
An empirical study on downstream workarounds for
cross-project bugs

Hui Ding Wanwangying Ma Lin Chen Yuming Zhou Baowen Xu
State Key Laboratory for Novel Software Technology

Nanjing University, China
dinghui85@gmail.com, wwyma@smail.nju.edu.cn, {lchen, zhouyuming, bwxu}@nju.edu.cn

Abstract—GitHub has fostered complicated and enormous
software ecosystems, in which projects depend on and co-evolve
with each other. An error in an upstream project may affect its
downstream projects through inter-dependencies, forming cross-
project bugs. Though the upstream developers should fix the
bugs on their side, proposing a workaround, i.e., a temporary
solution in the downstream project is a common practice for the
downstream developers. In this study, we empirically
investigated the characteristics of downstream workarounds in
the scientific Python ecosystem. Combining the statistical
comparisons and manual inspection, we have the following three
main findings. First, in general, the workarounds and the
corresponding upstream fixes are significantly different in code
size and code structure. Second, there are three kinds of cross-
project bugs that the downstream developers usually work
around. Last, four types of common patterns are identified from
the investigated workarounds. The findings of this study lead to
better understanding of cross-project bugs and the practices of
developers in software ecosystems.

Keywords—GitHub ecosystems; cross-project bugs;
workarounds; practices

I. INTRODUCTION
Benefiting from the social coding capabilities of GitHub,

software development on GitHub has evolved beyond a single
project into socio-technical ecosystems [1]. Projects rely on the
infrastructure or functional components provided by other
projects, forming complex inter-project dependencies. In this
way, some bugs in the upstream projects may affect their
downstream projects through the dependencies. This
phenomenon was confirmed by Ma et al. [2]. In their study,
they investigated cross-project correlated bugs, i.e., causally
related bugs reported to different projects in scientific Python
ecosystem on GitHub, focusing on how developers coordinate
to triage and fix this kind of bugs.

In the context of cross-project bugs, it is no doubt that the
upstream project where the bug roots should provide a radical
cure. However, the affected downstream projects usually offer
a workaround, i.e., a temporary solution locally to bypass the
upstream error. Ma et al. posted a questionnaire in which they
asked what the downstream developers usually did to deal with
cross-project bugs. The result indicated that 89.3% of the
respondents chose to propose a temporary workaround, which
was proven to be the most common practice [2].

Workarounds are important in two folded [2]. First, it can
be used to avoid the long-lasting impact of an upstream bug. A
workaround must be implemented if the upstream team is not
willing or able to fix the bug quickly, and it allows the
downstream project to temporarily suppress the upstream bug.
Second, adding a workaround for an upstream bug enables the
downstream project to support buggy upstream version without
affecting the end users. As many users may still use an old
version of the upstream project, the downstream developers
cannot rely on a fix in the next upstream release. Therefore, the
downstream developers have to work around bugs regardless
of whether they have been already fixed upstream.

Despite the wide use and importance of the workarounds
for cross-project bugs, little work has paid attention on this
issue. Studying the workaround will help to understand not
only the fixing process of cross-project bugs, but also the
coordination between projects in a software ecosystem.
Therefore, we conduct this study to investigate the
characteristics of the downstream workarounds in the context
of cross-project bugs.

We base our study on scientific Python ecosystem on
GitHub. For a cross-project bug, we refer to the patch injected
into the buggy upstream project as the upstream fix, while the
temporary solution provided for the affected downstream
project as the downstream workaround. We make an
investigation of the workarounds from three aspects. First, we
compare the code size and design of the workarounds with
those of the corresponding upstream fixes. Second, we inspect
whether the cross-project bugs that were worked around in
downstream projects have something in common. Third, we
investigate whether software practitioners developed the
workarounds in some common ways.

The main contributions of this study is as follows. First, we
extract 60 downstream workarounds in the scientific Python
ecosystem. Second, we identify three kinds of cross-project
bugs that the downstream developers usually work around.
Third, we summarize four common workaround patterns. Last,
we provide several design requirements for the workaround
supporting tools.

The rest of the paper is organized as follows. Section II
describes related work. Section III presents our research
methodology, and Section IV shows our empirical results. We
propose further discussions on our findings in Section V, and

2017 24th Asia-Pacific Software Engineering Conference

978-1-5386-3681-7/17 $31.00 © 2017 IEEE

DOI 10.1109/APSEC.2017.38

318

2017 24th Asia-Pacific Software Engineering Conference

978-1-5386-3681-7/17 $31.00 © 2017 IEEE

DOI 10.1109/APSEC.2017.38

318

2017 24th Asia-Pacific Software Engineering Conference

978-1-5386-3681-7/17 $31.00 © 2017 IEEE

DOI 10.1109/APSEC.2017.38

318

Authorized licensed use limited to: Northwestern University. Downloaded on June 13,2025 at 21:26:31 UTC from IEEE Xplore. Restrictions apply.

examine threats to validity in Section VI. Finally, Section VII
concludes this paper.

II. RELATED WORK

A. Cross-project Bugs
As the development of software ecosystems, more and

more cross-project bugs appear and attract the attention of an
increasing number of researchers.

Some existing studies showed that cross-project bugs
brought many troubles to ecosystem developers. Decan et al.
[3] reported that the developers in R ecosystems felt it more
and more of a pain if the upstream packages broke. Adams et
al. [4] indicated that the core activity of integration for open
source distributions was synchronizing the newer upstream
version. To avoid the cross-project bugs, developers had to pay
great attention on the synchronizing process. Bavota et al. [5]
found that the upstream upgrade would have strong effects on
downstream projects when there were general dependencies
between them. Their study showed that a large amount of
downstream code had to be modified when the upstream
project changed if the downstream project depended on the
upstream framework or general services. In that case, the
upstream bugs would leave a wide impact on the downstream
projects.

Some other researches focused on the coordination between
developers in different projects during fixing cross-project
bugs. Villarroel et al. [6] leveraged the reviews of App users to
help developers realize the downstream demand. They
classified and prioritized the downstream reviews, so that the
upstream developers were able to catch the important bugs
quickly. Ma et al. [2] studied how developers fixed cross-
project correlated bugs in scientific Python ecosystem.
Combining manual inspection and the results of an online
survey, they revealed how developers, especially those on the
downstream side tracked the root cause of cross-project bugs
and dealt with them to eliminate their bad effects. Our study
bases on and extends that work. We focus on a specific but
common practice of the downstream developers when facing
cross-project bugs, i.e., proposing a workaround.

B. Blocking Bugs
Another special type of bugs is blocking bugs which are to

some extent similar to cross-projects bugs. Blocking bugs
prevent other bugs (in the same or other projects) from being
fixes. It often happens because of a dependency relationship
among software components. Under the environment, the
developers cannot fix their bugs because the modules that they
are fixing depend on other modules that have unresolved bugs.
Due to their severe impact, some researchers have turned their
eyes to blocking bugs.

Garcial and Shihab [7] found that it took two to three times
longer to fix blocking bugs than non-blocked bugs. They then
employed decision tress to predict whether a bug is a blocking
bug or not. They extracted 14 kinds of features to construct the
predictor and evaluated which features were most influential to
indicate the blocking bugs.

Later, Xia et al. [8] proposed a novel method named
ELBlocker to identify blocking bugs with the class imbalance
phenomenon taken into account. ELIbloker utilized more
features and combined multiple classifiers to learn an
appropriate imbalance decision boundary. ELIBloker
outperformed the method in [7] by up to 14.7% F-measure.

Unlike blocking bugs which prevent the fixing of bugs in
the dependent modules, cross-projects bugs occur in upstream
projects but affect the normal operation of the downstream
projects. For the affected downstream modules/projects, the
developers attempt to take some action to be released from the
blocking/cross-project bugs in other components. In this paper,
we investigate the downstream practices when facing cross-
project bugs.

C. Design of Bug Fixes
Fixing software bugs is an important activity during

software maintenance. Developers devote substantial efforts to
design the bug fixes, which reflect the developers’ expertise
and experience. Various studies investigated the nature and
design of bug fixes. Zhong and Su [9] extracted and analyzed
more than 9000 real-world bug fixes from six Java projects.
They obtained 15 findings which could gain insights on
automatic program repair. Pan et al. [10] explored the
underlying bug fix patterns and identified 27 bug fix patterns
that were amenable to automatic detection. Park et al. [11]
analyzed bugs which were fixed more than once to understand
the characteristics of incomplete patches. They revealed that
predicting supplementary patch was a difficult problem. Jiang
et al. [12] conducted an study on the characteristics of Linux
kernel patches that could explain patch acceptance and
reviewing/integration time. Misirli et al. [13] proposed a
measure to study the impact of fix-inducing changes. They
found that the lines of code added, the number of developers
who worked on a change, and the number of prior
modifications on the files modified during a change were the
best indicators of high-impact fix-inducing changes. Echeverria
et al. [14] evaluated developers’ performance on fixing bugs
and propagating the fixes to other products in industrial
Software Product Line.

According to different characteristics of bug fixes,
researches developed various automatic tools to support bug
repair. Goues et al. [13,14] used genetic programming to repair
bugs in C programs, and evaluated what fraction of bugs could
be repaired automatically. They generated a large, indicative
benchmark set for systematic evaluations. Mechtaev et al. [17]
presented a semantics-based repair method applicable for
large-scale real-world software. Gu et al. [18] considered bad
fix problem and implemented a prototype that automatically
detects bad fixes for Java programs.

When fixing bugs, developers may have different options
to design the bug fix. Leszak et al. [19] pointed out that some
defects were not fixed by correcting the real error-causing
component, but rather by a workaround injected at another
location. An online material gives a clear description about the
workaround [20]: “A workaround is a far less elegant solution
to the problem. Typically, a workaround is not viewed as
something that is designed to be a panacea, or cure-all, but

319319319

Authorized licensed use limited to: Northwestern University. Downloaded on June 13,2025 at 21:26:31 UTC from IEEE Xplore. Restrictions apply.

rather as a crude solution to the immediate problem. As a
temporary fix, a workaround will do very well until a suitable
permanent fix can be implemented by project management
personnel.” Murphy-Hill et al. [21] studied why a developer
might choose a workaround instead a fix at a real location.
They summarized six factors: risk management, interface
breakage, consistency, user behavior, cause understanding, and
social factors. Some other studies also paid attention to the
phenomenon of workarounds. Ko et al. [22] found that if a bug
had a known workaround, developers often focused on more
severe bugs. Berglund [23] indicated that bugs could be
worked around and workarounds were relevant in early stages
of the bug fixing process.

Different from most existing studies which investigated the
design of fixes for within-project bugs, our study concentrates
on the characteristics of downstream workarounds in the
context of cross-project bugs.

III. RESEARCH METHODOLOGY
In this section, we first introduce how we collected data in

the study. Then we present the research questions. Finally, we
describe the research methods used to investigate the questions.

A. Data Source
The cross-project bugs under investigation were collected

by Ma et al. [2]. The data are available online1. The dataset
contains 271 pairs of cross-project bugs gathered from
scientific Python ecosystem on GitHub. Every pair includes an
upstream issue reported to the root-cause project and a
downstream issue reported to the affected project. Specifically,
these cross-project bugs involve 204 projects including seven
core libraries in the ecosystem, that is, IPython2 , NumPy3 ,
SciPy4, Matplotlib5, Pandas6, Scikit-learn7, and Astropy8.

Since our study focuses on the workarounds, we are only
interested in the cross-project bugs for which the downstream
developers have provided a workaround. In order to extract the
data we needed, we manually read all the bug reports on the
downstream side of the 271 pairs of bugs. If the downstream
developers were willing to propose a workaround, they were
very likely to leave related information in the issue reports. For
example, a developer of IPython suffering a bug of Setuptools
commented, “I'll open an Issue on setuptools to deal with this,
and figure out what the best workaround in IPython should
be.” (ipython/ipython#8804) Two of the authors of this paper
carried on this task and found 60 pairs of cross-project bugs to
further investigate in this study.

For the 60 pairs of bugs, we concentrated on their
downstream workarounds and the corresponding upstream
fixes. Usually, the upstream issue will link to the bug-fix

1 https://github.com/njuap/ICSE2017
2 http://ipython.org, https://github.com/ipython/ipython
3 http://www.numpy.org, https://github.com/numpy/numpy
4 http://www.scipy.org/scipylib, https://github.com/scipy/scipy
5 http://matplotlib.org, https://github.com/matplotlib/matplotlib
6 http://pandas.pydata.org, https://github.com/pydata/pandas
7 http://scikit-learn.org, https://github.com/scikit-learn/scikit-learn
8 http://www.astropy.org, https://github.com/astropy/astropy

commits if it has been repaired. Also, if the downstream issue
was worked around, the commits including the workaround
would be indicated. By manually inspecting the issue reports,
the two authors linked every pair of closed cross-project bugs
with the commits containing the fix/workaround. Note that
nine cross-project bugs have not been fixed by the upstream
projects. Therefore, in total, we collected 60 downstream
workarounds and 51 upstream fixes.

B. Research Questions
The aim of this study is to investigate the characteristics of

downstream workarounds in the context of cross-project bugs.
In particular, we attempt to answer the following three research
questions:

RQ1: Are there differences between downstream
workarounds and the corresponding upstream fixes?

Compared with the upstream fix, the workaround is
injected in a different project and serves a different purpose.
Therefore, is the design of workaround different from that of
the fix? We compared them in two aspects: the code size and
code structure.

RQ2: Do the cross-project bugs that downstream
developers work around have some common features?

As stated, not all of the cross-project bugs have
workarounds. Then what features do these 60 bugs with
workarounds have in common? In RQ2, we sought to find the
answer.

RQ3: Do the workarounds have some common patterns?

In RQ3, we attempted to find whether downstream
developers worked around the upstream bugs in some common
ways.

C. Research Methods
1) Quantitative analysis methods
In RQ1, the Wilcoxon signed-rank test and the Cliff’s

served to compare the code size between the upstream fixes
and the downstream workarounds.

The Wilcoxon signed-rank test is a non-parametric
statistical hypothesis test used to compare whether two
matched groups of data are identical [24]. The paired sample in
our study are the sizes (concerning the number of modified
files or the number of changed lines of code) in the
downstream workarounds and upstream fixes. We set the null
hypothesis H0 and its alternative hypothesis H1 as follows:

H0: The number of modified files / the number of changed
lines of code in the downstream workarounds is the same as
that in the upstream fixes.

H1: The number of modified files / the number of changed
lines of code in the downstream workarounds is significantly
different from that in the upstream fixes.

We assessed the test results at the significance level of
0.05. If the p-value obtained from the Wilcoxon signed-rank
test was lower than 0.05, the sizes of workarounds and fixes
were considered significantly different. Together with the

320320320

Authorized licensed use limited to: Northwestern University. Downloaded on June 13,2025 at 21:26:31 UTC from IEEE Xplore. Restrictions apply.

median values of the sizes, we were able to decide whether the
size of workaround was smaller than the size of its
corresponding fix.

Furthermore, we used the Cliff’s effect size to measure
the magnitude of the difference between the sizes of
workarounds and fixes. Cliff’s provides a simple way of
quantifying the practical difference between two groups [25].
Of all kinds of effect sizes, Cliff’s is the most direct and
simple variety of a non-parametric one [26]. By convention,
the magnitude of the difference is considered either trivial (| | <
0.147), small (0.147-0.33), moderate (0.33-0.474), or large (>
0.474) [27].

2) Qualitative analysis
For RQ2, RQ3, and part of RQ1, we performed a

qualitative analysis to investigate the questions. Two authors
manually inspected the issue reports and the code of
fixes/workarounds for the cross-project bugs.

The two authors first individually completed the task
following the same procedure and criteria. They reviewed the
issue reports and code carefully, then executed the existing test
cases provided by the developers to keep track of traces and to
observe the input/output. During this procedure, they wrote
down some necessary information: the bug information (bug
type, root cause, bug impact, and participants), the bug context
(related methods, test cases, traces, and input/output), and the
workaround and fix strategies. And they also wrote down their
findings.

 After individual investigation, they came together to
discuss their findings and draw conclusions.

IV. RESEARCH RESULTS

A. RQ1:Differences Between Fixes and Workarounds
In order to compare the upstream fixes and the downstream

workarounds, we first statistically compared their sizes in
terms of the number of modified files and the number of
modified lines of code. Then, we inspected the code structure
of fixes and workarounds to see whether they were different.

Among the 60 pairs of cross-project bugs, nine of them
have not been fixed in the upstream projects until now.
Therefore, we could not compare their workarounds with
upstream fixes. In RQ1, we only investigated the remaining 51
pairs of cross-project bugs.

1) Statistical comparision of the size
TABLE I. shows the minimum, the maximum, and the

average values, as well as the 25th, 50th, and 75th percentiles
of workaround/fix size. To facilitate a visual comparison, we
also use boxplots to illustrate the size distributions (Fig. 1). It is

clear that the number of modified files and the number of
modified lines of code in workarounds are both smaller than
those in fixes.

#files #SLOC

Fig. 1. Comparision of the size of fixes and workarounds

We also adopted the Wilcoxon signed-rank test and Cliff's
 effect size to statistically compare the workarounds and fixes.

The results are shown in TABLE II. The p-values less than
0.05 indicate that the number of modified files and the number
of modified lines of code are significantly different between
the workarounds and fixes. The values of Cliff’s mean that
the difference in the number of changed files between them is
small, but the difference in the number of modified lines of
code is large.

TABLE II. RESULTS OF THE STATISTICAL TESTS

 #Files #SLOC
P-value 0.019 0.014
| | 0.232 0.771

Combining the boxplots and the results of statistical tests,
we conclude that the size of the workaround is significantly
smaller than the size of the corresponding upstream fix.

2) Inspection of code
After statistically comparing the size of the downstream

workarounds and the corresponding upstream fixes, we looked
into the their code to make a further investigation.

In general, for eight out of the 51 cross-projects bugs, the
upstream fix and the corresponding downstream workaround
were designed in the same manner. The developers from both
sides had similar idea to modify their own projects when facing
the bug. For example, using the Astropy normalizer led to a

TABLE I. THE SIZES OF THE UPSTREAM FIXES AND DOWNSTREAM WORKAROUNDS

 Min. Max. Avg. 25th 50th 75th

#Files Fixes 1 8 3 2 2 4
Workarounds 1 6 2 1 2 3

#SLOC Fixes 1 829 93 19 36 105
Workarounds 1 662 61 10 26 45

321321321

Authorized licensed use limited to: Northwestern University. Downloaded on June 13,2025 at 21:26:31 UTC from IEEE Xplore. Restrictions apply.

TypeError in Sunpy when playing a mapcube peek animation
(sunpy/sunpy#1532). It was caused by a bug in
ImageNormalize class of Astropy which did not include a call
to the inherited method autoscale_None() (astropy/astropy
#4117). To address this problem, both Sunpy and Astropy used
an explicit call to autoscale_None(). Fig. 2 shows the
downstream workaround and upstream fix for this bug.
Additionally, it is worth noting that the fix and the workaround
were proposed by the same developer. Another example is
shown in astropy/astropy#3052 which was caused by
numpy/numpy #5251. The downstream workaround was just a
copy of the upstream fix for the cross-project bug.

For the remaining 43 out of the 51 cross-project bugs, the
downstream developers worked around them in a different way
from what the upstream developers did to fix the bugs. This
seems to accord with our intuition. Whether for within-project
or cross-project bugs, a workaround is a short-term solution
injected in a place other than the true root-cause location. For
cross-project bugs, the workaround is placed in the
downstream project where the upstream buggy method is
called, while the ultimate fix is to repair the buggy method
itself. Intuitively, the two kinds of modification are usually
different, which is confirmed by our observations.

In Section IV.C, we will discuss the workaround patterns in
detail.

B. RQ2:Common Bug Features
By manually inspecting the issues reports of the 60 cross-

project bugs, we found that some bugs did have something in
common. We totally identified three kinds of common features.
Forty-nine investigated bugs could be classified into the
remaining 11 bugs have distinct characteristics themselves and
cannot be put into any category.

1) Emerging cases
A cross-project bug was reported when the downstream

project encountered an emerging case that the upstream
method did not cover. Thirty-nine of the 60 cross-project bugs
could be classified into this kind. More specifically, we divided
the 39 bugs into two subcategories.

First, the original upstream method could not process
certain types or forms of data. For example,
astropy/astropy#3052 reported that a method in NumPy did not
use suitable format for Unicode data (numpy/numpy#5251).
Astropy/astropy#4658 was caused by np.median from NumPy
that could not handle the masked arrays (numpy/numpy#7330).
Luca-dex/pyTSA#18 worked around an upstream bug that
Pandas could not read csv files if the column separator was not
comma (pandas-dev/pandas#2733).

Second, the upstream method might not consider the
processing of edge cases. For example, the method
utilities.autowrap.ufuncify in Sympy failed when the length of
the symbol list was larger than 31 (sympy/sympy#9593). The
failure resulted from an error in the method frompyfunc of
NumPy, which did not check the number of arguments
(numpy/numpy#5672).

2) Wrong outputs
Sometimes, the upstream methods might produce wrong

results with specific inputs which could break their
downstream projects. Six of the studied upstream bugs were
caused by wrong outputs.

The wrong outputs are partly caused by the incorrect design
of the functionality. Blaze/odo#331 was caused by the wrong
output of datetime64 series in Pandas. The method should
return NAT instead of NaN with an empty series (pandas-
dev/pandas#11245). In NumPy, np.log1p(inf) returned NaN
while it should return Inf (numpy/numpy#4225), which led to

 @@ -203,7 +205,11 @@ def updatefig(i, im, annotate, ani_data, removes):
203 205
204 206 im.set_array(ani_data[i].data)
205 207 im.set_cmap(self.maps[i].plot_settings['cmap'])
206 - im.set_norm(self.maps[i].plot_settings['norm'])
 208 +
 209 + norm = deepcopy(self.maps[i].plot_settings['norm'])
 210 + # The following explicit call is for bugged versions of Astropy's ImageNormalize
 211 + norm.autoscale_None(ani_data[i].data)
 212 + im.set_norm(norm)

(a). The dowsntream workaround

 @@ -67,5 +67,8 @@ def __call__(self, values, clip=None):
67 67 # copy because of in-place operations after
68 68 values = np.array(values, copy=True, dtype=float)
69 69
 70 + # Set default values for vmin and vmax if not specified
 71 + self.autoscale_None(values)
 71 +
70 73 # Normalize based on vmin and vmax
71 74 np.subtract(values, self.vmin, out=values)

(b). The upstream fix

Fig. 2. The comparision of the code for the dowsntream workaround and the corresponding upstream fix

322322322

Authorized licensed use limited to: Northwestern University. Downloaded on June 13,2025 at 21:26:31 UTC from IEEE Xplore. Restrictions apply.

an undesired result in Nengo (nengo/nengo#260).

Some other unexpected outputs of the upstream methods
were introduced by the carelessly incompatible changes when
the upstream developers fixed another bug or developed a new
feature. For example, the method combine_first in new version
of Pandas performed an unwanted conversion of dates to
integers (pandas-dev/pandas#3593), which made some
modules of Clair unusable (eike-welk/clair/#43).

3) Python 3 incompatibility
Some upstream methods could not perform correctly under

Python 3 while they could work perfectly under Python 2.
Then, when running downstream projects in Python 3, the
original upstream method resulted in a bug. For example,
method loadtxt in NumPy failed with complex data in Python 3
(numpy/numpy#5655), which affected its downstream project
msmtools (markovmodel/msmtools#18). Totally, four of the 60
cross-project bugs are due to Python 3 incompatibility.

C. RQ3: Workaround Patterns
After investigating the characteristics of cross-project bugs

with workarounds, we summarized the common patterns from
the studied workarounds. Generally, we found four
workaround patterns covering the workarounds for 37 cross-
project bugs.

1) Pattern 1: Using a different method
When an upstream method that the downstream project

used has a bug, it is a simple way to replace the buggy one with
a similar method.

Example: The Obspy developer experienced segmentation
faults on certain systems when constructing a NumPy array
(obspy/obspy#536). After investigation, this bug was caused by
an error in np.array (numpy/numpy#3175). The downstream
developers worked around the cross-project bug by using
np.frombuffer instead of np.array. Fig. 3 shows the
downstream workaround.

Ten out of the 60 workarounds were designed to adopt
another method that could provide the same functionality.
However, most of the replacements were provided by the
original upstream projects. As in the example above,
np.frombuffer and np.array comes from the same project
NumPy. This phenomenon implies two things. First, some
libraries may tend to develop multiple methods with
overlapping capabilities. Second, the downstream projects are
not willing to change their dependencies. It is reasonable since

adding a new dependency means that more effort should be
laid on downstream project to understand the release cycle of
the new upstream project and to coordinate with it.

The main challenge in proposing this kind of workaround
lies in two aspects. The first is to find a replacement method
that is preferably designed by identical upstream project or at
least a stable project. Second, the parameters should be
carefully modified to fit the new method since it may require a
different kind of parameter compared with the buggy method.
The challenge also indicates that an automatic tool to
recommend similar APIs and adapt parameters will be useful
for developers to work around a cross-project bug.

2) Pattern 2: Conditionally using the original method
As we have stated in IV.B, most of the cross-project bugs

are caused by one or more uncovered cases of the upstream
methods. Therefore, an intuitive way to work around the bug is
to only use the method in the cases that will not result in a
failure.

Example: Scipy/scipy#3596 recorded a bug that
scipy.signal.fftconvolve did not work well in multithreaded
environments. After digging into this issue, the developers
found that scipy.signal.fftconvolve made use of numpy.fft.rfftn
/irfftn for non-complex inputs and it was NumPy’s FFT
routines that were actually not thread safe. Though later
numpy/numpy#4655 fixed the bug in NumPy, the SciPy
developers still thought that they should work around it in their
side, because they support older NumPy version that did not
have the fix. Fig. 4 shows the downstream workaround. For
pre-1.9 NumPy, if there are non-complex inputs, SciPy only
calls numpy.fft.rfftn /irfftn from one thread at a time to be
thread safe. In other cases, they use their own FFT method
instead.

However, though this workaround helped the users get out
of trouble, it seemed a little complex. A developer proposed
that the easiest workaround would be to convert the non-
complex inputs to complex inputs (by adding 0j) so they were
processed by SciPy’s FFT routine instead of the buggy
NumPy’s RFFT method. This idea was disapproved by other
developers. Because the NumPy’s RFFT method is
significantly faster, it is better to use this method whenever
possible. Just as another SciPy developer commented,
“Whatever fix is done on the SciPy side, it would be nice if it
didn't prevent someone who had a new enough (fixed) NumPy
from using the newer RFFT method multithreaded.”

 @@ -109,5 +109,5 @@ def getSequenceNumber(self):
109 109 def getMSRecord(self):
110 110 # following from obspy.mseed.tests.test_libmseed
111 111 msr = clibmseed.msr_init(C.POINTER(MSRecord)())
112 - pyobj = np.array(self.msrecord)
 112 + pyobj = np.frombuffer(self.msrecord, dtype=np.uint8)
113 113 errcode = \

Fig. 3. The downstream workaround injected in Obspy

323323323

Authorized licensed use limited to: Northwestern University. Downloaded on June 13,2025 at 21:26:31 UTC from IEEE Xplore. Restrictions apply.

Fifteen out of the 60 workarounds were designed to restrict
the use of the buggy upstream method to its covered cases.
There are two key points in proposing a workaround of this
kind. First, the developers should determine under what
conditions the original used upstream method would fail, i.e.,
the uncovered cases. Usually, developers could find the answer
during the process of diagnosing the bug. After that, it is
important to decide how to deal with the failed cases. During
inspecting the 11 workarounds, we find that the developers
either made used of another method or just raised an error or an
exception (e.g., sympy/sympy#9593).

3) Pattern 3: Adapting the inputs to use original method
To avoid the failure caused by the uncovered cases,

developers may also choose to convert their inputs into a
processable form which can be correctly handled by the buggy
upstream method.

Example: Pyhrf/pyhrf#146 reported test failure which
seemed to come from scipy.misc.fromimage. When trying to
open 1-bit images, the SciPy method would produce a
segmentation fault. In order to avoid the failure, the Pyhrf
developers decided to first convert the 1-bit image into an 8-bit
image which could be dealt with by the SciPy method. Fig.5
shows the downstream workaround.

Nine out of the 60 studied workarounds conform to this
pattern. Though it seems to be a direct way to convert an

uncovered case to a covered case in order to use the original
upstream routine, this method is not always feasible.

4) Pattern 4: Converting the ouputs of the original method
To work around the buggy upstream methods that produce

wrong outputs with certain inputs, the downstream developers
possibly choose to convert the wrong results to their desired
ones.

Example: The method combine_first in Pandas falsely
converted of dates to integers (pandas-dev/pandas#3593). To
bypass the bug, its downstream project Clair explicitly called
pd.to_datatime to convert the time-related data from integers to
dates (eike-welk/clair/#43). Fig. 6 shows the downstream
workaround.

Apart from this example, two other downstream projects
worked around cross-project bugs in this way.

@@ -166,4 +166,6 @@ def load_drawn_labels(name):
166 166 from scipy.misc import fromimage
167 167 from PIL import Image
168 - labels = fromimage(Image.open(fn))

168 + labels_image = Image.open(fn)
169 + labels_image = labels_image.convert("L")
170 + labels = fromimage(labels_image)

169 171 return labels[np.newaxis, :, :]

Fig. 5. The downstream workaround injected in Pyhrf

 @@ -38,2 +40,7 @@
38 40

 41 +_rfft_mt_safe = (NumpyVersion(np.__version__) >= '1.9.0.dev-e24486e')
 42 +
 43 +_rfft_lock = threading.Lock()
39 46 def _valfrommode(mode):
 @@ -344,10 +351,21 @@ def fftconvolve(in1, in2, mode="full"):
344 351 fslice = tuple([slice(0, int(sz)) for sz in shape])
345 - if not complex_result:
346 - ret = irfftn(rfftn(in1, fshape) *
347 - rfftn(in2, fshape), fshape)[fslice].copy()
348 - ret = ret.real
 352 + # Pre-1.9 NumPy FFT routines are not threadsafe. For older NumPys, make
 353 + # sure we only call rfftn/irfftn from one thread at a time.
 354 + if not complex_result and (_rfft_mt_safe or _rfft_lock.acquire(False)):
 355 + try:
 356 + ret = irfftn(rfftn(in1, fshape) *
 357 + rfftn(in2, fshape), fshape)[fslice].copy()
 358 + finally:
 359 + if not _rfft_mt_safe:
 360 + _rfft_lock.release()
349 361 else:
 362 + # If we're here, it's either because we need a complex result, or we
 363 + # failed to acquire _rfft_lock (meaning rfftn isn't threadsafe and
 364 + # is already in use by another thread). In either case, use the
 365 + # (threadsafe but slower) SciPy complex-FFT routines instead.
350 366 ret = ifftn(fftn(in1, fshape) * fftn(in2, fshape))[fslice].copy()
 367 + if not complex_result:
 368 + ret = ret.real
351 369
352 370 if mode == "full":
353 371 return ret

Fig. 4. The downstream workaround injected in Scipy

324324324

Authorized licensed use limited to: Northwestern University. Downloaded on June 13,2025 at 21:26:31 UTC from IEEE Xplore. Restrictions apply.

V. DISCUSSION
In this section, we discuss the findings about downstream

workarounds.

A. Workaround Generation
Ma et al. proposed that the workaround was the most

common practice that the downstream developers used to cope
with cross-project bugs [2]. Workarounds play a significant
role since they can bypass the bad impact of bugs while
waiting for upstream fixes, as well as shield the end user from
being affected even when they use a buggy upstream version
[2]. Therefore, when suffering a cross-project bugs, it will be
of great use if the downstream developers could propose a
workaround timely.

In Section IV, we summarized the 60 cross-project bugs
with workaround into three main categories. The largest
number of bugs were new cases that the upstream method
could not process. To temporarily handle the problem, the
downstream developers may adopt another method with
similar functionality instead, limit the use of the buggy method
within the cases that it can handle, or convert the emerging
case to the form that the buggy method can deal with. When
facing the cross-project bugs which produce wrong results with
certain inputs, the downstream developers may continue use
the original method, but then explicitly transform the outputs
into the correct form.

Summarizing the bug types and common workaround
patterns will be of help for developers to efficiently develop a
suitable workaround. At the same time, it can also guide the
design of (automatic) workaround generation tools. From the
discussion in Section IV.C, the tool is supposed to do the
following tasks. First, it can search for alternative methods
which have the same functionality with the buggy method.
Second, it can extract the conditions where the upstream
methods do not correctly work. Third, it can adapt the input
data to the suitable forms that the upstream methods are able to
process.

In our opinions, a preferred workaround should follow
three principles whether generated by hand or by tool. First, the
workaround could suppress or bypass the upstream bug to
make the downstream project run normally. Second, the
workaround is supposed to make as few code changes as
possible. Ma et al. indicated that the workarounds would be
removed afterwards [2]. Therefore, the workaround is preferred
to be designed in a way that does not affect other modules and
make it easy to deprecate. Third, the workaround is supposed
to use efficient methods in order not to reduce the performance
of the project.

B. Workaround Recommendation
In a software ecosystem, some central projects are used by

multiple other projects. For example, in scientific Python
ecosystem, NumPy is the basic tool and nearly all the projects
within this ecosystem depend on it. Therefore, an error in a
popular project like NumPy may break more than one
downstream projects. All of them may need to work around the
cross-project bug while waiting for un upstream fix. Under this
circumstance, a downstream project could benefit from another
responsive sibling project which has proposed a workaround
for the same bug.

Dask/dask#297 shows an example. The project Dask was
affected by a NumPy bug (numpy/numpy#3484). Then a
developer found that another project Scikit-learn was suffering
the same bug. After digging into the code of Scikit-learn, he
indicated that Dask could learn from Scikit-learn. He
commented, “Possible solution would be to add a function for
python 3 compatibility, as scikit-learn did: https://github.com/
scikit-learn/scikit-learn/blob/master/sklearn/utils/fixes.py#L8.”
Then, Dask copied the solution of Scikit-learn to their own
code as their workaround for the bug.

An existing workaround in a sibling project reduces the
workload of the developers suffering the same bug. However,
to find a suitable workaround from another project seems to be
a non-trivial task. First, the developers should find out what
other projects are also affected by the cross-project bug. Then,
they should get to know how these affected projects deal with
the bug. Last, they have to select an appropriate workaround
from these projects and adapt it to their own project. Therefore,
a workaround recommendation tool which automates the
process could be useful.

This tool should be designed to have at least three
functionalities. First, it can predict what other projects may be
influenced by the same bug and learnt the workaround from.
Second, it can check for the code changes to extract
downstream workarounds. Last, it can compare the context of
the affected modules in different projects to rank the
workarounds. The developers are facing several technical
challenges to develop such a tool, which deserves a further
study.

C. Workaround Removing
As we have stated before, the downstream workaround is a

temporary solution injected in the downstream projects to cope
with a cross-project bug. Unlike the corresponding upstream
fix which is an ultimate and permanent solution, the
workaround may be modified or discarded later [2]. We indeed
find some cases which shows that the developers intend to
remove or change the workarounds in the future.

 @@ -1248,4 +1215,6 @@ def add_tasks(self, tasks):
1248 1215 def merge_listings(self, listings):
1249 1216 logging.info("Merging {} listings".format(len(listings)))
1250 1217 self.listings = listings.combine_first(self.listings)
 1218 + #Workaround for issue https://github.com/pydata/pandas/issues/3593
 1219 + self.listings["time"] = pd.to_datetime(self.listings["time"])
1251 1220 self.listings_dirty = True

Fig. 6. The downstream workaround inject in Clair

325325325

Authorized licensed use limited to: Northwestern University. Downloaded on June 13,2025 at 21:26:31 UTC from IEEE Xplore. Restrictions apply.

Materialsinnovation/pymks#132 reported that Pymks broke
down due to a bug in Scikit-learn (scikit-learn/scikit-
learn#3984). The downstream developer added key word
argument size as a short term solution to the current dimension
requirement for the buggy method from Scikit-learn. He then
wrote in the commit, “Sklearn developers have already
removed the dimension requirement on development version of
the code. Once this version is released, this keyword argument
should be removed.” In pandas-dev/pandas#9276, the Pandas
developer proposed a workaround for a NumPy bug
(numpy/numpy #5562) with a comment that they would
reconsider that decision once the upstream project fixed the
bug. Sympy/sympy#9593 included a workaround for another
NumPy bug (numpy/numpy#5672). The developer left a
comment in the code that “maxargs is set by numpy compile-
time constant NPY_MAXARGS. If a future version of numpy
modifies or removes this restriction, this variable should be
changed or removed.”

From these example, we see that the downstream
developers could not decide the exact time to modify or
remove the workarounds, because the time depends on when
the responsible upstream projects accomplish certain tasks (e.g.,
releasing a new version or modify specific variables).
Consequently, the downstream developers need to track the
progress of their concerning upstream projects, in order to
maintain their workarounds accordingly. It absolutely adds the
burden of the downstream maintainers, which is confirmed by
the respondents of the survey posed by Ma et al [2].

In order to reduce the maintenance burden of the
downstream developers, an automatic workaround
modification or removing tool is desirable. The tool is
supposed to detect the occurrence of the upstream event which
may influence the workaround and give a notification to the
developers. Another key function of the tool is to (semi-
)automatically remove the workarounds when the workarounds
could be deprecated.

Additionally, the time to remove the workarounds is also
worth studying. The workaround is a landmark case of the
coordination between the upstream and downstream projects
during the fixing process of cross-project bugs. To study the
lifecycle of a workaround will help to understand how
developers on both sides collaborate with each other to fix
cross-project bugs and how developers from different projects
cooperate within a software ecosystem.

VI. THREATS TO VALIDITY
In this section, we discuss the threats to validity of our

study.

The first threat concerns the accuracy of the identification
of workarounds and fixes. Kim et al. pointed out that it needed
high quality bug-fix information to reduce superficial
conclusions, but many bug-fixes were polluted [28]. In order to
identify the workarounds and fixes, two authors individually
reviewed the issue reports and manually related commits
indicated in the reports. They then cross-checked each other’s
results to maximize the accuracy of the data under
investigation.

The second threat concerns the unknown effect of the
deviation of the variables under statistical tests (the size of the
workaround/fix) from the normal distribution. To mitigate
these threats, our conclusions have been supported by proper
statistical tests. We chose Wilcoxon signed-rank test and the
Cliff’s effect size, because they are nonparametric tests
which do not require any assumption on the underlying data
distribution.

The third threat concerns the researchers’ preconceptions.
The two authors that conducted the manual analysis followed
the same procedure and criteria in collecting the studied
dataset, identifying and comparing fixes and workarounds, as
well as summarizing bug features and workaround patterns.
However, it is in general difficult to completely eliminate the
influence of researchers’ preconceptions. In order to minimize
personal bias, they discuss the results, especially the unclear
cases together.

The last threat concerns the generalization of our empirical
results. We conducted our study on the scientific Python
ecosystem. However, cross-project bugs and downstream
workarounds do not only occur within the specific ecosystem.
We cannot assume that our results generalize beyond the
specific environment where they were conducted. Further
validation on other ecosystems is desirable.

VII. CONCLUSION AND FUTURE WORK
In previous work, proposing a workaround is shown to be a

common practice for downstream developers to bypass the
impact of a cross-project bug. In this study, we studied the
characteristics the downstream workarounds. First, we
manually identified 60 cross-project bugs which have a
workaround from 271 cross-project bugs in scientific Python
ecosystem. Then, with these data, we empirically compared the
workaround with its corresponding upstream fix, summarized
the bug features and workaround patterns. The main findings
of this study is as follows:

 In general, the size of the workaround is significantly
smaller than that of the corresponding fix. The fix and
the workaround usually have different code structures.

 The cross-project bugs which the downstream
developers worked around are usually caused by an
emerging case that the upstream method cannot
process, or by a wrong output with certain inputs, or
Python 3 incompatibility.

 Four patterns of workarounds are identified: using
another method with similar functionality, restricting
the buggy method to the range it can process,
converting the inputs to a processable form, and
correcting the outputs after using the buggy method.

The findings in this study also indicate the needs and
possibility of developing tools supporting workaround
generation, recommendation, maintenance and removal. In
future work, we will continue to develop these supporting tools,
as well as investigate the lifecycle of workarounds in more
kinds of software ecosystems.

326326326

Authorized licensed use limited to: Northwestern University. Downloaded on June 13,2025 at 21:26:31 UTC from IEEE Xplore. Restrictions apply.

ACKNOWLEDGMENT
This work is supported by the National Natural Science

Foundation of China (61472175, 61472178, 91418202) and the
National Natural Science Foundation of Jiangsu Province
(BK20130014).

REFERENCES
[1] E. Kalliamvakou, G. Gousios, K. Blincoe, L. Singer, D. M. German,

and D. Damian, "An in-depth study of the promises and perils of
mining GitHub", Empirical Software Engineering, pp. 1–37, 2015.

[2] W. Ma, L. Chen, X. Zhang, Y. Zhou, and B. Xu, "How do developers
fix cross-project correlated bugs? A case study on the GitHub scientific
Python ecosystem", in Proceedings of the 39th International
Conference on Software Engeneering, 2017, p. Accepted.

[3] A. Decan, T. Mens, M. Claes, and P. Grosjean, "When GitHub meets
CRAN: an analysis of inter-repository package dependency problems",
in Procedings of International Conference on Software Analysis,
Evolution, and Reengineering, 2016, pp. 493–504.

[4] B. Adams, R. Kavanagh, A. E. Hassan, and D. M. German, "An
empirical study of integration activities in distributions of open source
software", Empirical Software Engineering, vol. 21, no. 3, pp. 960–
1001, Jun. 2016.

[5] G. Bavota, G. Canfora, M. Di Penta, R. Oliveto, and S. Panichella,
"How the Apache community upgrades dependencies: an evolutionary
study", Empirical Software Engineering, vol. 20, no. 5, pp. 1275–1317,
Oct. 2015.

[6] L. Villarroel, G. Bavota, B. Russo, R. Oliveto, and M. Di Penta,
"Release planning of mobile apps based on user reviews", in
Proceedings of the 38th International Conference on Software
Engineering, 2016, pp. 14–24.

[7] H. Valdivia Garcia and E. Shihab, "Characterizing and predicting
blocking bugs in open source projects", in Proceedings of the 11th
Working Conference on Mining Software Repositories, 2014, pp. 72–
81.

[8] X. Xia, D. Lo, E. Shihab, X. Wang, and X. Yang, "ELBlocker:
Predicting blocking bugs with ensemble imbalance learning",
Information and Software Technology, vol. 61, pp. 93–106, May 2015.

[9] H. Zhong and Z. Su, "An empirical study on real bug fixes", in
Proceedings of the 37th International Conference on Software
Engineering, 2015, vol. 1, pp. 913–923.

[10] K. Pan, S. Kim, and E. J. Whitehead, "Toward an understanding of bug
fix patterns", Empirical Software Engineering, vol. 14, no. 3, pp. 286–
315, Jun. 2009.

[11] J. Park, M. Kim, and D.-H. Bae, "An empirical study of supplementary
patches in open source projects", Empirical Software Engineering, vol.
22, no. 1, pp. 436–473, May 2016.

[12] Y. Jiang, B. Adams, and D. M. German, "Will my patch make it? and
how fast?: case study on the Linux kernel", in Proceedings of the 10th
Working Conference on Mining Software Repositories, 2013, pp. 101–
110.

[13] A. T. Misirli, E. Shihab, and Y. Kamei, "Studying high impact fix-
inducing changes", Empirical Software Engineering, vol. 21, no. 2, pp.
605–641, Apr. 2016.

[14] J. Echeverria, F. Perez, A. Abellanas, J. I. Panach, C. Cetina, and O.
Pastor, "Evaluating bug-fixing in Software Product Lines: an industrial
cas study", in Proceedings of the 10th ACM/IEEE International
Symposium on Empirical Software Engineering and Measurement,
2016, pp. 1–6.

[15] C. Le Goues, T. Nguyen, S. Forrest, and W. Weimer, "GenProg: a
generic method for automatic software repair", IEEE Transactions on
Software Engineering, vol. 38, no. 1, pp. 54–72, Jan. 2012.

[16] C. Le Goues, M. Dewey-Vogt, S. Forrest, and W. Weimer, "A
systematic study of automated program repair: fixing 55 out of 105
bugs for $8 each", in Proceedings of the 34th International Conference
on Software Engineering, 2012, pp. 3–13.

[17] S. Mechtaev, J. Yi, and A. Roychoudhury, "Angelix: scalable multiline
program patch synthesis via symbolic analysis", in Proceedings of the
38th International Conference on Software Engineering, 2016, pp.
691–701.

[18] Z. Gu, E. T. Barr, D. J. Hamilton, and Z. Su, "Has the bug really been
fixed?", in Proceedings of the 32nd ACM/IEEE International
Conference on Software Engineering, 2010, vol. 1, p. 55.

[19] M. Leszak, D. E. Perry, and D. Stoll, "A case study in root cause defect
analysis", in Proceedings of the 22nd international conference on
Software engineering, 2000, pp. 428–437.

[20] "Workaround - Project Management Knowledge". [Online]. Available:
https://project-management-
knowledge.com/definitions/w/workaround/. [Accessed: 08-Apr-2017].

[21] E. Murphy-Hill, T. Zimmermann, C. Bird, and N. Nagappan, "The
design of bug fixes", in Proceedings of 35th International Conference
on Software Engineering, 2013, pp. 332–341.

[22] A. J. Ko, R. DeLine, and G. Venolia, "Information needs in collocated
software development Teams", in Proceedings of the 29th International
Conference on Software Engineering, 2007, pp. 344–353.

[23] E. Berglund, "Communicating bugs: global bug knowledge
distribution", Information and Software Technology, vol. 47, no. 11,
pp. 709–719, 2005.

[24] J. D. Gibbons and D. A. Wolfe, Nonparametric Statistical Inference.
2003.

[25] E. a. Freeman and G. G. Moisen, "A comparison of the performance of
threshold criteria for binary classification in terms of predicted
prevalence and kappa", Ecological Modelling, vol. 217, no. 1–2, pp.
48–58, 2008.

[26] G. MacBeth, E. Razumiejczyk, and R. Ledsema, "Cliff’s Delta
calculator: a non-parametric effect size program for two groups of
observations", Universitas Psychologica, vol. 10, no. 2, pp. 545–555,
2012.

[27] Y. Yang, Y. Zhou, H. Lu, L. Chen, Z. Chen, and B. Xu, "Are slice-
based cohesion metrics actually useful in effort-aware post-release
fault-proneness prediction ? An empirical study", IEEE Transactions
on Software Engineering, vol. 41, no. 4, pp. 331–357, 2015.

[28] S. Kim, H. Zhang, R. Wu, and L. Gong, "Dealing with noise in defect
prediction", in Proceedings of the 33rd International Conference on
Software Engineering, 2011, pp. 481–490.

327327327

Authorized licensed use limited to: Northwestern University. Downloaded on June 13,2025 at 21:26:31 UTC from IEEE Xplore. Restrictions apply.

