24_deb_pkg_gov/R/contribRDDAnalysis.R
2024-05-08 09:33:03 -05:00

93 lines
4.3 KiB
R

library(tidyverse)
library(plyr)
#get the contrib data instead
try(setwd(dirname(rstudioapi::getActiveDocumentContext()$path)))
contrib_df <- read_csv("../final_data/deb_contrib_did.csv")
#some preprocessing and expansion
col_order <- c("upstream_vcs_link", "age_of_project", "event_date", "event_hash", "before_all_ct", "after_all_ct", "before_mrg_ct", "after_mrg_ct", "before_auth_new", "after_auth_new", "before_commit_new", "after_commit_new")
contrib_df <- contrib_df[,col_order]
contrib_df$ct_before_all <- str_split(gsub("[][]","", contrib_df$before_all_ct), ", ")
contrib_df$ct_after_all <- str_split(gsub("[][]","", contrib_df$after_all_ct), ", ")
contrib_df$ct_before_mrg <- str_split(gsub("[][]","", contrib_df$before_mrg_ct), ", ")
contrib_df$ct_after_mrg <- str_split(gsub("[][]","", contrib_df$after_mrg_ct), ", ")
drop <- c("before_all_ct", "before_mrg_ct", "after_all_ct", "after_mrg_ct")
contrib_df = contrib_df[,!(names(contrib_df) %in% drop)]
# 2 some expansion needs to happens for each project
expand_timeseries <- function(project_row) {
longer <- project_row |>
pivot_longer(cols = starts_with("ct"),
names_to = "window",
values_to = "count") |>
unnest(count)
longer$observation_type <- gsub("^.*_", "", longer$window)
longer <- ddply(longer, "observation_type", transform, week=seq(from=0, by=1, length.out=length(observation_type)))
longer$count <- as.numeric(longer$count)
#longer <- longer[which(longer$observation_type == "all"),]
return(longer)
}
expanded_data <- expand_timeseries(contrib_df[1,])
for (i in 2:nrow(contrib_df)){
expanded_data <- rbind(expanded_data, expand_timeseries(contrib_df[i,]))
}
#filter out the windows of time that we're looking at
window_num <- 8
windowed_data <- expanded_data |>
filter(week >= (27 - window_num) & week <= (27 + window_num)) |>
mutate(D = ifelse(week > 27, 1, 0))
#scale the age numbers
windowed_data$scaled_project_age <- scale(windowed_data$age_of_project)
windowed_data$week_offset <- windowed_data$week - 27
#separate out the cleaning d
all_actions_data <- windowed_data[which(windowed_data$observation_type == "all"),]
mrg_actions_data <- windowed_data[which(windowed_data$observation_type == "mrg"),]
#EDA?
hist(log(all_actions_data$count))
all_actions_data$logged_count <- log(all_actions_data$count)
all_actions_data$log1p_count <- log1p(all_actions_data$count)
# now for merge
mrg_actions_data$logged_count <- log(mrg_actions_data$count)
mrg_actions_data$log1p_count <- log1p(mrg_actions_data$count)
#TKTK ---------------------
#imports for models
library(lme4)
library(optimx)
library(lattice)
#models -- TKTK need to be fixed
all_model <- lmer(log1p_count ~ D * I(week_offset)+ scaled_project_age + (week_offset| upstream_vcs_link), data=all_actions_data, REML=FALSE, control = lmerControl(
optimizer ='optimx', optCtrl=list(method='L-BFGS-B')))
summary(all_model)
#identifying the quartiles of effect for D
all_model_ranef <- ranef(all_model)
#d_effect_ranef_all <- all_model_ranef[all_model_ranef$term=="D",]
#d_effect_ranef_all$quartile <- ntile(d_effect_ranef_all$condval, 4)
df_ranefs <- as.data.frame(all_model_ranef)
has_zero <- function(condval, condsd){
bounds <- condsd * 1.96
return(ifelse(((condval - bounds) < 0),ifelse(((condval + bounds) > 0), 1, 0), 2))
}
df_ranefs <- df_ranefs |>
mutate(ranef_grouping = has_zero(condval, condsd))
wo_df_ranef <- df_ranefs[which(df_ranefs$term == "week_offset"),]
wo_df_ranef <- wo_df_ranef |>
mutate(rank = rank(condval))
library(ggplot2)
wo_df_ranef |>
ggplot(aes(x=rank, y=condval, col = as.factor(ranef_grouping))) +
geom_linerange(aes(ymin= condval - (1.96 * condsd), ymax= condval + (1.96 * condsd))) +
theme_bw()
#plotting ranefs
#model residuals
all_residuals <- residuals(all_model)
qqnorm(all_residuals)
# mrg behavior for this
mrg_model <- lmer(log1p_count ~ D * I(week_offset)+ scaled_project_age + (week_offset | upstream_vcs_link), data=mrg_actions_data, REML=FALSE, control = lmerControl(
optimizer ='optimx', optCtrl=list(method='L-BFGS-B')))
summary(mrg_model)
#identifying the quartiles of effect for D
mrg_model_ranef <- ranef(mrg_model)
dotplot(mrg_model_ranef)
d_effect_ranef_mrg <- mrg_model_ranef[mrg_model_ranef$term=="D",]
d_effect_ranef_mrg$quartile <- ntile(d_effect_ranef_mrg$condval, 4)
#merge model residuals
mrg_residuals <- residuals(mrg_model)
qqnorm(mrg_residuals)