Age Group") g g <- ggplot(data1, aes(x=mmt, y=up.fac.mean)) + geom_point() + aes(x=mmt, y=up.fac.mean, color=new.age)+ geom_smooth() + xlab("MMT") + ylab("Underproduction Factor") + theme_bw() + scale_color_continuous(type = "viridis", name = "Age Group", labels="0-9y", "9-12y", "12-15y", "15-17y") g g <- ggplot(data1, aes(x=mmt, y=up.fac.mean)) + geom_point() + aes(x=mmt, y=up.fac.mean, color=new.age)+ geom_smooth() + xlab("MMT") + ylab("Underproduction Factor") + theme_bw() + scale_color_continuous(type = "viridis", name = "Age Group", labels=c("0-9y", "9-12y", "12-15y", "15-17y")) g + theme(legend.position = c(0.8, 0.2)) g g <- ggplot(data1, aes(x=mmt, y=up.fac.mean)) + geom_point() + aes(x=mmt, y=up.fac.mean, color=new.age)+ geom_smooth() + xlab("MMT") + ylab("Underproduction Factor") + theme_bw() + scale_color_continuous(type = "viridis", name = "Age Group", labels=c("0-9y", "9-12y", "12-15y", "15-17y")) + theme(legend.position = c(0.8, 0.2)) g g <- ggplot(data1, aes(x=mmt, y=up.fac.mean)) + geom_point() + aes(x=mmt, y=up.fac.mean, color=new.age)+ geom_smooth() + xlab("MMT") + ylab("Underproduction Factor") + theme_bw() + scale_color_continuous(type = "viridis", name = "Age Group", labels=c("0-9y", "9-12y", "12-15y", "15-17y")) + theme(legend.position = c(0.1, 0.1)) g g <- ggplot(data1, aes(x=mmt, y=up.fac.mean)) + geom_point() + aes(x=mmt, y=up.fac.mean, color=new.age)+ geom_smooth() + xlab("MMT") + ylab("Underproduction Factor") + theme_bw() + scale_color_continuous(type = "viridis", name = "Age Group", labels=c("0-9y", "9-12y", "12-15y", "15-17y")) + theme(legend.position = c(0.1, 0.2)) g summary(mmtmodel1) g <- ggplot(data1, aes(x=mmt, y=up.fac.mean)) + geom_point() + aes(x=mmt, y=up.fac.mean, color=as.factor(new.age))+ geom_smooth() + xlab("MMT") + ylab("Underproduction Factor") + theme_bw() + scale_color_continuous(type = "viridis", name = "Age Group", labels=c("0-9y", "9-12y", "12-15y", "15-17y")) + theme(legend.position = c(0.1, 0.2)) g g <- ggplot(data1, aes(x=mmt, y=up.fac.mean)) + geom_point() + aes(x=mmt, y=up.fac.mean, color=as.factor(new.age))+ geom_smooth() + xlab("MMT") + ylab("Underproduction Factor") + theme_bw() + scale_color_discrete(type = "viridis", name = "Age Group", labels=c("0-9y", "9-12y", "12-15y", "15-17y")) + theme(legend.position = c(0.1, 0.2)) g g <- ggplot(data1, aes(x=mmt, y=up.fac.mean)) + geom_point() + aes(x=mmt, y=up.fac.mean, color=new.age)+ geom_smooth() + xlab("MMT") + ylab("Underproduction Factor") + theme_bw() + scale_color_identity(type = "viridis", name = "Age Group", labels=c("0-9y", "9-12y", "12-15y", "15-17y")) + theme(legend.position = c(0.1, 0.2)) g g <- ggplot(data1, aes(x=mmt, y=up.fac.mean)) + geom_point() + aes(x=mmt, y=up.fac.mean, color=new.age)+ geom_smooth() + xlab("MMT") + ylab("Underproduction Factor") + theme_bw() + scale_color_identity(type = "viridis", name = "Age Group", labels=c("0-9y", "9-12y", "12-15y", "15-17y")) + theme(legend.position = c(0.1, 0.2)) g g <- ggplot(data1, aes(x=mmt, y=up.fac.mean)) + geom_point() + aes(x=mmt, y=up.fac.mean, color=round(new.age))+ geom_smooth() + xlab("MMT") + ylab("Underproduction Factor") + theme_bw() + scale_color_identity(type = "viridis", name = "Age Group", labels=c("0-9y", "9-12y", "12-15y", "15-17y")) + theme(legend.position = c(0.1, 0.2)) g g <- ggplot(data1, aes(x=mmt, y=up.fac.mean)) + geom_point() + geom_smooth() + xlab("MMT") + ylab("Underproduction Factor") + theme_bw() g