24_deb_pkg_gov/R/powerAnalysis.R
2023-11-14 09:01:02 -06:00

50 lines
1.6 KiB
R

# This is semi-generic code for doing a power analysis of a logistic regression with 4
# levels in a factor
# when there's some pilot values already available and defined
#modelled heavily the simulation example explained in:
#http://meeting.spsp.org/2016/sites/default/files/Lane%2C%20Hennes%2C%20West%20SPSP%20Power%20Workshop%202016.pdf
library('batman')
library('reshape')
l2p <- function(b) {
odds <- exp(b)
prob <- odds/(1+odds)
return(prob)
}
#Matt:
makeDataNew <- function(n) {
sDF <- data.frame(
)
colnames(sDF) <- c('formality', 'age', 'contributors', 'collaborators', 'milestones', 'mmt', 'up.fac.mean')
return(sDF)
}
powerCheck <- function(n, nSims) { #run a power calculation on the dataset given
#set up some empty arrays b/c R
signif0 <- rep(NA, nSims)
signif1 <- rep(NA, nSims)
signif2 <- rep(NA, nSims)
signif3 <- rep(NA, nSims)
signifM <- rep(NA, nSims)
for (s in 1:nSims) { # repeatedly we will....
simData <- makeDataNew(n) # make some data
#have updated for kkex through here, now need to look at the underproduction work
m1.sim <- lm(up.fac.mean ~ ((mmt)/ (milestones/age)), data=simData)
p0 <- coef(summary(m1.sim))[1,4]
p1 <- coef(summary(m1.sim))[1,4]
p2 <- coef(summary(m1.sim))[1,4]
p3 <- coef(summary(m1.sim))[1,4]
signif0[s] <- p0 <=.05
signif1[s] <- p1 <=.05
signif2[s] <- p2 <=.05
signif3[s] <- p3 <=.05
signifM[s] <- p0 <=.05 & p1 <=.05 & p2 <=.05 & p3 <=.05
}
power <- c(mean(signif0), mean(signif1), mean(signif2), mean(signif3), mean(signifM))
return(power)
}