contrib_readme_model <- load(file = "final_models/0623_pop_rm_contrib.rda") contrib_readme_model <- load(file = "final_models/0623_pop_rm_contrib.rda") contrib_readme_model <- load("final_models/0623_pop_rm_contrib.rda") contrib_readme_model <- source("final_models/0623_pop_rm_contrib.rda") contrib_readme_model <- readRDS("final_models/0623_pop_rm_contrib.rda") contrib_readme_model <- readRDS("final_models/0623_pop_contrib_collab.rda") collab_readme_model <- readRDS("final_models/0623_pop_rm_collab.rda") texreg(list(collab_readme_model, contrib_readme_model), stars=NULL, digits=2, custom.model.names=c( 'collab','contrib.' ), custom.coef.names=c('(Intercept)', 'after_introduction'), use.packages=FALSE, table=FALSE, ci.force = TRUE) library(texreg) texreg(list(collab_readme_model, contrib_readme_model), stars=NULL, digits=2, custom.model.names=c( 'collab','contrib.' ), custom.coef.names=c('(Intercept)', 'after_introduction'), use.packages=FALSE, table=FALSE, ci.force = TRUE) texreg(list(collab_readme_model, contrib_readme_model), stars=NULL, digits=2, custom.model.names=c( 'collab','contrib.' ), custom.coef.names=c('(Intercept)', 'after_introduction' 'etc'), texreg(list(collab_readme_model, contrib_readme_model), stars=NULL, digits=2, custom.model.names=c( 'collab','contrib.' ), custom.coef.names=c('(Intercept)', 'after_introduction', 'etc'), use.packages=FALSE, table=FALSE, ci.force = TRUE) library(tidyverse) library(plyr) library(stringr) try(setwd(dirname(rstudioapi::getActiveDocumentContext()$path))) #load in data contrib_df <- read_csv("../final_data/deb_contrib_pop_change.csv") readme_df <- read_csv("../final_data/deb_readme_pop_change.csv") #some expansion needs to happens for each project expand_timeseries <- function(project_row) { longer <- project_row |> pivot_longer(cols = ends_with("new"), names_to = "window", values_to = "count") |> unnest(count) |> mutate(after_doc = as.numeric(str_detect(window, "after"))) |> mutate(is_collab = as.numeric(str_detect(window, "collab"))) return(longer) } expanded_readme_data <- expand_timeseries(readme_df[1,]) for (i in 2:nrow(readme_df)){ expanded_readme_data <- rbind(expanded_readme_data, expand_timeseries(readme_df[i,])) } expanded_contrib_data <- expand_timeseries(contrib_df[1,]) for (i in 2:nrow(contrib_df)){ expanded_contrib_data <- rbind(expanded_contrib_data, expand_timeseries(contrib_df[i,])) } expanded_readme_data$log1pcount <- log1p(expanded_readme_data$count) expanded_contrib_data$log1pcount <- log1p(expanded_contrib_data$count) expanded_readme_data$logcount <- log(expanded_readme_data$count) expanded_contrib_data$logcount <- log(expanded_contrib_data$count) #breaking out the types of population counts collab_pop_readme <- expanded_readme_data[which(expanded_readme_data$is_collab == 1),] contrib_pop_readme <- expanded_readme_data[which(expanded_readme_data$is_collab == 0),] collab_pop_contrib <- expanded_contrib_data[which(expanded_contrib_data$is_collab == 1),] contrib_pop_contrib <- expanded_contrib_data[which(expanded_contrib_data$is_collab == 0),] simple_collab_readme_model <- glm.nb(count ~ as.factor(after_doc), data=collab_pop_readme) summary(simple_collab_readme_model) anova(simple_collab_readme_model, collab_readme_model) summary(collab_readme_model) #load in data full_df <- read_csv("../final_data/deb_full_data.csv") contrib_df <- read_csv("../final_data/deb_contrib_pop_change.csv") contrib_df <- merge(full_df, contrib_df, by="upstream_vcs_link") View(contrib_df) View(contrib_df) readme_df <- read_csv("../final_data/deb_readme_pop_change.csv") readme_df <- merge(full_df, readme_df, by="upstream_vcs_link") # age is calculated against December 11, 2023 contrib_df |> mutate(start_date = as.Date("2023-12-11") - age_of_project) View(contrib_df) # age is calculated against December 11, 2023 contrib_df <- contrib_df |> mutate(start_date = as.Date("2023-12-11") - age_of_project) View(contrib_df) View(contrib_df) View(readme_df) readme_df <- readme_df |> mutate(start_date = as.Date("2023-12-11") - age_of_project) View(readme_df) collab_readme_model_plus <- glmer.nb(log1pcount ~ as.factor(after_doc) + event_date + (after_doc| upstream_vcs_link), data=collab_pop_readme) #some expansion needs to happens for each project expand_timeseries <- function(project_row) { longer <- project_row |> pivot_longer(cols = ends_with("new"), names_to = "window", values_to = "count") |> unnest(count) |> mutate(after_doc = as.numeric(str_detect(window, "after"))) |> mutate(is_collab = as.numeric(str_detect(window, "collab"))) return(longer) } expanded_readme_data <- expand_timeseries(readme_df[1,]) for (i in 2:nrow(readme_df)){ expanded_readme_data <- rbind(expanded_readme_data, expand_timeseries(readme_df[i,])) } expanded_contrib_data <- expand_timeseries(contrib_df[1,]) for (i in 2:nrow(contrib_df)){ expanded_contrib_data <- rbind(expanded_contrib_data, expand_timeseries(contrib_df[i,])) } expanded_readme_data$log1pcount <- log1p(expanded_readme_data$count) expanded_contrib_data$log1pcount <- log1p(expanded_contrib_data$count) expanded_readme_data$logcount <- log(expanded_readme_data$count) expanded_contrib_data$logcount <- log(expanded_contrib_data$count) #breaking out the types of population counts collab_pop_readme <- expanded_readme_data[which(expanded_readme_data$is_collab == 1),] contrib_pop_readme <- expanded_readme_data[which(expanded_readme_data$is_collab == 0),] collab_pop_contrib <- expanded_contrib_data[which(expanded_contrib_data$is_collab == 1),] contrib_pop_contrib <- expanded_contrib_data[which(expanded_contrib_data$is_collab == 0),] library(tidyverse) library(plyr) library(stringr) try(setwd(dirname(rstudioapi::getActiveDocumentContext()$path))) #load in data full_df <- read_csv("../final_data/deb_full_data.csv") contrib_df <- read_csv("../final_data/deb_contrib_pop_change.csv") View(contrib_df) readme_df <- read_csv("../final_data/deb_readme_pop_change.csv") contrib_df <- merge(full_df, contrib_df, by="upstream_vcs_link") readme_df <- merge(full_df, readme_df, by="upstream_vcs_link") # age is calculated against December 11, 2023 contrib_df <- contrib_df |> mutate(start_date = as.Date("2023-12-11") - age_of_project) + mutate(event_date_days = as.Date("2024-06-24") - event_date) + readme_df <- readme_df |> mutate(start_date = as.Date("2023-12-11") - age_of_project) # age is calculated against December 11, 2023 contrib_df <- contrib_df |> mutate(start_date = as.Date("2023-12-11") - age_of_project) + mutate(event_date_days = as.Date("2024-06-24") - event_date) # age is calculated against December 11, 2023 contrib_df <- contrib_df |> mutate(start_date = as.Date("2023-12-11") - age_of_project) + mutate(event_date_days = diff.Date(as.Date("2023-12-11"),event_date, units = "days")) # age is calculated against December 11, 2023 contrib_df <- contrib_df |> mutate(start_date = as.Date("2023-12-11") - age_of_project) |> mutate(event_date_days = diff.Date(as.Date("2023-12-11"),event_date, units = "days")) # age is calculated against December 11, 2023 contrib_df <- contrib_df |> mutate(start_date = as.Date("2023-12-11") - age_of_project) |> mutate(event_date_days = diff.Date(as.Date("2024-06-24"),event_date, units = "days")) # age is calculated against December 11, 2023 contrib_df <- contrib_df |> mutate(start_date = as.Date("2023-12-11") - age_of_project) |> mutate(event_date_days = diff.Date(as.Date("2024-06-24"),as.Date(event_date), units = "days")) View(contrib_df) View(contrib_df) # age is calculated against December 11, 2023 contrib_df <- contrib_df |> mutate(start_date = as.Date("2023-12-11") - age_of_project) |> mutate(event_date_days = diff.Date(as.Date("2024-06-24"),as.POSIXct(event_date, format = "%Y-%m-%d %H:%M:%S"), units = "days")) # age is calculated against December 11, 2023 contrib_df <- contrib_df |> mutate(start_date = as.Date("2023-12-11") - age_of_project) |> mutate(event_date_days = as.numeric( difftime(as.POSIXct("2024-06-24 00:00:00", format = "%Y-%m-%d %H:%M:%S") as.POSIXct(event_date, format = "%Y-%m-%d %H:%M:%S"), # age is calculated against December 11, 2023 contrib_df <- contrib_df |> mutate(start_date = as.Date("2023-12-11") - age_of_project) |> mutate(event_date_days = as.numeric( difftime(as.POSIXct("2024-06-24 00:00:00", format = "%Y-%m-%d %H:%M:%S"), as.POSIXct(event_date, format = "%Y-%m-%d %H:%M:%S"), units = "days"))) View(contrib_df) readme_df <- readme_df |> mutate(start_date = as.Date("2023-12-11") - age_of_project) |> mutate(event_date_days = as.numeric( difftime(as.POSIXct("2024-06-24 00:00:00", format = "%Y-%m-%d %H:%M:%S"), as.POSIXct(event_date, format = "%Y-%m-%d %H:%M:%S"), units = "days"))) #some expansion needs to happens for each project expand_timeseries <- function(project_row) { longer <- project_row |> pivot_longer(cols = ends_with("new"), names_to = "window", values_to = "count") |> unnest(count) |> mutate(after_doc = as.numeric(str_detect(window, "after"))) |> mutate(is_collab = as.numeric(str_detect(window, "collab"))) return(longer) } expanded_readme_data <- expand_timeseries(readme_df[1,]) for (i in 2:nrow(readme_df)){ expanded_readme_data <- rbind(expanded_readme_data, expand_timeseries(readme_df[i,])) } expanded_contrib_data <- expand_timeseries(contrib_df[1,]) for (i in 2:nrow(contrib_df)){ expanded_contrib_data <- rbind(expanded_contrib_data, expand_timeseries(contrib_df[i,])) } expanded_readme_data$log1pcount <- log1p(expanded_readme_data$count) expanded_contrib_data$log1pcount <- log1p(expanded_contrib_data$count) expanded_readme_data$logcount <- log(expanded_readme_data$count) expanded_contrib_data$logcount <- log(expanded_contrib_data$count) #breaking out the types of population counts collab_pop_readme <- expanded_readme_data[which(expanded_readme_data$is_collab == 1),] contrib_pop_readme <- expanded_readme_data[which(expanded_readme_data$is_collab == 0),] collab_pop_contrib <- expanded_contrib_data[which(expanded_contrib_data$is_collab == 1),] contrib_pop_contrib <- expanded_contrib_data[which(expanded_contrib_data$is_collab == 0),] #import models library(lme4) library(optimx) collab_readme_model_plus <- glmer.nb(log1pcount ~ as.factor(after_doc) + event_date_days + (after_doc| upstream_vcs_link), data=collab_pop_readme) anova(collab_readme_model_plus, collab_readme_model) collab_readme_model <- readRDS("final_models/0623_pop_rm_collab.rda") anova(collab_readme_model_plus, collab_readme_model) saveRDS(collab_readme_model, "final_models/0623_pop_rm_collab_better.rda") summary(collab_readme_model_plus) summary(collab_readme_model) library(tidyverse) #things to get: # - delete old age column # - normal age, in date # - age from today in days # - delta between first commit and document in days #README Document updates #loading in new ages ####RDD CSV first_commit_df <- read_csv("../062424_did_first_commit_readme.csv") first_commit_df_2 <- read_csv("../062424_did_first_commit_readme_2.csv") first_commit_df <- rbind(first_commit_df, first_commit_df_2) # need to first do an rbind with this data and the second file # check with the head of the file/size of the file old_rdd_readme <- read_csv("../final_data/deb_readme_did.csv") old_rdd_readme <- merge(old_rdd_readme, first_commit_df, by="upstream_vcs_link") new_rm_data <- old_rdd_readme |> select(-age_of_project) |> mutate(first_commit_dt = as.POSIXct(first_commit, format = "%a %b %d %H:%M:%S %Y %z")) |> mutate(age_in_days = as.numeric( difftime( as.POSIXct("2024-06-24 00:00:00", format = "%Y-%m-%d %H:%M:%S"), first_commit_dt, units = "days"))) |> mutate (event_gap = as.numeric( difftime( as.POSIXct(event_date, format = "%Y-%m-%d %H:%M:%S"), first_commit_dt, units = "days"))) View(old_rdd_readme) new_rm_data <- old_rdd_readme |> select(-c(age_of_project)) |> mutate(first_commit_dt = as.POSIXct(first_commit, format = "%a %b %d %H:%M:%S %Y %z")) |> mutate(age_in_days = as.numeric( difftime( as.POSIXct("2024-06-24 00:00:00", format = "%Y-%m-%d %H:%M:%S"), first_commit_dt, units = "days"))) |> mutate (event_gap = as.numeric( difftime( as.POSIXct(event_date, format = "%Y-%m-%d %H:%M:%S"), first_commit_dt, units = "days"))) new_rm_data <- old_rdd_readme |> mutate(first_commit_dt = as.POSIXct(first_commit, format = "%a %b %d %H:%M:%S %Y %z")) |> mutate(age_in_days = as.numeric( difftime( as.POSIXct("2024-06-24 00:00:00", format = "%Y-%m-%d %H:%M:%S"), first_commit_dt, units = "days"))) |> mutate (event_gap = as.numeric( difftime( as.POSIXct(event_date, format = "%Y-%m-%d %H:%M:%S"), first_commit_dt, units = "days"))) View(new_rm_data) new_rm_data <- new_rm_data |> select(-age_of_project) new_rm_data$age_of_project = NULL head(new_rm_data) write.csv(new_rm_data, file = "../final_data/deb_readme_did_updated.csv", row.names = FALSE) old_pop_readme <- merge(old_pop_readme, first_commit_df, by="upstream_vcs_link") ####PopChange CSV old_pop_readme <- read_csv("../final_data/deb_readme_pop_change.csv") old_pop_readme <- merge(old_pop_readme, first_commit_df, by="upstream_vcs_link") new_pop_data <- old_pop_readme |> mutate(first_commit_dt = as.POSIXct(first_commit, format = "%a %b %d %H:%M:%S %Y %z")) |> mutate(age_in_days = as.numeric( difftime( as.POSIXct("2024-06-24 00:00:00", format = "%Y-%m-%d %H:%M:%S"), first_commit_dt, units = "days"))) |> mutate (event_gap = as.numeric( difftime( as.POSIXct(event_date, format = "%Y-%m-%d %H:%M:%S"), first_commit_dt, units = "days"))) new_pop_data$age_of_project = NULL head(new_pop_data) write.csv(new_pop_data, file = "../final_data/deb_readme_pop_change_updated.csv", row.names = FALSE) #CONTRIBUTING Document updates first_commit_contrib <- read_csv("../062424_did_first_commit_contrib.csv") ####RDD CSV old_rdd_contrib <- read_csv("../final_data/deb_contrib_did.csv") old_rdd_contrib <- merge(old_rdd_contrib, first_commit_contrib, by="upstream_vcs_link") new_rdd_contrib_data <- old_rdd_contrib |> mutate(first_commit_dt = as.POSIXct(first_commit, format = "%a %b %d %H:%M:%S %Y %z")) |> mutate(age_in_days = as.numeric( difftime( as.POSIXct("2024-06-24 00:00:00", format = "%Y-%m-%d %H:%M:%S"), first_commit_dt, units = "days"))) |> mutate (event_gap = as.numeric( difftime( as.POSIXct(event_date, format = "%Y-%m-%d %H:%M:%S"), first_commit_dt, units = "days"))) new_rdd_contrib_data$age_of_project = NULL View(new_rdd_contrib_data) write.csv(new_rdd_contrib_data, file = "../final_data/deb_contrib_did_change_updated.csv", row.names = FALSE) ####PopChange CSV old_pop_contrib <- read_csv("../final_data/deb_contrib_pop_change.csv") old_pop_contrib <- merge(old_pop_contrib, first_commit_contrib, by="upstream_vcs_link") new_pop_contrib_data <- old_pop_contrib |> mutate(first_commit_dt = as.POSIXct(first_commit, format = "%a %b %d %H:%M:%S %Y %z")) |> mutate(age_in_days = as.numeric( difftime( as.POSIXct("2024-06-24 00:00:00", format = "%Y-%m-%d %H:%M:%S"), first_commit_dt, units = "days"))) |> mutate (event_gap = as.numeric( difftime( as.POSIXct(event_date, format = "%Y-%m-%d %H:%M:%S"), first_commit_dt, units = "days"))) new_pop_contrib_data$age_of_project = NULL write.csv(new_pop_contrib_data, file = "../final_data/deb_contrib_pop_change_updated.csv", row.names = FALSE) library(tidyverse) library(plyr) library(stringr) try(setwd(dirname(rstudioapi::getActiveDocumentContext()$path))) #load in data full_df <- read_csv("../final_data/deb_full_data.csv") contrib_df <- read_csv("../final_data/deb_contrib_pop_change.csv") readme_df <- read_csv("../final_data/deb_readme_pop_change.csv") contrib_df <- merge(full_df, contrib_df, by="upstream_vcs_link") readme_df <- merge(full_df, readme_df, by="upstream_vcs_link") # age is calculated against December 11, 2023 #some expansion needs to happens for each project expand_timeseries <- function(project_row) { longer <- project_row |> pivot_longer(cols = ends_with("new"), names_to = "window", values_to = "count") |> unnest(count) |> mutate(after_doc = as.numeric(str_detect(window, "after"))) |> mutate(is_collab = as.numeric(str_detect(window, "collab"))) return(longer) } expanded_readme_data <- expand_timeseries(readme_df[1,]) for (i in 2:nrow(readme_df)){ expanded_readme_data <- rbind(expanded_readme_data, expand_timeseries(readme_df[i,])) } expanded_contrib_data <- expand_timeseries(contrib_df[1,]) for (i in 2:nrow(contrib_df)){ expanded_contrib_data <- rbind(expanded_contrib_data, expand_timeseries(contrib_df[i,])) } expanded_readme_data$log1pcount <- log1p(expanded_readme_data$count) expanded_contrib_data$log1pcount <- log1p(expanded_contrib_data$count) #breaking out the types of population counts collab_pop_readme <- expanded_readme_data[which(expanded_readme_data$is_collab == 1),] contrib_pop_readme <- expanded_readme_data[which(expanded_readme_data$is_collab == 0),] collab_pop_contrib <- expanded_contrib_data[which(expanded_contrib_data$is_collab == 1),] contrib_pop_contrib <- expanded_contrib_data[which(expanded_contrib_data$is_collab == 0),] #import models library(lme4) library(optimx) library(MASS) simple_collab_readme_model <- glm.nb(count ~ as.factor(after_doc), data=collab_pop_readme) summary(simple_collab_readme_model) simple_collab_readme_model <- glm.nb(count ~ as.factor(after_doc) + age_in_days, data=collab_pop_readme) summary(simple_collab_readme_model) simple_collab_readme_model <- glm.nb(count ~ as.factor(after_doc) + scaled(age_in_days), data=collab_pop_readme) simple_collab_readme_model <- glm.nb(count ~ as.factor(after_doc) + scale(age_in_days), data=collab_pop_readme) summary(simple_collab_readme_model) qqnorm(residuals(simple_collab_readme_model)) simple_readme_model <- glm.nb(count ~ as.factor(after_doc) + scale(age_in_days), data=contrib_pop_readme) summary(simple_collab_readme_model) qqnorm(residuals(simple_collab_readme_model)) simple_readme_model <- glm.nb(count ~ as.factor(after_doc) + scale(age_in_days), data=expanded_readme_data) summary(simple_collab_readme_model) qqnorm(residuals(simple_collab_readme_model)) View(expanded_readme_data) library(tidyverse) library(plyr) library(stringr) try(setwd(dirname(rstudioapi::getActiveDocumentContext()$path))) #load in data full_df <- read_csv("../final_data/deb_full_data.csv") contrib_df <- read_csv("../final_data/deb_contrib_pop_change.csv") readme_df <- read_csv("../final_data/deb_readme_pop_change.csv") contrib_df <- merge(full_df, contrib_df, by="upstream_vcs_link") readme_df <- merge(full_df, readme_df, by="upstream_vcs_link") # age is calculated against December 11, 2023 #some expansion needs to happens for each project expand_timeseries <- function(project_row) { longer <- project_row |> pivot_longer(cols = ends_with("new"), names_to = "window", values_to = "count") |> unnest(count) |> mutate(after_doc = as.numeric(str_detect(window, "after"))) |> mutate(is_collab = as.numeric(str_detect(window, "collab"))) return(longer) } expanded_readme_data <- expand_timeseries(readme_df[1,]) for (i in 2:nrow(readme_df)){ expanded_readme_data <- rbind(expanded_readme_data, expand_timeseries(readme_df[i,])) } expanded_contrib_data <- expand_timeseries(contrib_df[1,]) for (i in 2:nrow(contrib_df)){ expanded_contrib_data <- rbind(expanded_contrib_data, expand_timeseries(contrib_df[i,])) } expanded_readme_data$log1pcount <- log1p(expanded_readme_data$count) expanded_contrib_data$log1pcount <- log1p(expanded_contrib_data$count) expanded_readme_data$logcount <- log(expanded_readme_data$count) expanded_contrib_data$logcount <- log(expanded_contrib_data$count) #scale age expanded_readme_data$scaled_age <- scale(expanded_readme_data$age_in_days) expanded_contrib_data$scaled_age <- scale(expanded_contrib_data$age_in_days) #breaking out the types of population counts collab_pop_readme <- expanded_readme_data[which(expanded_readme_data$is_collab == 1),] contrib_pop_readme <- expanded_readme_data[which(expanded_readme_data$is_collab == 0),] collab_pop_contrib <- expanded_contrib_data[which(expanded_contrib_data$is_collab == 1),] contrib_pop_contrib <- expanded_contrib_data[which(expanded_contrib_data$is_collab == 0),] #import models library(lme4) library(optimx) library(MASS) simple_readme_model <- glm.nb(count ~ as.factor(after_doc) + scale(age_in_days), data=expanded_readme_data) summary(simple_collab_readme_model) simple_collab_readme_model <- glm.nb(count ~ as.factor(after_doc) + scale(age_in_days), data=collab_pop_readme) summary(simple_collab_readme_model) qqnorm(residuals(simple_collab_readme_model)) View(contrib_pop_readme) simple_contrib_readme_model <- glm.nb(count ~ as.factor(after_doc) + scale(age_in_days), data=collab_pop_readme) summary(simple_contrib_readme_model) qqnorm(residuals(simple_contrib_readme_model)) View(collab_pop_readme) View(collab_pop_readme) View(contrib_pop_readme) #contrib_readme_model <- readRDS("final_models/0623_pop_rm_contrib.rda") collab_contrib_model <- glmer.nb(log1pcount ~ after_doc + (after_doc| upstream_vcs_link), data=collab_pop_contrib) #contrib docs simple_collab_contrib_model <- glm.nb(count ~ as.factor(after_doc) + scale(age_in_days), data=collab_pop_contrib) summary(simple_collab_contrib_model) #readme docs simple_collab_readme_model <- glm.nb(log1pcount ~ as.factor(after_doc) + scale(age_in_days), data=collab_pop_readme) summary(simple_collab_readme_model) simple_contrib_readme_model <- glm.nb(log1pcount ~ as.factor(after_doc) + scale(age_in_days), data=collab_pop_readme) summary(simple_contrib_readme_model) # I don't think MLM is the right one collab_readme_model <- glmer.nb(log1pcount ~ as.factor(after_doc) + scaled_age + (after_doc| upstream_vcs_link), data=collab_pop_readme) summary(collab_readme_model) saveRDS(collab_readme_model, "final_models/0624_pop_rm_collab_better.rda") contrib_readme_model <- glmer.nb(log1pcount ~ as.factor(after_doc) + scaled_age + (after_doc| upstream_vcs_link), data=contrib_pop_readme) summary(collab_contrib_model) summary(contrib_readme_model) summary(collab_readme_model) summary(contrib_readme_model) saveRDS(contrib_readme_model, "final_models/0624_pop_rm_contrib.rda") texreg(list(collab_readme_model, contrib_readme_model), stars=NULL, digits=2, custom.model.names=c( 'collab','contrib.' ), custom.coef.names=c('(Intercept)', 'after_introduction', 'etc'), use.packages=FALSE, table=FALSE, ci.force = TRUE) #contrib_readme_model <- readRDS("final_models/0623_pop_rm_contrib.rda") collab_contrib_model <- glmer.nb(log1pcount ~ after_doc + scaled_age + (after_doc| upstream_vcs_link), data=collab_pop_contrib) summary(collab_contrib_model) contrib_pop_readme |> ggplot(aes(x = after_doc, y = log1pcount, col = as.factor(after_doc))) + geom_violin() View(contrib_pop_contrib) #contrib_readme_model <- readRDS("final_models/0623_pop_rm_contrib.rda") #contributing models are not statistically significant contrib_contrib_model <- glm.nb(log1pcount ~ as.factor(after_doc) + event_gap , data=contrib_pop_contrib) summary(contrib_contrib_model) #contrib_readme_model <- readRDS("final_models/0623_pop_rm_contrib.rda") #contributing models are not statistically significant contrib_contrib_model <- glmer.nb(log1pcount ~ as.factor(after_doc) + event_gap + (after_doc | upstream_vcs_link), data=contrib_pop_contrib) #contrib_readme_model <- readRDS("final_models/0623_pop_rm_contrib.rda") #contributing models are not statistically significant contrib_contrib_model <- glmer.nb(log1pcount ~ as.factor(after_doc) + scale(event_gap) + (after_doc | upstream_vcs_link), data=contrib_pop_contrib) summary(contrib_contrib_model) #all_gmodel <- glmer.nb(log1p_count ~ D * week_offset + scaled_project_age + scaled_event_gap + (D * week_offset | upstream_vcs_link), # control=glmerControl(optimizer="bobyqa", # optCtrl=list(maxfun=2e5)), nAGQ=0, data=all_actions_data) all_gmodel <- readRDS("0512_contrib_all.rda") summary(all_gmodel)