513 lines
21 KiB
R
513 lines
21 KiB
R
# a) the basic things, in a table:
|
|
# Condition Sample Size mean standard deviation standard error
|
|
# Immediately after 2 48.705 1.534422 1.085
|
|
# One day after 2 41.955 2.128391 1.505
|
|
# Three days after 2 21.795 0.7707464 0.545
|
|
# Five days after 2 12.415 1.081873 0.765
|
|
# Seven days after 2 8.32 0.2687006 0.19
|
|
# b) do a one way anova based on the data, like the last homework
|
|
grp <- c(1,1,2,2,3,3,4,4,5,5)
|
|
results <- aov(resp~factor(grp))
|
|
anova(results)
|
|
# c) summarize the data and the means w a plot, boxplot
|
|
means <- c(48.705, 41.955, 21.795, 12.415, 8.32)
|
|
# c) summarize the data and the means w a plot, boxplot
|
|
boxplot(results)
|
|
# c) summarize the data and the means w a plot, boxplot
|
|
boxplot(resp)
|
|
# c) summarize the data and the means w a plot, boxplot
|
|
boxplot(resp)
|
|
# c) summarize the data and the means w a plot, boxplot
|
|
boxplot(resp~grp)
|
|
ALevels <- c(3.36, 3.34, 3.28, 3.20, 3.26, 3.16, 3.25, 3.36, 3.01, 2.92)
|
|
ELevels <- c(94.6, 96.0, 95.7, 93.2, 97.4, 94.3, 95.0, 97.7, 92.3, 95.1)
|
|
Aresults <- aov(Alevels~factor(grp))
|
|
ALevels <- c(3.36, 3.34, 3.28, 3.20, 3.26, 3.16, 3.25, 3.36, 3.01, 2.92)
|
|
ELevels <- c(94.6, 96.0, 95.7, 93.2, 97.4, 94.3, 95.0, 97.7, 92.3, 95.1)
|
|
Aresults <- aov(Alevels~factor(grp))
|
|
ALevels <- c(3.36, 3.34, 3.28, 3.20, 3.26, 3.16, 3.25, 3.36, 3.01, 2.92)
|
|
ELevels <- c(94.6, 96.0, 95.7, 93.2, 97.4, 94.3, 95.0, 97.7, 92.3, 95.1)
|
|
Aresults <- aov(ALevels~factor(grp))
|
|
Eresults <- aov(ELevels~factor(grp))
|
|
# Vitamin A Anova:
|
|
anova(Aresults)
|
|
# Vimain E Anova:
|
|
anova(Eresults)
|
|
# 12.10
|
|
# four groups, how do nemaotodes impact plant growth
|
|
# a)
|
|
zero_nema <- c(10.8, 9.1, 13.5, 9.2)
|
|
thousand_name <-c(11.1, 11.1, 8.2, 11.3)
|
|
thousand_nema <-c(11.1, 11.1, 8.2, 11.3)
|
|
fthousand_nema <- c(5.4, 4.6, 7.4, 5.0)
|
|
tthousand_nema <- c(5.8, 5.3, 3.2, 7.5)
|
|
mean(zero_nema)
|
|
sd(zero_nema)
|
|
mean(thousand_nema)
|
|
sd(thousand_name)
|
|
mean(fthousand_nema)
|
|
sd(fthousand_nema)
|
|
mean(tthousand_nema)
|
|
sd(tthousand_nema)
|
|
# Table
|
|
# Nematodes Means StdDev
|
|
# 0 10.65 2.053452
|
|
# 1,000 10.425 1.486327
|
|
# 5,000 5.6 1.243651
|
|
# 10,000 5.45 1.771064
|
|
nema_means <- c(10.65, 10.425, 5.6, 5.45)
|
|
barplot(nema_means)
|
|
# c)
|
|
groupings <- c(1,1,1,1,2,2,2,2,3,3,3,3,4,4,4,4)
|
|
resp <- c(zero_nema, thousand_nema, fthousand_nema, tthousand_nema)
|
|
results <- aov(resp~factor(groupings))
|
|
anova(results)
|
|
# 12.5
|
|
# do piano lessons improve spacial temporal
|
|
piano <- c( 2, 5, 7, -2, 2, 7, 4, 1, 0, 7, 3, 4, 3, 4, 9, 4, 5, 2, 9, 6, 0, 3, 6, -1, 3, 4, 6, 7, -2, 7, -3, 3, 4, 4)
|
|
singing <- c(1, -1, 0, 1, -4, 0, 0, 1, 0, -1)
|
|
computer <- c(0, 1, 1, -3, -2, 4, -1, 2, 4, 2,2, 2, -3, -3, 0, 2, 0, -1, 3, -1 )
|
|
none <- c(5, -1, 7, 0, 4, 0, 2, 1, -6, 0, 2, -1, 0, -2)
|
|
size(piano)
|
|
length(piano)
|
|
mean(piano)
|
|
sd(piano)
|
|
sd(piano)/sqrt(lenth(piano))
|
|
sd(piano)/sqrt(length(piano))
|
|
length(singing)
|
|
mean(singing)
|
|
sd(singing)
|
|
sd(signing)/sqrt(length(singing))
|
|
sd(singing)/sqrt(length(singing))
|
|
length(computer)
|
|
mean(computer)
|
|
sd(computer)
|
|
sd(computer)/sqrt(length(computer))
|
|
length(none)
|
|
mean(none)
|
|
sd(none)
|
|
sd(none)/sqrt(14)
|
|
# a) make a table given the sample size
|
|
# Table:
|
|
# Lessons Size Mean Standard Dev Standard Error
|
|
# Piano 34 3.617647 3.055196 0.5239618
|
|
# Singing 10 -0.3 1.494434 0.4725816
|
|
# Computer 20 0.45 2.21181 0.4945758
|
|
# None 14 0.7857143 3.190818 0.8527819
|
|
# b)
|
|
# H0: The spatial-temporal reasoning test results across different lesson groups will be statistically equivalent.
|
|
# Ha: For at least one lesson group, the results of the reasoning test will be statistically different.
|
|
data_panel <- data.frame(
|
|
Y=c(piano, singing, computer, none),
|
|
Site = factor(rep(c("piano", "singing", "computer", "none"), times=c(length(piano), length(computer), length(singing), length(none))))
|
|
)
|
|
data_panel
|
|
tempt <- aov(Y~Site, data=data_panel)
|
|
anova(tempt)
|
|
# 12.6
|
|
TukeyHSD(tempt)
|
|
# Summary: Looking at the TukeyHSD results, there are some interesting notes in
|
|
# where statistically significant variance lies. If we immediately discard the
|
|
# comparisons with large p-values, we are left with three statistically significant
|
|
# ones. One is that students with piano lessons do better than computer lesson learners
|
|
# by an average of 3.5 points, another is that piano outperforms no lessons by about 2.8 points
|
|
# and lastly that singing underperforms piano by about 3.3 points. While this
|
|
# statistical tooling is useful for proving the significance of these differences in
|
|
# performance, we can also evaluate
|
|
means <- c(mean(piano), mean(singing), mean(computer), mean(none))
|
|
barplot(means)
|
|
# (1) - Get the pilot data and clean it
|
|
#source('~/Research/tor_wikipedia_edits/handcoded_edits/inter_coder_reliability_ns0.R')
|
|
#source ('/data/users/mgaughan/kkex_data_110823_3')
|
|
data1 <- read_csv('../power_data_111023_mmt.csv',show_col_types = FALSE)
|
|
library(readr)
|
|
library(ggplot2)
|
|
# (1) - Get the pilot data and clean it
|
|
#source('~/Research/tor_wikipedia_edits/handcoded_edits/inter_coder_reliability_ns0.R')
|
|
#source ('/data/users/mgaughan/kkex_data_110823_3')
|
|
data1 <- read_csv('../power_data_111023_mmt.csv',show_col_types = FALSE)
|
|
data2 <- read_csv('../inst_all_packages_full_results.csv')
|
|
# (1) - Get the pilot data and clean it
|
|
#source('~/Research/tor_wikipedia_edits/handcoded_edits/inter_coder_reliability_ns0.R')
|
|
#source ('/data/users/mgaughan/kkex_data_110823_3')
|
|
data1 <- read_csv('../power_data_111023_mmt.csv',show_col_types = FALSE)
|
|
library(readr)
|
|
library(ggplot2)
|
|
# (1) - Get the pilot data and clean it
|
|
#source('~/Research/tor_wikipedia_edits/handcoded_edits/inter_coder_reliability_ns0.R')
|
|
#source ('/data/users/mgaughan/kkex_data_110823_3')
|
|
data1 <- read_csv('../power_data_111023_mmt.csv',show_col_types = FALSE)
|
|
data1 <- read_csv('../expanded_data_final.csv',show_col_types = FALSE)
|
|
# Use pilot project data to calculate power of a full study through simulation
|
|
#
|
|
# Parts:
|
|
# (0) - Setup
|
|
# (1) - Get the pilot data and clean it
|
|
# (2) - Run the model on the pilot data and extract effects
|
|
# (3) - Set up and run the simulation
|
|
# ====> Set variables at the arrows <====
|
|
#
|
|
##############################################################################
|
|
rm(list=ls())
|
|
set.seed(424242)
|
|
library(readr)
|
|
library(ggplot2)
|
|
data1 <- read_csv('../expanded_data_final.csv',show_col_types = FALSE)
|
|
set.seed(424242)
|
|
library(readr)
|
|
library(ggplot2)
|
|
data1 <- read_csv('../expanded_data_final.csv',show_col_types = FALSE)
|
|
#shows the cross-age downward slopes for all underproduction averages in the face of MMT
|
|
g3 <- ggplot(data1, aes(x=mmt, y=underproduction_mean)) +
|
|
geom_smooth(mapping = aes(x=mmt, y=underproduction_mean, color=new.age.factor),
|
|
method='lm', formula= y~x) +
|
|
xlab("MMT") +
|
|
ylab("Underproduction Factor") +
|
|
theme_bw()
|
|
g3
|
|
library(readr)
|
|
library(ggplot2)
|
|
data1 <- read_csv('../expanded_data_final.csv',show_col_types = FALSE)
|
|
mean(data1$milestone_count)
|
|
data1$mmt <- (((data1$collaborators * 2)+ data1$contributors) / (data1$contributors + data1$collaborators)) - 1
|
|
mean(data1$mmt)
|
|
rm(list=ls())
|
|
set.seed(424242)
|
|
library(readr)
|
|
library(ggplot2)
|
|
data1 <- read_csv('../expanded_data_final.csv',show_col_types = FALSE)
|
|
library(readr)
|
|
library(ggplot2)
|
|
data1 <- read_csv('../power_data_111023_mmt.csv',show_col_types = FALSE)
|
|
data2 <- read_csv('../inst_all_packages_full_results.csv')
|
|
data1 <- read_csv('../kk_final_expanded_data_final.csv',show_col_types = FALSE)
|
|
library(readr)
|
|
library(ggplot2)
|
|
library(tidyverse)
|
|
data1 <- read_csv('../kk_final_expanded_data_final.csv',show_col_types = FALSE)
|
|
# this is the file with the lmer multi-level rddAnalysis
|
|
library(tidyverse)
|
|
library(plyr)
|
|
# 0 loading the readme data in
|
|
try(setwd(dirname(rstudioapi::getActiveDocumentContext()$path)))
|
|
readme_df <- read_csv("../final_data/deb_readme_did.csv")
|
|
# 1 preprocessing
|
|
#colnames(readme_df) <- c("upstream_vcs_link", "event_date", "event_hash", "before_all_ct", "before_mrg_ct", "after_all_ct", "after_mrg_ct", "before_auth_new", "after_commit_new", "after_auth_new", "before_commit_new")
|
|
col_order <- c("upstream_vcs_link", "age_of_project", "event_date", "event_hash", "before_all_ct", "after_all_ct", "before_mrg_ct", "after_mrg_ct", "before_auth_new", "after_auth_new", "before_commit_new", "after_commit_new")
|
|
readme_df <- readme_df[,col_order]
|
|
readme_df$ct_before_all <- str_split(gsub("[][]","", readme_df$before_all_ct), ", ")
|
|
readme_df$ct_after_all <- str_split(gsub("[][]","", readme_df$after_all_ct), ", ")
|
|
readme_df$ct_before_mrg <- str_split(gsub("[][]","", readme_df$before_mrg_ct), ", ")
|
|
readme_df$ct_after_mrg <- str_split(gsub("[][]","", readme_df$after_mrg_ct), ", ")
|
|
drop <- c("before_all_ct", "before_mrg_ct", "after_all_ct", "after_mrg_ct")
|
|
readme_df = readme_df[,!(names(readme_df) %in% drop)]
|
|
# 2 some expansion needs to happens for each project
|
|
expand_timeseries <- function(project_row) {
|
|
longer <- project_row |>
|
|
pivot_longer(cols = starts_with("ct"),
|
|
names_to = "window",
|
|
values_to = "count") |>
|
|
unnest(count)
|
|
longer$observation_type <- gsub("^.*_", "", longer$window)
|
|
longer <- ddply(longer, "observation_type", transform, week=seq(from=0, by=1, length.out=length(observation_type)))
|
|
longer$count <- as.numeric(longer$count)
|
|
#longer <- longer[which(longer$observation_type == "all"),]
|
|
return(longer)
|
|
}
|
|
expanded_data <- expand_timeseries(readme_df[1,])
|
|
for (i in 2:nrow(readme_df)){
|
|
expanded_data <- rbind(expanded_data, expand_timeseries(readme_df[i,]))
|
|
}
|
|
#filter out the windows of time that we're looking at
|
|
window_num <- 8
|
|
windowed_data <- expanded_data |>
|
|
filter(week >= (27 - window_num) & week <= (27 + window_num)) |>
|
|
mutate(D = ifelse(week > 27, 1, 0))
|
|
#scale the age numbers
|
|
windowed_data$scaled_project_age <- scale(windowed_data$age_of_project)
|
|
windowed_data$week_offset <- windowed_data$week - 27
|
|
#separate out the cleaning d
|
|
all_actions_data <- windowed_data[which(windowed_data$observation_type == "all"),]
|
|
mrg_actions_data <- windowed_data[which(windowed_data$observation_type == "mrg"),]
|
|
all_actions_data$logged_count <- log(all_actions_data$count)
|
|
all_actions_data$log1p_count <- log1p(all_actions_data$count)
|
|
# 3 rdd in lmer analysis
|
|
# rdd: https://rpubs.com/phle/r_tutorial_regression_discontinuity_design
|
|
# lmer: https://www.youtube.com/watch?v=LzAwEKrn2Mc
|
|
library(lme4)
|
|
# https://www.bristol.ac.uk/cmm/learning/videos/random-intercepts.html#exvar
|
|
library(optimx)
|
|
library(lattice)
|
|
all_model <- lmer(log1p_count ~ D * I(week_offset)+ scaled_project_age + (D * I(week_offset)| upstream_vcs_link), data=all_actions_data, REML=FALSE, control = lmerControl(
|
|
optimizer ='optimx', optCtrl=list(method='L-BFGS-B')))
|
|
#identifying the quartiles of effect for D
|
|
all_model_ranef <- ranef(all_model, condVar=TRUE)
|
|
dotplot(all_model_ranef)
|
|
df_ranefs <- as.data.frame(all_model_ranef)
|
|
D_df_ranef <- df_ranefs[df_ranefs$term == "D"]
|
|
D_df_ranef <- df_ranefs[which(df_ranefs$term == "D"),]
|
|
View(D_df_ranef)
|
|
has_zero <- function(condval, condsd){
|
|
bounds <- condsd * 1.96
|
|
if ((condval - bounds) < 0){
|
|
if ((condval + bounds) > 0) {
|
|
return(1)
|
|
} else {
|
|
return(0)
|
|
}
|
|
} else {
|
|
return(2)
|
|
}
|
|
}
|
|
df_ranefs |>
|
|
mutate(ranef_grouping = has_zero(condval, condsd))
|
|
has_zero <- function(condval, condsd){
|
|
bounds <- condsd * 1.96
|
|
print(bounds)
|
|
if ((condval - bounds) < 0){
|
|
if ((condval + bounds) > 0) {
|
|
return(1)
|
|
} else {
|
|
return(0)
|
|
}
|
|
} else {
|
|
return(2)
|
|
}
|
|
}
|
|
df_ranefs |>
|
|
mutate(ranef_grouping = has_zero(condval, condsd))
|
|
has_zero <- function(condval, condsd){
|
|
bounds <- condsd * 1.96
|
|
print(condval - bounds)
|
|
if ((condval - bounds) < 0){
|
|
if ((condval + bounds) > 0) {
|
|
return(1)
|
|
} else {
|
|
return(0)
|
|
}
|
|
} else {
|
|
return(2)
|
|
}
|
|
}
|
|
df_ranefs |>
|
|
mutate(ranef_grouping = has_zero(condval, condsd))
|
|
has_zero <- function(condval, condsd){
|
|
bounds <- condsd * 1.96
|
|
return(ifelse(((condval - bounds) < 0),ifelse(((condval + bounds) > 0), 1, 0), 2))
|
|
}
|
|
df_ranefs |>
|
|
mutate(ranef_grouping = has_zero(condval, condsd))
|
|
df_ranefs |>
|
|
mutate(ranef_grouping = has_zero(condval, condsd)) |>
|
|
group_by(ranef_grouping) |>
|
|
summarize(no_rows = length(ranef_grouping))
|
|
df_ranefs |>
|
|
mutate(ranef_grouping = has_zero(condval, condsd)) |>
|
|
group_by(ranef_grouping) |>
|
|
summarize(no_rows = length(as.factor(ranef_grouping)))
|
|
df_ranefs |>
|
|
mutate(ranef_grouping = has_zero(condval, condsd)) |>
|
|
group_by(ranef_grouping) |>
|
|
summarize(no_rows = length(as.factor(ranef_grouping)))
|
|
View(df_ranefs)
|
|
has_zero <- function(condval, condsd){
|
|
bounds <- condsd * 1.96
|
|
return(ifelse(((condval - bounds) < 0),ifelse(((condval + bounds) > 0), 1, 0), 2))
|
|
}
|
|
df_ranefs |>
|
|
mutate(ranef_grouping = has_zero(condval, condsd))
|
|
View(df_ranefs)
|
|
df_ranefs <- df_ranefs |>
|
|
mutate(ranef_grouping = has_zero(condval, condsd))
|
|
View(df_ranefs)
|
|
df_ranefs |>
|
|
group_by(ranef_grouping) |>
|
|
summarise(no_rows = length(ranef_grouping))
|
|
df_ranefs |>
|
|
group_by(ranef_grouping) |>
|
|
summarise(no_rows = length(ranef_grouping))
|
|
df_ranefs |>
|
|
group_by(as.factor(ranef_grouping)) |>
|
|
summarise(no_rows = length(ranef_grouping))
|
|
hist(df_ranefs$ranef_grouping)
|
|
D_df_ranef <- df_ranefs[which(df_ranefs$term == "D"),]
|
|
hist(D_df_ranefs$ranef_grouping)
|
|
hist(D_df_ranef$ranef_grouping)
|
|
#plot the ranefs
|
|
library(ggplot2)
|
|
D_df_ranef |>
|
|
ggplot(aes(x=grp, y=condval))
|
|
D_df_ranef |>
|
|
ggplot(aes(x=grp, y=condval, col = as.factor(ranef_grouping)))
|
|
D_df_ranef |>
|
|
ggplot(aes(x=condsd, y=condval, col = as.factor(ranef_grouping)))
|
|
D_df_ranef |>
|
|
ggplot(aes(x=condval, y=condval, col = as.factor(ranef_grouping)))
|
|
D_df_ranef |>
|
|
ggplot(aes(x=condval, y=condval, col = as.factor(ranef_grouping))) +
|
|
geom_point()
|
|
D_df_ranef |>
|
|
ggplot(aes(x=grp, y=condval, col = as.factor(ranef_grouping))) +
|
|
geom_point()
|
|
df_ranefs <- df_ranefs |>
|
|
mutate(ranef_grouping = has_zero(condval, condsd))
|
|
D_df_ranef <- df_ranefs[which(df_ranefs$term == "D"),]
|
|
hist(D_df_ranef$ranef_grouping)
|
|
D_df_ranef |>
|
|
ggplot(aes(x=rank, y=condval, col = as.factor(ranef_grouping))) +
|
|
geom_point()
|
|
df_ranefs <- df_ranefs |>
|
|
mutate(ranef_grouping = has_zero(condval, condsd))
|
|
D_df_ranef <- df_ranefs[which(df_ranefs$term == "D"),]
|
|
df_ranefs <- df_ranefs |>
|
|
mutate(ranef_grouping = has_zero(condval, condsd)) |>
|
|
mutate(rank = rank(condval))
|
|
D_df_ranef <- df_ranefs[which(df_ranefs$term == "D"),]
|
|
D_df_ranef |>
|
|
ggplot(aes(x=rank, y=condval, col = as.factor(ranef_grouping))) +
|
|
geom_point()
|
|
D_df_ranef |>
|
|
ggplot(aes(x=rank, y=condval, col = as.factor(ranef_grouping))) +
|
|
geom_linerange(aes(ymin= condval - (1.96 * condsd), ymax= condval + (1.96 * condsd)))
|
|
D_df_ranef |>
|
|
ggplot(aes(x=grp, y=condval, col = as.factor(ranef_grouping))) +
|
|
geom_linerange(aes(ymin= condval - (1.96 * condsd), ymax= condval + (1.96 * condsd)))
|
|
D_df_ranef |>
|
|
ggplot(aes(x=rank, y=condval, col = as.factor(ranef_grouping))) +
|
|
geom_linerange(aes(ymin= condval - (1.96 * condsd), ymax= condval + (1.96 * condsd)))
|
|
# mrg behavior for this
|
|
mrg_model <- lmer(log1p_count ~ D * I(week_offset)+ scaled_project_age + (D * I(week_offset)| upstream_vcs_link), data=all_actions_data, REML=FALSE, control = lmerControl(
|
|
optimizer ='optimx', optCtrl=list(method='L-BFGS-B')))
|
|
#identifying the quartiles of effect for D
|
|
mrg_model_ranef <- ranef(mrg_model, condVar=TRUE)
|
|
df_mrg_ranefs <- as.data.frame(mrg_model_ranef)
|
|
#doing similar random effect analysis for this
|
|
df_mrg_ranefs <- df_mrg_ranefs |>
|
|
mutate(ranef_grouping = has_zero(condval, condsd)) |>
|
|
mutate(rank = rank(condval))
|
|
D_df_mrg_ranefs <- df_mrg_ranefs[which(df_mrg_ranefs$term == "D"),]
|
|
D_df_mrg_ranefs |>
|
|
ggplot(aes(x=rank, y=condval, col = as.factor(ranef_grouping))) +
|
|
geom_linerange(aes(ymin= condval - (1.96 * condsd), ymax= condval + (1.96 * condsd)))
|
|
D_df_ranef |>
|
|
ggplot(aes(x=rank, y=condval, col = as.factor(ranef_grouping))) +
|
|
geom_linerange(aes(ymin= condval - (1.96 * condsd), ymax= condval + (1.96 * condsd)))
|
|
library(tidyverse)
|
|
library(plyr)
|
|
#get the contrib data instead
|
|
try(setwd(dirname(rstudioapi::getActiveDocumentContext()$path)))
|
|
contrib_df <- read_csv("../final_data/deb_contrib_did.csv")
|
|
#some preprocessing and expansion
|
|
col_order <- c("upstream_vcs_link", "age_of_project", "event_date", "event_hash", "before_all_ct", "after_all_ct", "before_mrg_ct", "after_mrg_ct", "before_auth_new", "after_auth_new", "before_commit_new", "after_commit_new")
|
|
contrib_df <- contrib_df[,col_order]
|
|
contrib_df$ct_before_all <- str_split(gsub("[][]","", contrib_df$before_all_ct), ", ")
|
|
contrib_df$ct_after_all <- str_split(gsub("[][]","", contrib_df$after_all_ct), ", ")
|
|
contrib_df$ct_before_mrg <- str_split(gsub("[][]","", contrib_df$before_mrg_ct), ", ")
|
|
contrib_df$ct_after_mrg <- str_split(gsub("[][]","", contrib_df$after_mrg_ct), ", ")
|
|
drop <- c("before_all_ct", "before_mrg_ct", "after_all_ct", "after_mrg_ct")
|
|
contrib_df = contrib_df[,!(names(contrib_df) %in% drop)]
|
|
# 2 some expansion needs to happens for each project
|
|
expand_timeseries <- function(project_row) {
|
|
longer <- project_row |>
|
|
pivot_longer(cols = starts_with("ct"),
|
|
names_to = "window",
|
|
values_to = "count") |>
|
|
unnest(count)
|
|
longer$observation_type <- gsub("^.*_", "", longer$window)
|
|
longer <- ddply(longer, "observation_type", transform, week=seq(from=0, by=1, length.out=length(observation_type)))
|
|
longer$count <- as.numeric(longer$count)
|
|
#longer <- longer[which(longer$observation_type == "all"),]
|
|
return(longer)
|
|
}
|
|
expanded_data <- expand_timeseries(contrib_df[1,])
|
|
for (i in 2:nrow(contrib_df)){
|
|
expanded_data <- rbind(expanded_data, expand_timeseries(contrib_df[i,]))
|
|
}
|
|
#filter out the windows of time that we're looking at
|
|
window_num <- 8
|
|
windowed_data <- expanded_data |>
|
|
filter(week >= (27 - window_num) & week <= (27 + window_num)) |>
|
|
mutate(D = ifelse(week > 27, 1, 0))
|
|
#scale the age numbers
|
|
windowed_data$scaled_project_age <- scale(windowed_data$age_of_project)
|
|
windowed_data$week_offset <- windowed_data$week - 27
|
|
#separate out the cleaning d
|
|
all_actions_data <- windowed_data[which(windowed_data$observation_type == "all"),]
|
|
mrg_actions_data <- windowed_data[which(windowed_data$observation_type == "mrg"),]
|
|
all_actions_data$logged_count <- log(all_actions_data$count)
|
|
all_actions_data$log1p_count <- log1p(all_actions_data$count)
|
|
# now for merge
|
|
mrg_actions_data$logged_count <- log(mrg_actions_data$count)
|
|
mrg_actions_data$log1p_count <- log1p(mrg_actions_data$count)
|
|
#TKTK ---------------------
|
|
#imports for models
|
|
library(lme4)
|
|
library(optimx)
|
|
library(lattice)
|
|
#models -- TKTK need to be fixed
|
|
all_model <- lmer(log1p_count ~ D * I(week_offset)+ scaled_project_age + (week_offset| upstream_vcs_link), data=all_actions_data, REML=FALSE, control = lmerControl(
|
|
optimizer ='optimx', optCtrl=list(method='L-BFGS-B')))
|
|
summary(all_model)
|
|
#identifying the quartiles of effect for D
|
|
all_model_ranef <- ranef(all_model)
|
|
#d_effect_ranef_all <- all_model_ranef[all_model_ranef$term=="D",]
|
|
#d_effect_ranef_all$quartile <- ntile(d_effect_ranef_all$condval, 4)
|
|
df_ranefs <- as.data.frame(all_model_ranef)
|
|
has_zero <- function(condval, condsd){
|
|
bounds <- condsd * 1.96
|
|
return(ifelse(((condval - bounds) < 0),ifelse(((condval + bounds) > 0), 1, 0), 2))
|
|
}
|
|
df_ranefs <- df_ranefs |>
|
|
mutate(ranef_grouping = has_zero(condval, condsd)) |>
|
|
mutate(rank = rank(condval))
|
|
wo_df_ranef <- df_ranefs[which(df_ranefs$term == "week_offset"),]
|
|
library(ggplot2)
|
|
wo_df_ranef |>
|
|
ggplot(aes(x=rank, y=condval, col = as.factor(ranef_grouping))) +
|
|
geom_linerange(aes(ymin= condval - (1.96 * condsd), ymax= condval + (1.96 * condsd)))
|
|
wo_df_ranef |>
|
|
ggplot(aes(x=rank, y=condval, col = as.factor(ranef_grouping))) +
|
|
geom_linerange(aes(ymin= condval - (1.96 * condsd), ymax= condval + (1.96 * condsd))) +
|
|
geom_bw()
|
|
wo_df_ranef |>
|
|
ggplot(aes(x=rank, y=condval, col = as.factor(ranef_grouping))) +
|
|
geom_linerange(aes(ymin= condval - (1.96 * condsd), ymax= condval + (1.96 * condsd))) +
|
|
theme_bw()
|
|
wo_df_ranef |>
|
|
ggplot(aes(x=rank, y=condval, col = as.factor(ranef_grouping))) +
|
|
geom_pointrange(aes(ymin= condval - (1.96 * condsd), ymax= condval + (1.96 * condsd))) +
|
|
theme_bw()
|
|
wo_df_ranef |>
|
|
ggplot(aes(x=rank, y=condval, col = as.factor(ranef_grouping))) +
|
|
geom_crossbar(aes(ymin= condval - (1.96 * condsd), ymax= condval + (1.96 * condsd)), width=0.2) +
|
|
theme_bw()
|
|
wo_df_ranef |>
|
|
ggplot(aes(x=rank, y=condval, col = as.factor(ranef_grouping))) +
|
|
geom_linerange(aes(ymin= condval - (1.96 * condsd), ymax= condval + (1.96 * condsd))) +
|
|
theme_bw()
|
|
wo_df_ranef |>
|
|
ggplot(aes(x=grp, y=condval, col = as.factor(ranef_grouping))) +
|
|
geom_linerange(aes(ymin= condval - (1.96 * condsd), ymax= condval + (1.96 * condsd))) +
|
|
theme_bw()
|
|
wo_df_ranef <- wo_df_ranef |>
|
|
arrange(condval)
|
|
wo_df_ranef |>
|
|
ggplot(aes(x=grp, y=condval, col = as.factor(ranef_grouping))) +
|
|
geom_linerange(aes(ymin= condval - (1.96 * condsd), ymax= condval + (1.96 * condsd))) +
|
|
theme_bw()
|
|
View(wo_df_ranef)
|
|
df_ranefs <- df_ranefs |>
|
|
mutate(ranef_grouping = has_zero(condval, condsd))
|
|
wo_df_ranef <- df_ranefs[which(df_ranefs$term == "week_offset"),]
|
|
wo_df_ranef <- wo_df_ranef |>
|
|
mutate(rank = rank(condval))
|
|
library(ggplot2)
|
|
wo_df_ranef |>
|
|
ggplot(aes(x=grp, y=condval, col = as.factor(ranef_grouping))) +
|
|
geom_linerange(aes(ymin= condval - (1.96 * condsd), ymax= condval + (1.96 * condsd))) +
|
|
theme_bw()
|
|
wo_df_ranef |>
|
|
ggplot(aes(x=rank, y=condval, col = as.factor(ranef_grouping))) +
|
|
geom_linerange(aes(ymin= condval - (1.96 * condsd), ymax= condval + (1.96 * condsd))) +
|
|
theme_bw()
|