library(tidyverse) library(plyr) #get the contrib data instead try(setwd(dirname(rstudioapi::getActiveDocumentContext()$path))) contrib_df <- read_csv("../final_data/deb_contrib_did.csv") #some preprocessing and expansion col_order <- c("upstream_vcs_link", "age_in_days", "first_commit", "first_commit_dt", "event_gap", "event_date", "event_hash", "before_all_ct", "after_all_ct", "before_mrg_ct", "after_mrg_ct", "before_auth_new", "after_auth_new", "before_commit_new", "after_commit_new") contrib_df <- contrib_df[,col_order] contrib_df$ct_before_all <- str_split(gsub("[][]","", contrib_df$before_all_ct), ", ") contrib_df$ct_after_all <- str_split(gsub("[][]","", contrib_df$after_all_ct), ", ") contrib_df$ct_before_mrg <- str_split(gsub("[][]","", contrib_df$before_mrg_ct), ", ") contrib_df$ct_after_mrg <- str_split(gsub("[][]","", contrib_df$after_mrg_ct), ", ") drop <- c("before_all_ct", "before_mrg_ct", "after_all_ct", "after_mrg_ct") contrib_df = contrib_df[,!(names(contrib_df) %in% drop)] # 2 some expansion needs to happens for each project expand_timeseries <- function(project_row) { longer <- project_row |> pivot_longer(cols = starts_with("ct"), names_to = "window", values_to = "count") |> unnest(count) longer$observation_type <- gsub("^.*_", "", longer$window) longer <- ddply(longer, "observation_type", transform, week=seq(from=0, by=1, length.out=length(observation_type))) longer$count <- as.numeric(longer$count) #longer <- longer[which(longer$observation_type == "all"),] return(longer) } expanded_data <- expand_timeseries(contrib_df[1,]) for (i in 2:nrow(contrib_df)){ expanded_data <- rbind(expanded_data, expand_timeseries(contrib_df[i,])) } #filter out the windows of time that we're looking at window_num <- 8 windowed_data <- expanded_data |> filter(week >= (27 - window_num) & week <= (27 + window_num)) |> mutate(D = ifelse(week > 27, 1, 0)) |> mutate(Cresc = ifelse(week > 23 & week < 27, 1, 0)) #scale the age numbers and calculate the week offset here windowed_data$scaled_project_age <- scale(windowed_data$age_in_days) windowed_data$scaled_event_gap <- scale(windowed_data$event_gap) windowed_data$week_offset <- windowed_data$week - 27 #break out the different type of commit actions all_actions_data <- windowed_data[which(windowed_data$observation_type == "all"),] mrg_actions_data <- windowed_data[which(windowed_data$observation_type == "mrg"),] #logging all_actions_data$logged_count <- log(all_actions_data$count) all_actions_data$log1p_count <- log1p(all_actions_data$count) #EDA range(all_actions_data$log1p_count) # 0.000000 6.745236 mean(all_actions_data$log1p_count) # 1.200043 var(all_actions_data$log1p_count) # 1.753764 median(all_actions_data$log1p_count) # 0.6931472 # now for merge mrg_actions_data$logged_count <- log(mrg_actions_data$count) mrg_actions_data$log1p_count <- log1p(mrg_actions_data$count) #imports for models library(lme4) library(optimx) library(lattice) #model print("fitting model") all_gmodel <- glmer.nb(log1p_count ~ Cresc * week_offset + scaled_project_age + scaled_event_gap + (Cresc * week_offset | upstream_vcs_link), control=glmerControl(optimizer="bobyqa", optCtrl=list(maxfun=2e5)), nAGQ=0, data=all_actions_data) #all_gmodel <- readRDS("0710_contrib_all.rda") summary(all_gmodel) saveRDS(all_gmodel, "0710_contrib_cresc.rda") range(all_actions_data$log1p_count) all_residuals <- residuals(all_gmodel) qqnorm(all_residuals)