24_deb_pkg_gov/R/stale_scripts/powerAnalysis.R
2024-04-02 18:49:49 -05:00

103 lines
4.1 KiB
R

# This is semi-generic code for doing a power analysis of a logistic regression with 4
# levels in a factor
# when there's some pilot values already available and defined
#modelled heavily the simulation example explained in:
#http://meeting.spsp.org/2016/sites/default/files/Lane%2C%20Hennes%2C%20West%20SPSP%20Power%20Workshop%202016.pdf
library('batman')
library('reshape')
l2p <- function(b) {
odds <- exp(b)
prob <- odds/(1+odds)
return(prob)
}
#Matt:
makeDataNew <- function(n) {
tDF <- data.frame(
## don't sim the outcome
#up.fac.mean=rnorm(n=n, mean=-0.1296376, sd=1.479847), # up.fac.mean
#mmt=rlnorm(n=n, mean=1.685715, sd = 0.2532059), # mmt
new_mmt=rbeta(n=n, 5, 1),
#mmt=rlogis(n=n, location = 1.685715),
## this generates a 50-50 split of milestones --v
#milestones=rbinom(n=n, size=1, prob=c(0.247, 0.753)), #milestones
milestones=rbinom(n=n, size=1, prob=.247), #milestones
age=rnorm(n=n, mean=4351.578, sd=1408.811) # age
)
#sDF <- melt(tDF, id.vars = 0) #AKA the index is the unique id, as far as that goes
## can name these in the data.frame constructor method directly
#colnames(tDF) <- c('up.fac.mean', 'mmt', 'milestones', 'age')
return(tDF)
}
makeDataNew2 <- function(n) {
tDF <- data.frame(
## don't sim the outcome
#up.fac.mean=rnorm(n=n, mean=-0.1296376, sd=1.479847), # up.fac.mean
#formal.score=rlnorm(n=n, mean=6.220282, sd = 2.544058) # formal.score
formal.score=rbeta(n=n, 1, 3) * 10000
)
tDF[is.na(tDF) | tDF=="Inf"] = NA
#sDF <- melt(tDF, id.vars = 0) #AKA the index is the unique id, as far as that goes
##colnames(tDF) <- c('up.fac.mean', 'formal.score')
return(tDF)
}
powerCheck <- function(n, nSims) { #run a power calculation on the dataset given
#set up some empty arrays b/c R
signif0 <- rep(NA, nSims)
signif1 <- rep(NA, nSims)
signif2 <- rep(NA, nSims)
signif3 <- rep(NA, nSims)
signifM <- rep(NA, nSims)
for (s in 1:nSims) { # repeatedly we will....
simData <- makeDataNew(n) # make some data
## outcome goes here --v
# e.g. simData$up.fac.mean <- (usefuleffsizeA * mmt) + (usefuleffsizeB * milestones) + rnorm(n=1, mean=0, sd=1) ##plus some noise
#simData$up.fac.mean <- (-2.075 * simData$mmt) + (0.4284 * simData$milestones) + rnorm(n=1, mean=0, sd=1)
simData$up.fac.mean <- (-1.38 * simData$new_mmt) + (0.40 * simData$milestones) + rnorm(n=n, mean=0, sd=1)
#have updated for kkex through here, now need to look at the underproduction work
#m1.sim <- lm(up.fac.mean ~ ((mmt)/ (milestones/age)), data=simData)
## could leave age out for now?
#m1.sim <- lm(up.fac.mean ~ mmt + milestones + age, data=simData)
m1.sim <- lm(up.fac.mean ~ new_mmt + milestones, data=simData)
p0 <- coef(summary(m1.sim))[1,4] #intercept
p1 <- coef(summary(m1.sim))[2,4] #mmt
p2 <- coef(summary(m1.sim))[3,4] #milestones
#p3 <- coef(summary(m1.sim))[4,4] #age
signif0[s] <- p0 <=.05
signif1[s] <- p1 <=.05
signif2[s] <- p2 <=.05
#signif3[s] <- p3 <=.05
signifM[s] <- p0 <=.05 & p1 <=.05 & p2 <=.05 #& p3 <=.05
}
power <- c(mean(signif0), mean(signif1), mean(signif2), mean(signif3), mean(signifM))
return(power)
}
powerCheck2 <- function(n, nSims) { #run a power calculation on the dataset given
#set up some empty arrays b/c R
signif0 <- rep(NA, nSims)
signif1 <- rep(NA, nSims)
signifM <- rep(NA, nSims)
for (s in 1:nSims) { # repeatedly we will....
simData <- makeDataNew2(n) # make some data
#have updated for kkex through here, now need to look at the underproduction work
#m1.sim <- lm(up.fac.mean ~ ((mmt)/ (milestones/age)), data=simData)
## outcome goes here --v
simData$up.fac.mean <- (0.00017 * simData$formal.score) + rnorm(n, mean=0, sd=1) ##plus some noise
m1.sim <- lm(up.fac.mean ~ formal.score, data=simData)
p0 <- coef(summary(m1.sim))[1,4]
p1 <- coef(summary(m1.sim))[2,4]
signif0[s] <- p0 <=.05
signif1[s] <- p1 <=.05
signifM[s] <- p0 <=.05 & p1 <=.05
}
power <- c(mean(signif0), mean(signif1), mean(signifM))
return(power)
}