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Abstract—GitHub has fostered complicated and enormous 
software ecosystems, in which projects depend on and co-evolve 
with each other. An error in an upstream project may affect its 
downstream projects through inter-dependencies, forming cross-
project bugs. Though the upstream developers should fix the 
bugs on their side, proposing a workaround, i.e., a temporary 
solution in the downstream project is a common practice for the 
downstream developers. In this study, we empirically 
investigated the characteristics of downstream workarounds in 
the scientific Python ecosystem. Combining the statistical 
comparisons and manual inspection, we have the following three 
main findings. First, in general, the workarounds and the 
corresponding upstream fixes are significantly different in code 
size and code structure. Second, there are three kinds of cross-
project bugs that the downstream developers usually work 
around. Last, four types of common patterns are identified from 
the investigated workarounds. The findings of this study lead to 
better understanding of cross-project bugs and the practices of 
developers in software ecosystems. 

Keywords—GitHub ecosystems; cross-project bugs; 
workarounds; practices 

I. INTRODUCTION 
Benefiting from the social coding capabilities of GitHub, 

software development on GitHub has evolved beyond a single 
project into socio-technical ecosystems [1]. Projects rely on the 
infrastructure or functional components provided by other 
projects, forming complex inter-project dependencies. In this 
way, some bugs in the upstream projects may affect their 
downstream projects through the dependencies. This 
phenomenon was confirmed by Ma et al. [2]. In their study, 
they investigated cross-project correlated bugs, i.e., causally 
related bugs reported to different projects in scientific Python 
ecosystem on GitHub, focusing on how developers coordinate 
to triage and fix this kind of bugs. 

In the context of cross-project bugs, it is no doubt that the 
upstream project where the bug roots should provide a radical 
cure. However, the affected downstream projects usually offer 
a workaround, i.e., a temporary solution locally to bypass the 
upstream error. Ma et al. posted a questionnaire in which they 
asked what the downstream developers usually did to deal with 
cross-project bugs. The result indicated that 89.3% of the 
respondents chose to propose a temporary workaround, which 
was proven to be the most common practice [2].  

Workarounds are important in two folded [2]. First, it can 
be used to avoid the long-lasting impact of an upstream bug. A 
workaround must be implemented if the upstream team is not 
willing or able to fix the bug quickly, and it allows the 
downstream project to temporarily suppress the upstream bug. 
Second, adding a workaround for an upstream bug enables the 
downstream project to support buggy upstream version without 
affecting the end users. As many users may still use an old 
version of the upstream project, the downstream developers 
cannot rely on a fix in the next upstream release. Therefore, the 
downstream developers have to work around bugs regardless 
of whether they have been already fixed upstream. 

Despite the wide use and importance of the workarounds 
for cross-project bugs, little work has paid attention on this 
issue. Studying the workaround will help to understand not 
only the fixing process of cross-project bugs, but also the 
coordination between projects in a software ecosystem. 
Therefore, we conduct this study to investigate the 
characteristics of the downstream workarounds in the context 
of cross-project bugs.  

We base our study on scientific Python ecosystem on 
GitHub. For a cross-project bug, we refer to the patch injected 
into the buggy upstream project as the upstream fix, while the 
temporary solution provided for the affected downstream 
project as the downstream workaround. We make an 
investigation of the workarounds from three aspects. First, we 
compare the code size and design of the workarounds with 
those of the corresponding upstream fixes. Second, we inspect 
whether the cross-project bugs that were worked around in 
downstream projects have something in common. Third, we 
investigate whether software practitioners developed the 
workarounds in some common ways. 

The main contributions of this study is as follows. First, we 
extract 60 downstream workarounds in the scientific Python 
ecosystem. Second, we identify three kinds of cross-project 
bugs that the downstream developers usually work around. 
Third, we summarize four common workaround patterns. Last, 
we provide several design requirements for the workaround 
supporting tools. 

The rest of the paper is organized as follows. Section II 
describes related work. Section III presents our research 
methodology, and Section IV shows our empirical results. We 
propose further discussions on our findings in Section V, and 
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examine threats to validity in Section VI. Finally, Section VII 
concludes this paper. 

II. RELATED WORK 

A. Cross-project Bugs 
As the development of software ecosystems, more and 

more cross-project bugs appear and attract the attention of an 
increasing number of researchers. 

Some existing studies showed that cross-project bugs 
brought many troubles to ecosystem developers. Decan et al. 
[3] reported that the developers in R ecosystems felt it more 
and more of a pain if the upstream packages broke. Adams et 
al. [4] indicated that the core activity of integration for open 
source distributions was synchronizing the newer upstream 
version. To avoid the cross-project bugs, developers had to pay 
great attention on the synchronizing process. Bavota et al. [5] 
found that the upstream upgrade would have strong effects on 
downstream projects when there were general dependencies 
between them. Their study showed that a large amount of 
downstream code had to be modified when the upstream 
project changed if the downstream project depended on the 
upstream framework or general services. In that case, the 
upstream bugs would leave a wide impact on the downstream 
projects. 

Some other researches focused on the coordination between 
developers in different projects during fixing cross-project 
bugs. Villarroel et al. [6] leveraged the reviews of App users to 
help developers realize the downstream demand. They 
classified and prioritized the downstream reviews, so that the 
upstream developers were able to catch the important bugs 
quickly. Ma et al. [2] studied how developers fixed cross-
project correlated bugs in scientific Python ecosystem. 
Combining manual inspection and the results of an online 
survey, they revealed how developers, especially those on the 
downstream side tracked the root cause of cross-project bugs 
and dealt with them to eliminate their bad effects. Our study 
bases on and extends that work. We focus on a specific but 
common practice of the downstream developers when facing 
cross-project bugs, i.e., proposing a workaround. 

B. Blocking Bugs 
Another special type of bugs is blocking bugs which are to 

some extent similar to cross-projects bugs. Blocking bugs 
prevent other bugs (in the same or other projects) from being 
fixes. It often happens because of a dependency relationship 
among software components. Under the environment, the 
developers cannot fix their bugs because the modules that they 
are fixing depend on other modules that have unresolved bugs. 
Due to their severe impact, some researchers have turned their 
eyes to blocking bugs. 

Garcial and Shihab [7] found that it took two to three times 
longer to fix blocking bugs than non-blocked bugs. They then 
employed decision tress to predict whether a bug is a blocking 
bug or not. They extracted 14 kinds of features to construct the 
predictor and evaluated which features were most influential to 
indicate the blocking bugs. 

Later, Xia et al. [8] proposed a novel method named 
ELBlocker to identify blocking bugs with the class imbalance 
phenomenon taken into account. ELIbloker utilized more 
features and combined multiple classifiers to learn an 
appropriate imbalance decision boundary. ELIBloker 
outperformed the method in [7] by up to 14.7% F-measure. 

Unlike blocking bugs which prevent the fixing of bugs in 
the dependent modules, cross-projects bugs occur in upstream 
projects but affect the normal operation of the downstream 
projects. For the affected downstream modules/projects, the 
developers attempt to take some action to be released from the 
blocking/cross-project bugs in other components. In this paper, 
we investigate the downstream practices when facing cross-
project bugs. 

C. Design of Bug Fixes 
Fixing software bugs is an important activity during 

software maintenance. Developers devote substantial efforts to 
design the bug fixes, which reflect the developers’ expertise 
and experience. Various studies investigated the nature and 
design of bug fixes. Zhong and Su [9] extracted and analyzed 
more than 9000 real-world bug fixes from six Java projects. 
They obtained 15 findings which could gain insights on 
automatic program repair. Pan et al. [10] explored the 
underlying bug fix patterns and identified 27 bug fix patterns 
that were amenable to automatic detection. Park et al. [11] 
analyzed bugs which were fixed more than once to understand 
the characteristics of incomplete patches. They revealed that 
predicting supplementary patch was a difficult problem. Jiang 
et al. [12] conducted an study on the characteristics of Linux 
kernel patches that could explain patch acceptance and 
reviewing/integration time. Misirli et al. [13] proposed a 
measure to study the impact of fix-inducing changes. They 
found that the lines of code added, the number of developers 
who worked on a change, and the number of prior 
modifications on the files modified during a change were the 
best indicators of high-impact fix-inducing changes. Echeverria 
et al. [14] evaluated developers’ performance on fixing bugs 
and propagating the fixes to other products in industrial 
Software Product Line. 

According to different characteristics of bug fixes, 
researches developed various automatic tools to support bug 
repair. Goues et al. [13,14] used genetic programming to repair 
bugs in C programs, and evaluated what fraction of bugs could 
be repaired automatically. They generated a large, indicative 
benchmark set for systematic evaluations. Mechtaev et al. [17] 
presented a semantics-based repair method applicable for 
large-scale real-world software. Gu et al. [18] considered bad 
fix problem and implemented a prototype that automatically 
detects bad fixes for Java programs.  

When fixing bugs, developers may have different options 
to design the bug fix. Leszak et al. [19] pointed out that some 
defects were not fixed by correcting the real error-causing 
component, but rather by a workaround injected at another 
location. An online material gives a clear description about the 
workaround [20]: “A workaround is a far less elegant solution 
to the problem. Typically, a workaround is not viewed as 
something that is designed to be a panacea, or cure-all, but 
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rather as a crude solution to the immediate problem. As a 
temporary fix, a workaround will do very well until a suitable 
permanent fix can be implemented by project management 
personnel.” Murphy-Hill et al. [21] studied why a developer 
might choose a workaround instead a fix at a real location. 
They summarized six factors: risk management, interface 
breakage, consistency, user behavior, cause understanding, and 
social factors. Some other studies also paid attention to the 
phenomenon of workarounds. Ko et al. [22] found that if a bug 
had a known workaround, developers often focused on more 
severe bugs. Berglund [23] indicated that bugs could be 
worked around and workarounds were relevant in early stages 
of the bug fixing process.  

Different from most existing studies which investigated the 
design of fixes for within-project bugs, our study concentrates 
on the characteristics of downstream workarounds in the 
context of cross-project bugs. 

III. RESEARCH METHODOLOGY 
In this section, we first introduce how we collected data in 

the study. Then we present the research questions. Finally, we 
describe the research methods used to investigate the questions. 

A. Data Source 
The cross-project bugs under investigation were collected 

by Ma et al. [2]. The data are available online1. The dataset 
contains 271 pairs of cross-project bugs gathered from 
scientific Python ecosystem on GitHub. Every pair includes an 
upstream issue reported to the root-cause project and a 
downstream issue reported to the affected project. Specifically, 
these cross-project bugs involve 204 projects including seven 
core libraries in the ecosystem, that is, IPython2 , NumPy3 , 
SciPy4, Matplotlib5, Pandas6, Scikit-learn7, and Astropy8. 

Since our study focuses on the workarounds, we are only 
interested in the cross-project bugs for which the downstream 
developers have provided a workaround. In order to extract the 
data we needed, we manually read all the bug reports on the 
downstream side of the 271 pairs of bugs. If the downstream 
developers were willing to propose a workaround, they were 
very likely to leave related information in the issue reports. For 
example, a developer of IPython suffering a bug of Setuptools 
commented, “I'll open an Issue on setuptools to deal with this, 
and figure out what the best workaround in IPython should 
be.” (ipython/ipython#8804) Two of the authors of this paper 
carried on this task and found 60 pairs of cross-project bugs to 
further investigate in this study. 

For the 60 pairs of bugs, we concentrated on their 
downstream workarounds and the corresponding upstream 
fixes. Usually, the upstream issue will link to the bug-fix 

                                                           
1 https://github.com/njuap/ICSE2017 
2 http://ipython.org, https://github.com/ipython/ipython 
3 http://www.numpy.org, https://github.com/numpy/numpy 
4 http://www.scipy.org/scipylib, https://github.com/scipy/scipy 
5 http://matplotlib.org, https://github.com/matplotlib/matplotlib 
6 http://pandas.pydata.org, https://github.com/pydata/pandas 
7 http://scikit-learn.org, https://github.com/scikit-learn/scikit-learn 
8 http://www.astropy.org, https://github.com/astropy/astropy 

commits if it has been repaired. Also, if the downstream issue 
was worked around, the commits including the workaround 
would be indicated. By manually inspecting the issue reports, 
the two authors linked every pair of closed cross-project bugs 
with the commits containing the fix/workaround. Note that 
nine cross-project bugs have not been fixed by the upstream 
projects. Therefore, in total, we collected 60 downstream 
workarounds and 51 upstream fixes. 

B. Research Questions 
The aim of this study is to investigate the characteristics of 

downstream workarounds in the context of cross-project bugs. 
In particular, we attempt to answer the following three research 
questions: 

RQ1: Are there differences between downstream 
workarounds and the corresponding upstream fixes? 

Compared with the upstream fix, the workaround is 
injected in a different project and serves a different purpose. 
Therefore, is the design of workaround different from that of 
the fix? We compared them in two aspects: the code size and 
code structure. 

RQ2: Do the cross-project bugs that downstream 
developers work around have some common features? 

As stated, not all of the cross-project bugs have 
workarounds. Then what features do these 60 bugs with 
workarounds have in common? In RQ2, we sought to find the 
answer.  

RQ3: Do the workarounds have some common patterns? 

In RQ3, we attempted to find whether downstream 
developers worked around the upstream bugs in some common 
ways. 

C. Research Methods 
1) Quantitative analysis methods 
In RQ1, the Wilcoxon signed-rank test and the Cliff’s  

served to compare the code size between the upstream fixes 
and the downstream workarounds. 

The Wilcoxon signed-rank test is a non-parametric 
statistical hypothesis test used to compare whether two 
matched groups of data are identical [24]. The paired sample in 
our study are the sizes (concerning the number of modified 
files or the number of changed lines of code) in the 
downstream workarounds and upstream fixes. We set the null 
hypothesis H0 and its alternative hypothesis H1 as follows: 

H0: The number of modified files / the number of changed 
lines of code in the downstream workarounds is the same as 
that in the upstream fixes. 

H1: The number of modified files / the number of changed 
lines of code in the downstream workarounds is significantly 
different from that in the upstream fixes. 

We assessed the test results at the significance level of 
0.05. If the p-value obtained from the Wilcoxon signed-rank 
test was lower than 0.05, the sizes of workarounds and fixes 
were considered significantly different. Together with the 
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median values of the sizes, we were able to decide whether the 
size of workaround was smaller than the size of its 
corresponding fix. 

Furthermore, we used the Cliff’s  effect size to measure 
the magnitude of the difference between the sizes of 
workarounds and fixes. Cliff’s  provides a simple way of 
quantifying the practical difference between two groups [25]. 
Of all kinds of effect sizes, Cliff’s  is the most direct and 
simple variety of a non-parametric one [26]. By convention, 
the magnitude of the difference is considered either trivial (| | < 
0.147), small (0.147-0.33), moderate (0.33-0.474), or large (> 
0.474) [27]. 

2) Qualitative analysis  
For RQ2, RQ3, and part of RQ1, we performed a 

qualitative analysis to investigate the questions. Two authors 
manually inspected the issue reports and the code of 
fixes/workarounds for the cross-project bugs.  

The two authors first individually completed the task 
following the same procedure and criteria. They reviewed the 
issue reports and code carefully, then executed the existing test 
cases provided by the developers to keep track of traces and to 
observe the input/output. During this procedure, they wrote 
down some necessary information: the bug information (bug 
type, root cause, bug impact, and participants), the bug context 
(related methods, test cases, traces, and input/output), and the 
workaround and fix strategies. And they also wrote down their 
findings. 

 After individual investigation, they came together to 
discuss their findings and draw conclusions. 

IV. RESEARCH RESULTS 

A. RQ1:Differences Between Fixes and Workarounds 
In order to compare the upstream fixes and the downstream 

workarounds, we first statistically compared their sizes in 
terms of the number of modified files and the number of 
modified lines of code. Then, we inspected the code structure 
of fixes and workarounds to see whether they were different. 

Among the 60 pairs of cross-project bugs, nine of them 
have not been fixed in the upstream projects until now. 
Therefore, we could not compare their workarounds with 
upstream fixes. In RQ1, we only investigated the remaining 51 
pairs of cross-project bugs. 

1) Statistical comparision of the size 
TABLE I. shows the minimum, the maximum, and the 

average values, as well as the 25th, 50th, and 75th percentiles 
of workaround/fix size. To facilitate a visual comparison, we 
also use boxplots to illustrate the size distributions (Fig. 1). It is 

clear that the number of modified files and the number of 
modified lines of code in workarounds are both smaller than 
those in fixes. 

 

 

#files #SLOC 

Fig. 1. Comparision of the size of fixes and workarounds 

We also adopted the Wilcoxon signed-rank test and Cliff's 
 effect size to statistically compare the workarounds and fixes. 

The results are shown in TABLE II. The p-values less than 
0.05 indicate that the number of modified files and the number 
of modified lines of code are significantly different between 
the workarounds and fixes. The values of Cliff’s  mean that 
the difference in the number of changed files between them is 
small, but the difference in the number of modified lines of 
code is large. 

TABLE II.       RESULTS OF THE STATISTICAL TESTS 

 #Files #SLOC 
P-value 0.019 0.014 
| | 0.232 0.771 

Combining the boxplots and the results of statistical tests, 
we conclude that the size of the workaround is significantly 
smaller than the size of the corresponding upstream fix. 

2) Inspection of code 
After statistically comparing the size of the downstream 

workarounds and the corresponding upstream fixes, we looked 
into the their code to make a further investigation. 

In general, for eight out of the 51 cross-projects bugs, the 
upstream fix and the corresponding downstream workaround 
were designed in the same manner. The developers from both 
sides had similar idea to modify their own projects when facing 
the bug. For example, using the Astropy normalizer led to a 

TABLE I.  THE SIZES OF THE UPSTREAM FIXES AND DOWNSTREAM WORKAROUNDS 

  Min. Max. Avg. 25th 50th 75th 

#Files Fixes 1 8 3 2 2 4 
Workarounds 1 6 2 1 2 3 

#SLOC Fixes 1 829 93 19 36 105 
Workarounds 1 662 61 10 26 45 
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TypeError in Sunpy when playing a mapcube peek animation 
(sunpy/sunpy#1532). It was caused by a bug in 
ImageNormalize class of Astropy which did not include a call 
to the inherited method autoscale_None() (astropy/astropy 
#4117). To address this problem, both Sunpy and Astropy used 
an explicit call to autoscale_None(). Fig. 2 shows the 
downstream workaround and upstream fix for this bug. 
Additionally, it is worth noting that the fix and the workaround 
were proposed by the same developer. Another example is 
shown in astropy/astropy#3052 which was caused by 
numpy/numpy #5251. The downstream workaround was just a 
copy of the upstream fix for the cross-project bug.  

For the remaining 43 out of the 51 cross-project bugs, the 
downstream developers worked around them in a different way 
from what the upstream developers did to fix the bugs. This 
seems to accord with our intuition. Whether for within-project 
or cross-project bugs, a workaround is a short-term solution 
injected in a place other than the true root-cause location. For 
cross-project bugs, the workaround is placed in the 
downstream project where the upstream buggy method is 
called, while the ultimate fix is to repair the buggy method 
itself. Intuitively, the two kinds of modification are usually 
different, which is confirmed by our observations. 

In Section IV.C, we will discuss the workaround patterns in 
detail. 

B. RQ2:Common Bug Features 
By manually inspecting the issues reports of the 60 cross-

project bugs, we found that some bugs did have something in 
common. We totally identified three kinds of common features. 
Forty-nine investigated bugs could be classified into the 
remaining 11 bugs have distinct characteristics themselves and 
cannot be put into any category. 

1) Emerging cases 
A cross-project bug was reported when the downstream 

project encountered an emerging case that the upstream 
method did not cover. Thirty-nine of the 60 cross-project bugs 
could be classified into this kind. More specifically, we divided 
the 39 bugs into two subcategories.  

First, the original upstream method could not process 
certain types or forms of data. For example, 
astropy/astropy#3052 reported that a method in NumPy did not 
use suitable format for Unicode data (numpy/numpy#5251). 
Astropy/astropy#4658 was caused by np.median from NumPy 
that could not handle the masked arrays (numpy/numpy#7330). 
Luca-dex/pyTSA#18 worked around an upstream bug that 
Pandas could not read csv files if the column separator was not 
comma (pandas-dev/pandas#2733). 

Second, the upstream method might not consider the 
processing of edge cases. For example, the method 
utilities.autowrap.ufuncify in Sympy failed when the length of 
the symbol list was larger than 31 (sympy/sympy#9593). The 
failure resulted from an error in the method frompyfunc of 
NumPy, which did not check the number of arguments 
(numpy/numpy#5672). 

2) Wrong outputs 
Sometimes, the upstream methods might produce wrong 

results with specific inputs which could break their 
downstream projects. Six of the studied upstream bugs were 
caused by wrong outputs.  

The wrong outputs are partly caused by the incorrect design 
of the functionality. Blaze/odo#331 was caused by the wrong 
output of datetime64 series in Pandas. The method should 
return NAT instead of NaN with an empty series (pandas-
dev/pandas#11245). In NumPy, np.log1p(inf) returned NaN 
while it should return Inf (numpy/numpy#4225), which led to 

  @@ -203,7 +205,11 @@ def updatefig(i, im, annotate, ani_data, removes):
203 205  
204 206              im.set_array(ani_data[i].data)
205 207              im.set_cmap(self.maps[i].plot_settings['cmap'])
206  -            im.set_norm(self.maps[i].plot_settings['norm'])
 208 + 
 209 +            norm = deepcopy(self.maps[i].plot_settings['norm'])
 210 +  # The following explicit call is for bugged versions of Astropy's ImageNormalize 
 211 +            norm.autoscale_None(ani_data[i].data)
 212 +            im.set_norm(norm)

(a).  The dowsntream workaround 

  @@ -67,5 +67,8 @@ def __call__(self, values, clip=None):
67 67              # copy because of in-place operations after
68 68              values = np.array(values, copy=True, dtype=float)
69 69  
 70 +        # Set default values for vmin and vmax if not specified
 71 +        self.autoscale_None(values)
 71 + 
70 73          # Normalize based on vmin and vmax
71 74          np.subtract(values, self.vmin, out=values)

(b).  The upstream fix 

Fig. 2.  The comparision of the code for the dowsntream workaround and the corresponding upstream fix 
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an undesired result in Nengo (nengo/nengo#260). 

Some other unexpected outputs of the upstream methods 
were introduced by the carelessly incompatible changes when 
the upstream developers fixed another bug or developed a new 
feature. For example, the method combine_first in new version 
of Pandas performed an unwanted conversion of dates to 
integers (pandas-dev/pandas#3593), which made some 
modules of Clair unusable (eike-welk/clair/#43).  

3) Python 3 incompatibility 
Some upstream methods could not perform correctly under 

Python 3 while they could work perfectly under Python 2. 
Then, when running downstream projects in Python 3, the 
original upstream method resulted in a bug. For example,  
method loadtxt in NumPy failed with complex data in Python 3 
(numpy/numpy#5655), which affected its downstream project 
msmtools (markovmodel/msmtools#18). Totally, four of the 60 
cross-project bugs are due to Python 3 incompatibility. 

C. RQ3: Workaround Patterns 
After investigating the characteristics of cross-project bugs 

with workarounds, we summarized the common patterns from 
the studied workarounds. Generally, we found four 
workaround patterns covering the workarounds for 37 cross-
project bugs. 

1) Pattern 1: Using a different method 
When an upstream method that the downstream project 

used has a bug, it is a simple way to replace the buggy one with 
a similar method. 

Example: The Obspy developer experienced segmentation 
faults on certain systems when constructing a NumPy array 
(obspy/obspy#536). After investigation, this bug was caused by 
an error in np.array (numpy/numpy#3175). The downstream 
developers worked around the cross-project bug by using 
np.frombuffer instead of np.array. Fig. 3 shows the 
downstream workaround. 

Ten out of the 60 workarounds were designed to adopt 
another method that could provide the same functionality. 
However, most of the replacements were provided by the 
original upstream projects. As in the example above, 
np.frombuffer and np.array comes from the same project 
NumPy. This phenomenon implies two things. First, some 
libraries may tend to develop multiple methods with 
overlapping capabilities. Second, the downstream projects are 
not willing to change their dependencies. It is reasonable since 

adding a new dependency means that more effort should be 
laid on downstream project to understand the release cycle of 
the new upstream project and to coordinate with it. 

The main challenge in proposing this kind of workaround 
lies in two aspects. The first is to find a replacement method 
that is preferably designed by identical upstream project or at 
least a stable project. Second, the parameters should be 
carefully modified to fit the new method since it may require a 
different kind of parameter compared with the buggy method. 
The challenge also indicates that an automatic tool to 
recommend similar APIs and adapt parameters will be useful 
for developers to work around a cross-project bug.  

2) Pattern 2: Conditionally using the original method 
As we have stated in IV.B, most of the cross-project bugs 

are caused by one or more uncovered cases of the upstream 
methods. Therefore, an intuitive way to work around the bug is 
to only use the method in the cases that will not result in a 
failure. 

Example: Scipy/scipy#3596 recorded a bug that 
scipy.signal.fftconvolve did not work well in multithreaded 
environments. After digging into this issue, the developers 
found that scipy.signal.fftconvolve made use of numpy.fft.rfftn 
/irfftn for non-complex inputs and it was NumPy’s FFT 
routines that were actually not thread safe. Though later 
numpy/numpy#4655 fixed the bug in NumPy, the SciPy 
developers still thought that they should work around it in their 
side, because they support older NumPy version that did not 
have the fix. Fig. 4 shows the downstream workaround. For 
pre-1.9 NumPy, if there are non-complex inputs, SciPy only 
calls numpy.fft.rfftn /irfftn from one thread at a time to be 
thread safe. In other cases, they use their own FFT method 
instead. 

However, though this workaround helped the users get out 
of trouble, it seemed a little complex. A developer proposed 
that the easiest workaround would be to convert the non-
complex inputs to complex inputs (by adding 0j) so they were 
processed by SciPy’s FFT routine instead of the buggy 
NumPy’s RFFT method. This idea was disapproved by other 
developers. Because the NumPy’s RFFT method is 
significantly faster, it is better to use this method whenever 
possible. Just as another SciPy developer commented, 
“Whatever fix is done on the SciPy side, it would be nice if it 
didn't prevent someone who had a new enough (fixed) NumPy 
from using the newer RFFT method multithreaded.” 

  @@ -109,5 +109,5 @@ def getSequenceNumber(self):
109 109  def getMSRecord(self): 
110 110     # following from  obspy.mseed.tests.test_libmseed
111 111     msr = clibmseed.msr_init(C.POINTER(MSRecord)())
112  -   pyobj = np.array(self.msrecord)
 112 +   pyobj = np.frombuffer(self.msrecord, dtype=np.uint8)
113 113     errcode = \ 

Fig. 3.  The downstream workaround injected in Obspy 
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Fifteen out of the 60 workarounds were designed to restrict 
the use of the buggy upstream method to its covered cases. 
There are two key points in proposing a workaround of this 
kind. First, the developers should determine under what 
conditions the original used upstream method would fail, i.e., 
the uncovered cases. Usually, developers could find the answer 
during the process of diagnosing the bug. After that, it is 
important to decide how to deal with the failed cases. During 
inspecting the 11 workarounds, we find that the developers 
either made used of another method or just raised an error or an 
exception (e.g., sympy/sympy#9593).  

3) Pattern 3: Adapting the inputs to use original method 
To avoid the failure caused by the uncovered cases, 

developers may also choose to convert their inputs into a 
processable form which can be correctly handled by the buggy 
upstream method. 

Example: Pyhrf/pyhrf#146 reported test failure which 
seemed to come from scipy.misc.fromimage. When trying to 
open 1-bit images, the SciPy method would produce a 
segmentation fault. In order to avoid the failure, the Pyhrf 
developers decided to first convert the 1-bit image into an 8-bit 
image which could be dealt with by the SciPy method. Fig.5 
shows the downstream workaround. 

Nine out of the 60 studied workarounds conform to this 
pattern. Though it seems to be a direct way to convert an 

uncovered case to a covered case in order to use the original 
upstream routine, this method is not always feasible. 

 
4) Pattern 4: Converting the ouputs of the original method 
To work around the buggy upstream methods that produce 

wrong outputs with certain inputs, the downstream developers 
possibly choose to convert the wrong results to their desired 
ones. 

Example: The method combine_first in Pandas falsely 
converted of dates to integers (pandas-dev/pandas#3593). To 
bypass the bug, its downstream project Clair explicitly called  
pd.to_datatime to convert the time-related data from integers to 
dates (eike-welk/clair/#43). Fig. 6 shows the downstream 
workaround. 

Apart from this example, two other downstream projects 
worked around cross-project bugs in this way. 

@@ -166,4 +166,6 @@ def load_drawn_labels(name):
166 166     from scipy.misc import fromimage 
167 167     from PIL import Image
168 -    labels = fromimage(Image.open(fn))

168 +    labels_image = Image.open(fn) 
169 +    labels_image = labels_image.convert("L")
170 +    labels = fromimage(labels_image) 

169 171     return labels[np.newaxis, :, :] 

Fig. 5.  The downstream workaround injected in Pyhrf 

  @@ -38,2 +40,7 @@ 
38 40 

 41 +_rfft_mt_safe = (NumpyVersion(np.__version__) >= '1.9.0.dev-e24486e')
 42 +
 43 +_rfft_lock = threading.Lock()
39 46 def _valfrommode(mode):
  @@ -344,10 +351,21 @@ def fftconvolve(in1, in2, mode="full"):
344 351      fslice = tuple([slice(0, int(sz)) for sz in shape])
345  -    if not complex_result: 
346  -        ret = irfftn(rfftn(in1, fshape) *
347  -                     rfftn(in2, fshape), fshape)[fslice].copy()
348  -        ret = ret.real 
 352 +   # Pre-1.9 NumPy FFT routines are not threadsafe.  For older NumPys, make
 353 +   # sure we only call rfftn/irfftn from one thread at a time.
 354 +   if not complex_result and (_rfft_mt_safe or _rfft_lock.acquire(False)):
 355 +       try:
 356 +            ret = irfftn(rfftn(in1, fshape) *
 357 +                         rfftn(in2, fshape), fshape)[fslice].copy()
 358 +       finally:
 359 +           if not _rfft_mt_safe:
 360 +                _rfft_lock.release()
349 361     else:
 362 +       # If we're here, it's either because we need a complex result, or we
 363 +       # failed to acquire _rfft_lock (meaning rfftn isn't threadsafe and
 364 +       # is already in use by another thread).  In either case, use the
 365 +       # (threadsafe but slower) SciPy complex-FFT routines instead.
350 366          ret = ifftn(fftn(in1, fshape) * fftn(in2, fshape))[fslice].copy()
 367 +       if not complex_result:
 368 +            ret = ret.real
351 369  
352 370      if mode == "full": 
353 371          return ret 

Fig. 4.  The downstream workaround injected in Scipy 
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V. DISCUSSION 
In this section, we discuss the findings about downstream 

workarounds. 

A. Workaround Generation 
Ma et al. proposed that the workaround was the most 

common practice that the downstream developers used to cope 
with cross-project bugs [2]. Workarounds play a significant 
role since they can bypass the bad impact of bugs while 
waiting for upstream fixes, as well as shield the end user from 
being affected even when they use a buggy upstream version 
[2]. Therefore, when suffering a cross-project bugs, it will be 
of great use if the downstream developers could propose a 
workaround timely. 

In Section IV, we summarized the 60 cross-project bugs 
with workaround into three main categories. The largest 
number of bugs were new cases that the upstream method 
could not process. To temporarily handle the problem, the 
downstream developers may adopt another method with 
similar functionality instead, limit the use of the buggy method 
within the cases that it can handle, or convert the emerging 
case to the form that the buggy method can deal with. When 
facing the cross-project bugs which produce wrong results with 
certain inputs, the downstream developers may continue use 
the original method, but then explicitly transform the outputs 
into the correct form. 

Summarizing the bug types and common workaround 
patterns will be of help for developers to efficiently develop a 
suitable workaround. At the same time, it can also guide the 
design of (automatic) workaround generation tools. From the 
discussion in Section IV.C, the tool is supposed to do the 
following tasks. First, it can search for alternative methods 
which have the same functionality with the buggy method. 
Second, it can extract the conditions where the upstream 
methods do not correctly work. Third, it can adapt the input 
data to the suitable forms that the upstream methods are able to 
process. 

In our opinions, a preferred workaround should follow 
three principles whether generated by hand or by tool. First, the 
workaround could suppress or bypass the upstream bug to 
make the downstream project run normally. Second, the 
workaround is supposed to make as few code changes as 
possible. Ma et al. indicated that the workarounds would be 
removed afterwards [2]. Therefore, the workaround is preferred 
to be designed in a way that does not affect other modules and 
make it easy to deprecate. Third, the workaround is supposed 
to use efficient methods in order not to reduce the performance 
of the project. 

B. Workaround Recommendation 
In a software ecosystem, some central projects are used by 

multiple other projects. For example, in scientific Python 
ecosystem, NumPy is the basic tool and nearly all the projects 
within this ecosystem depend on it. Therefore, an error in a 
popular project like NumPy may break more than one 
downstream projects. All of them may need to work around the 
cross-project bug while waiting for un upstream fix. Under this 
circumstance, a downstream project could benefit from another 
responsive sibling project which has proposed a workaround 
for the same bug. 

Dask/dask#297 shows an example. The project Dask was 
affected by a NumPy bug (numpy/numpy#3484). Then a 
developer found that another project Scikit-learn was suffering 
the same bug. After digging into the code of Scikit-learn, he 
indicated that Dask could learn from Scikit-learn. He 
commented, “Possible solution would be to add a function for 
python 3 compatibility, as scikit-learn did: https://github.com/ 
scikit-learn/scikit-learn/blob/master/sklearn/utils/fixes.py#L8.” 
Then, Dask copied the solution of Scikit-learn to their own 
code as their workaround for the bug. 

An existing workaround in a sibling project reduces the 
workload of the developers suffering the same bug. However, 
to find a suitable workaround from another project seems to be 
a non-trivial task. First, the developers should find out what 
other projects are also affected by the cross-project bug. Then, 
they should get to know how these affected projects deal with 
the bug. Last, they have to select an appropriate workaround 
from these projects and adapt it to their own project. Therefore, 
a workaround recommendation tool which automates the 
process could be useful. 

This tool should be designed to have at least three 
functionalities. First, it can predict what other projects may be 
influenced by the same bug and learnt the workaround from. 
Second, it can check for the code changes to extract 
downstream workarounds. Last, it can compare the context of 
the affected modules in different projects to rank the 
workarounds. The developers are facing several technical 
challenges to develop such a tool, which deserves a further 
study. 

C. Workaround Removing 
As we have stated before, the downstream workaround is a 

temporary solution injected in the downstream projects to cope 
with a cross-project bug. Unlike the corresponding upstream 
fix which is an ultimate and permanent solution, the 
workaround may be modified or discarded later [2]. We indeed 
find some cases which shows that the developers intend to 
remove or change the workarounds in the future. 

  @@ -1248,4 +1215,6 @@ def add_tasks(self, tasks):
1248 1215 def merge_listings(self, listings):
1249 1216        logging.info("Merging {} listings".format(len(listings)))
1250 1217          self.listings = listings.combine_first(self.listings)
 1218 +        #Workaround for issue https://github.com/pydata/pandas/issues/3593
 1219 +        self.listings["time"] = pd.to_datetime(self.listings["time"])
1251 1220          self.listings_dirty = True

Fig. 6.  The downstream workaround inject in Clair 
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Materialsinnovation/pymks#132 reported that Pymks broke 
down due to a bug in Scikit-learn (scikit-learn/scikit-
learn#3984). The downstream developer added key word 
argument size as a short term solution to the current dimension 
requirement for the buggy method from Scikit-learn. He then 
wrote in the commit, “Sklearn developers have already 
removed the dimension requirement on development version of 
the code. Once this version is released, this keyword argument 
should be removed.” In pandas-dev/pandas#9276, the Pandas 
developer proposed a workaround for a NumPy bug 
(numpy/numpy #5562) with a comment that they would 
reconsider that decision once the upstream project fixed the 
bug. Sympy/sympy#9593 included a workaround for another 
NumPy bug (numpy/numpy#5672). The developer left a 
comment in the code that “maxargs is set by numpy compile-
time constant NPY_MAXARGS. If a future version of numpy 
modifies or removes this restriction, this variable should be 
changed or removed.” 

From these example, we see that the downstream 
developers could not decide the exact time to modify or 
remove the workarounds, because the time depends on when 
the responsible upstream projects accomplish certain tasks (e.g., 
releasing a new version or modify specific variables). 
Consequently, the downstream developers need to track the 
progress of their concerning upstream projects, in order to 
maintain their workarounds accordingly. It absolutely adds the 
burden of the downstream maintainers, which is confirmed by 
the respondents of the survey posed by Ma et al [2]. 

In order to reduce the maintenance burden of the 
downstream developers, an automatic workaround 
modification or removing tool is desirable. The tool is 
supposed to detect the occurrence of the upstream event which 
may influence the workaround and give a notification to the 
developers. Another key function of the tool is to (semi-
)automatically remove the workarounds when the workarounds 
could be deprecated. 

Additionally, the time to remove the workarounds is also 
worth studying. The workaround is a landmark case of the 
coordination between the upstream and downstream projects 
during the fixing process of cross-project bugs. To study the 
lifecycle of a workaround will help to understand how 
developers on both sides collaborate with each other to fix 
cross-project bugs and how developers from different projects 
cooperate within a software ecosystem. 

VI. THREATS TO VALIDITY 
In this section, we discuss the threats to validity of our 

study. 

The first threat concerns the accuracy of the identification 
of workarounds and fixes. Kim et al. pointed out that it needed 
high quality bug-fix information to reduce superficial 
conclusions, but many bug-fixes were polluted [28]. In order to 
identify the workarounds and fixes, two authors individually 
reviewed the issue reports and manually related commits 
indicated in the reports. They then cross-checked each other’s 
results to maximize the accuracy of the data under 
investigation.  

The second threat concerns the unknown effect of the 
deviation of the variables under statistical tests (the size of the 
workaround/fix) from the normal distribution. To mitigate 
these threats, our conclusions have been supported by proper 
statistical tests. We chose Wilcoxon signed-rank test and the 
Cliff’s  effect size, because they are nonparametric tests 
which do not require any assumption on the underlying data 
distribution. 

The third threat concerns the researchers’ preconceptions. 
The two authors that conducted the manual analysis followed 
the same procedure and criteria in collecting the studied 
dataset, identifying and comparing fixes and workarounds, as 
well as summarizing bug features and workaround patterns. 
However, it is in general difficult to completely eliminate the 
influence of researchers’ preconceptions. In order to minimize 
personal bias, they discuss the results, especially the unclear 
cases together. 

The last threat concerns the generalization of our empirical 
results. We conducted our study on the scientific Python 
ecosystem. However, cross-project bugs and downstream 
workarounds do not only occur within the specific ecosystem. 
We cannot assume that our results generalize beyond the 
specific environment where they were conducted. Further 
validation on other ecosystems is desirable. 

VII. CONCLUSION AND FUTURE WORK 
In previous work, proposing a workaround is shown to be a 

common practice for downstream developers to bypass the 
impact of a cross-project bug. In this study, we studied the 
characteristics the downstream workarounds. First, we 
manually identified 60 cross-project bugs which have a 
workaround from 271 cross-project bugs in scientific Python 
ecosystem. Then, with these data, we empirically compared the 
workaround with its corresponding upstream fix, summarized 
the bug features and workaround patterns. The main findings 
of this study is as follows: 

 In general, the size of the workaround is significantly 
smaller than that of the corresponding fix. The fix and 
the workaround usually have different code structures. 

 The cross-project bugs which the downstream 
developers worked around are usually caused by an 
emerging case that the upstream method cannot 
process, or by a wrong output with certain inputs, or 
Python 3 incompatibility. 

 Four patterns of workarounds are identified: using 
another method with similar functionality, restricting 
the buggy method to the range it can process, 
converting the inputs to a processable form, and 
correcting the outputs after using the buggy method. 

The findings in this study also indicate the needs and 
possibility of developing tools supporting workaround 
generation, recommendation, maintenance and removal. In 
future work, we will continue to develop these supporting tools, 
as well as investigate the lifecycle of workarounds in more 
kinds of software ecosystems. 
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