24_deb_pkg_gov/R/powerAnalysis.R
2023-11-14 15:44:28 -06:00

90 lines
3.1 KiB
R

# This is semi-generic code for doing a power analysis of a logistic regression with 4
# levels in a factor
# when there's some pilot values already available and defined
#modelled heavily the simulation example explained in:
#http://meeting.spsp.org/2016/sites/default/files/Lane%2C%20Hennes%2C%20West%20SPSP%20Power%20Workshop%202016.pdf
library('batman')
library('reshape')
l2p <- function(b) {
odds <- exp(b)
prob <- odds/(1+odds)
return(prob)
}
#Matt:
makeDataNew <- function(n) {
tDF <- data.frame(
Group0=rnorm(n=n, mean=-0.1296376, sd=1.479847), # up.fac.mean
Group1=rlnorm(n=n, mean=1.685715, sd = 0.2532059), # mmt
Group2=rbinom(n=n, size=1, prob=c(0.247, 0.753)), #milestones
Group3=rnorm(n=n, mean=4351.578, sd=1408.811) # age
)
#sDF <- melt(tDF, id.vars = 0) #AKA the index is the unique id, as far as that goes
colnames(tDF) <- c('up.fac.mean', 'mmt', 'milestones', 'age')
return(tDF)
}
makeDataNew2 <- function(n) {
tDF <- data.frame(
Group0=rnorm(n=n, mean=-0.1296376, sd=1.479847), # up.fac.mean
Group1=rlnorm(n=n, mean=6.220282, sd = 2.544058) # formal.score
)
tDF[is.na(tDF) | tDF=="Inf"] = NA
#sDF <- melt(tDF, id.vars = 0) #AKA the index is the unique id, as far as that goes
colnames(tDF) <- c('up.fac.mean', 'formal.score')
return(tDF)
}
powerCheck <- function(n, nSims) { #run a power calculation on the dataset given
#set up some empty arrays b/c R
signif0 <- rep(NA, nSims)
signif1 <- rep(NA, nSims)
signif2 <- rep(NA, nSims)
signif3 <- rep(NA, nSims)
signifM <- rep(NA, nSims)
for (s in 1:nSims) { # repeatedly we will....
simData <- makeDataNew(n) # make some data
#have updated for kkex through here, now need to look at the underproduction work
#m1.sim <- lm(up.fac.mean ~ ((mmt)/ (milestones/age)), data=simData)
m1.sim <- lm(up.fac.mean ~ mmt + milestones + age, data=simData)
p0 <- coef(summary(m1.sim))[1,4]
p1 <- coef(summary(m1.sim))[1,4]
p2 <- coef(summary(m1.sim))[1,4]
p3 <- coef(summary(m1.sim))[1,4]
signif0[s] <- p0 <=.05
signif1[s] <- p1 <=.05
signif2[s] <- p2 <=.05
signif3[s] <- p3 <=.05
signifM[s] <- p0 <=.05 & p1 <=.05 & p2 <=.05 & p3 <=.05
}
power <- c(mean(signif0), mean(signif1), mean(signif2), mean(signif3), mean(signifM))
return(power)
}
powerCheck2 <- function(n, nSims) { #run a power calculation on the dataset given
#set up some empty arrays b/c R
signif0 <- rep(NA, nSims)
signif1 <- rep(NA, nSims)
signif2 <- rep(NA, nSims)
signif3 <- rep(NA, nSims)
signifM <- rep(NA, nSims)
for (s in 1:nSims) { # repeatedly we will....
simData <- makeDataNew2(n) # make some data
#have updated for kkex through here, now need to look at the underproduction work
#m1.sim <- lm(up.fac.mean ~ ((mmt)/ (milestones/age)), data=simData)
m1.sim <- lm(up.fac.mean ~ formal.score, data=simData)
p0 <- coef(summary(m1.sim))[1,2]
p1 <- coef(summary(m1.sim))[1,2]
signif0[s] <- p0 <=.05
signif1[s] <- p1 <=.05
signifM[s] <- p0 <=.05 & p1 <=.05
}
power <- c(mean(signif0), mean(signif1), mean(signifM))
return(power)
}