# This is semi-generic code for doing a power analysis of a logistic regression with 4 # levels in a factor # when there's some pilot values already available and defined #modelled heavily the simulation example explained in: #http://meeting.spsp.org/2016/sites/default/files/Lane%2C%20Hennes%2C%20West%20SPSP%20Power%20Workshop%202016.pdf library('batman') library('reshape') l2p <- function(b) { odds <- exp(b) prob <- odds/(1+odds) return(prob) } #Matt: makeDataNew <- function(n) { sDF <- data.frame( sample(2793.638:3066.417, 1, replace = FALSE), sample(27.6519:154.6866, 1, replace = FALSE), sample(50.01884:96.77090, 1, replace = FALSE), sample(c(1,2), 1, prob=(c(0.5,0.5)), replace = FALSE), sample(1.610638: 1.684438, 1, replace = FALSE), sample(-0.1961401:-0.1647757, 1, replace = FALSE) ) colnames(sDF) <- c('age', 'contributors', 'collaborators', 'milestones', 'mmt', 'up.fac.mean') return(sDF) } powerCheck <- function(n, nSims) { #run a power calculation on the dataset given #set up some empty arrays b/c R signif0 <- rep(NA, nSims) signif1 <- rep(NA, nSims) signif2 <- rep(NA, nSims) signif3 <- rep(NA, nSims) signifM <- rep(NA, nSims) for (s in 1:nSims) { # repeatedly we will.... simData <- makeDataNew(n) # make some data #have updated for kkex through here, now need to look at the underproduction work m1.sim <- glm(up.fac.mean ~ ((mmt)/ (milestones/age)), # give the anticipated regression a try family=gaussian(link='identity'), data=simData) p0 <- coef(summary(m1.sim))[1,4] p1 <- coef(summary(m1.sim))[1,4] p2 <- coef(summary(m1.sim))[1,4] p3 <- coef(summary(m1.sim))[1,4] signif0[s] <- p0 <=.05 signif1[s] <- p1 <=.05 signif2[s] <- p2 <=.05 signif3[s] <- p3 <=.05 signifM[s] <- p0 <=.05 & p1 <=.05 & p2 <=.05 & p3 <=.05 } power <- c(mean(signif0), mean(signif1), mean(signif2), mean(signif3), mean(signifM)) return(power) }