24_deb_pkg_gov/R/didCleaning.R
2024-04-15 09:38:41 -05:00

101 lines
3.9 KiB
R

library(plyr)
library(tidyverse)
library(rdd)
#set wd, read in data
try(setwd(dirname(rstudioapi::getActiveDocumentContext()$path)))
readme_df <- read_csv("../final_data/deb_readme_did.csv")
contributing_df <- read_csv("../final_data/deb_contrib_did.csv")
#preprocessing for readme_df
colnames(readme_df) <- c("upstream_vcs_link", "event_date", "event_hash", "before_all_ct", "before_mrg_ct", "after_all_ct", "after_mrg_ct", "before_auth_new", "after_commit_new", "after_auth_new", "before_commit_new")
col_order <- c("upstream_vcs_link", "event_date", "event_hash", "before_all_ct", "after_all_ct", "before_mrg_ct", "after_mrg_ct", "before_auth_new", "after_auth_new", "before_commit_new", "after_commit_new")
readme_df <- readme_df[,col_order]
readme_df$ct_before_all <- str_split(gsub("[][]","", readme_df$before_all_ct), ", ")
readme_df$ct_after_all <- str_split(gsub("[][]","", readme_df$after_all_ct), ", ")
readme_df$ct_before_mrg <- str_split(gsub("[][]","", readme_df$before_mrg_ct), ", ")
readme_df$ct_after_mrg <- str_split(gsub("[][]","", readme_df$after_mrg_ct), ", ")
drop <- c("before_all_ct", "before_mrg_ct", "after_all_ct", "after_mrg_ct")
readme_df = readme_df[,!(names(readme_df) %in% drop)]
#preprocessing for contributing_df
# test <- readme_df$cnt_before_all
# as.numeric(unlist(test[1]))
# test_two <- c()
# iterator <- 0
# for (entry in test) {
# readme_df$cnt_before_all[iterator] <- as.numeric(unlist(entry))
# print(as.numeric(unlist(entry)))
# iterator <- iterator + 1
# }
# test_two
#Yes, need to expand the dataframe, but again, for the sake of clarity, do not want to until analysis step
# https://rpubs.com/phle/r_tutorial_regression_discontinuity_design
## https://www.rdocumentation.org/packages/lme4/versions/1.1-35.2/topics/lmer
new_test <- readme_df[9,]
get_optimal_window <- function(project_row) {
longer <- project_row |>
pivot_longer(cols = starts_with("ct"),
names_to = "window",
values_to = "count") |>
unnest(count)
longer$observation_type <- gsub("^.*_", "", longer$window)
longer <- ddply(longer, "observation_type", transform, week=seq(from=0, by=1, length.out=length(observation_type)))
longer$count <- as.numeric(longer$count)
#this below line makes the code specific to the all-commits data
longer <- longer[which(longer$observation_type == "all"),]
result <- tryCatch({
#Imbens-Kalyanaraman Optimal Bandwidth Calculation
optimal_bandwidth <- IKbandwidth(longer$week, longer$count, cutpoint = 26, verbose = FALSE, kernel = "triangular")
return(optimal_bandwidth)
}, error = function(e){
#have tested it with multiple different error-values and all medians/means still hover around 8
return(8)
})
}
#this just gets the optimal bandwith window for each project and then appends to lists
bandwidths <- c()
for (i in 1:nrow(readme_df)){
bandwidth <- get_optimal_window(readme_df[i,])
bandwidths <- c(bandwidths, bandwidth)
}
mean(bandwidths)
#8.574233
median(bandwidths) #8.363088
table(bandwidths)
#from this, I think setting the bandwidth to 8 weeks, two months, the floor
# of both the median and mean calculations
#longer <- longer %>%
# filter(week >= (26 - window_num) & week <= (26 + window_num))
#sapply(longer, class)
#longer$biweekly <- ceiling(longer$week / 2)
#longer <- longer %>%
# group_by(window, biweekly, observation_type) %>%
# summarise(biweekly_count = sum(count, na.rm = TRUE))
#testing out analysis below
longer[which(longer$observation_type == "all"),] |>
ggplot(aes(x = week, y = count)) +
geom_point() +
geom_vline(xintercept = 26)
longer[which(longer$observation_type == "all"),] |>
mutate(D = ifelse(week >= 26, 1, 0)) |>
lm(formula = count ~ D * I(week - 26)) |>
summary()
longer[which(longer$observation_type == "all"),] |>
select(count, week) |>
mutate(D = as.factor(ifelse(week >= 26, 1, 0))) |>
ggplot(aes(x = week, y = count, color = D)) +
geom_point() +
geom_smooth(se = TRUE) +
geom_vline(xintercept = 26)