
Code Reuse in Stack Overflow and Popular Open Source Java
Projects

Adriaan Lotter
Department of Information Science

University of Otago
Dunedin, New Zealand

adriaan.lotter@otago.ac.nz

Sherlock A. Licorish
Department of Information Science

University of Otago
Dunedin, New Zealand

sherlock.licorish@otago.ac.nz

Sarah Meldrum
Department of Information Science

University of Otago
Dunedin, New Zealand

sarah-meldrum@outlook.com

Bastin Tony Roy Savarimuthu
Department of Information Science

University of Otago
Dunedin, New Zealand

tony.savarimuthu@otago.ac.nz

Abstract— Solutions provided in Question and Answer (Q&A)
websites such as Stack Overflow are regularly used in Open
Source Software (OSS). However, many developers are
unaware that both Stack Overflow and OSS are governed by
licenses. Hence, developers reusing code from Stack Overflow
for their OSS projects may violate licensing agreements if their
attributions are not correct. Additionally, if code migrates
from one OSS through Stack Overflow to another OSS, then
complex licensing issues are likely to exist. Such forms of
software reuse also have implications for future software
maintenance, particularly where developers have poor
understanding of copied code. This paper investigates code
reuse between these two platforms (i.e., Stack Overflow and
OSS), with the aim of providing insights into this issue. This
study mined 151,946 Java code snippets from Stack Overflow,
16,617 Java files from 12 of the top weekly listed projects on
SourceForge and GitHub, and 39,616 Java files from the top 20
most popular Java projects on SourceForge. Our analyses were
aimed at finding the number of clones (indicating reuse) (a)
within Stack Overflow posts, (b) between Stack Overflow and
popular Java OSS projects, and (c) between the projects.
Outcomes reveal that there was up to 3.3% code reuse within
Stack Overflow, while 1.0% of Stack Overflow code was reused
in recent popular Java projects and 2.3% in those projects that
were more established. Reuse across projects was much higher,
accounting for as much as 77.2%. Our outcomes have
implication for strategies aimed at introducing strict quality
assurance measures to ensure the appropriateness of code
reuse, and licensing requirements awareness.

Keywords—Code reuse, Stack Overflow, Java projects, OSS,
Q&A, Quality

I. INTRODUCTION

Quality plays a fundamental role in software success
[30]. Thus, quality standards have been developed to
provide guidance for software developers, covering the
requirements for producing high quality, defect-free
software [30, 31]. Under the ISO-9126 quality model, for
example, it is stated that the quality requirements for
software should cover efficiency, functionality, reliability,
usability, reusability, and maintainability [9]. Such
standards have also been the subject of previous academic
studies (e.g., Singh et al. [22]).

With quality as an underlying motivator for instilling
good software development practices while creating
software, developers should be particularly conscious when
employing code reuse from external sources (e.g., from
open source (OS) portals) [29], which may impact software
efficiency, functionality, reliability, usability, and

maintainability. While code reuse allows for previously
tested and quality-assured code to be implemented in a
system, reusing code from untrusted sources may lead to
system harm [16]. The implications of code reuse could be
particularly significant for software maintainability, as poor
knowledge of reused code at the time of software
development will likely create challenges for future
corrective and perfective actions. As discussed in Roy et al.
[40], understanding the levels of reuse and cloning could be
valuable for developers in terms of assisting with issues
related to plagiarism, software evolution, debugging, code
compaction, and security. Furthermore, Kashima et al. [36]
noted that there are several OSS licenses that require
software outcomes derived from original solutions to be
published under the same license. This demands that
developers are aware of the legal implications of the
licenses under which OSS and code posted on other portals
(such as Stack Overflow) are published. Additionally,
businesses also need to be aware of the reuse occurring
within outsourced development [20], as under these
conditions they may face future legal challenges.

Code reuse is formally defined as “the use of existing
software or software knowledge to construct new software”
[15]. It is prevalent in many software, including those
produced by top-tier software development companies such
as Google [34]. Beyond such industry leaders, code reuse
has been found to be exceptionally common in Mobile
Apps, with some of these products consisting entirely of
reused elements [13]. This high level of reuse seen in the
practice of developers stems from the benefits it provides in
terms of easily adding and enhancing system features [25].
The accessibility of readily available solutions to coding
problems is highly attractive to both novice and experienced
programmers [25]. In fact, in a study by Sojer et al. [21], the
responses from 869 developers confirmed that they consider
ad hoc reuse of code from the internet to be important for
their work. Similarly, Heinemann et al. [18] also found that
90% of the OS projects they analyzed contained reused
code, reiterating the point that code reuse is found
extensively in many software systems.

The ease and attractiveness of code reuse has been
particularly aided by readily accessible code fragments on
Q&A websites, such as Stack Overflow1. Stack Overflow is
a very popular Q&A website which allows members of the
public to post development related questions and/or
answers, with the answers often containing code fragments.

1 http://www.stackoverflow.com
141

2018 25th Australasian Software Engineering Conference (ASWEC)

2377-5408/18/$31.00 ©2018 IEEE
DOI 10.1109/ASWEC.2018.00027

Authorized licensed use limited to: Northwestern University. Downloaded on June 13,2025 at 21:26:47 UTC from IEEE Xplore. Restrictions apply.

Recent evidence shows that the majority of the questions
that are asked on Stack Overflow usually receive one or
more answers [6], and this forum is often a substitute for
official programming languages’ tutorials and guides [24].

With both implications for software maintainability and
licensing when reusing Stack Overflow code fragments, of
interest to us is the potential effects reusing code from this
portal could have on effort for future changes and correct
use of license to avoid future legal issues. The aim of this
paper is thus to investigate the levels of code reuse within
Stack Overflow, and between Stack Overflow and OSS
projects. We focus on the Java programming language,
given its popularity 2 , and the need to understand reuse
beyond Python (Yang et al. [8]). With a strong body of
knowledge around the scale of developers’ reuse practices,
team leaders may begin to introduce stricter quality
assurance measures to ensure the appropriateness of reused
code fragments. We thus answer five research questions in
our portfolio of work. Firstly, we explore, what is the extent
of Java code reuse within Stack Overflow? to understand
how the community operates as an ecosystem in the
provision of self-support (RQ1). Related to this question, we
next explore, what is the extent of code reuse between
answers published under the same question in Stack
Overflow? to understand the degree of innovation (or lack
thereof) that is prevalent on this platform (RQ2). Answers to
these two questions are particularly useful for the software
engineering community as within-source code migration is
likely to increase the risk of incorrect author attribution, due
to (a) having more copies in existence, and (b) increasing
the number of ‘steps’ a piece of code could have taken from
its origin to where it was found. This could in turn lead to
unsuspecting license violations for those implementing these
code snippets in OSS.

Our third research question, what is the extent of code
reuse between Stack Overflow and the current most popular
Open Source Java Projects? helps us to understand recent
code reuse trends (RQ3). Related to this research question
we examine, what is the extent of code reuse between Stack
Overflow and the all-time most popular Open Source Java
projects? to understand software practitioners’ behavior to
code reuse over time (RQ4). Additionally, we answer, are
there differences in the nature of reuse found between the
different contexts in terms of scale and size? to provide
deeper evidence for the nature and ranges of code reuse
between Stack Overflow and OSS projects (RQ5). Beyond
understanding the extent of code reuse (or clones) existing
between OSS and Stack Overflow, it is important to
understand how practitioners’ attitude towards this practice
has changed over time. Our investigation led by the latter
three questions will provide initial evidence on the extent of
code reuse between projects developed more recently and
those having existed for longer.

The remaining sections of this paper are organized as
follows. We provide our study background in Section 2. We
next provide our research setting in Section 3, before
providing our results in Section 4. We then discuss our
findings and their implications in Section 5, prior to
considering threats to the study in Section 6. Finally, we

2 http://redmonk.com/sogrady/2016/02/19/language-rankings-1-16/

provide concluding remarks and point to future research in
Section 7.

II. BACKGROUND

Software practitioners would benefit from developing
maintainable software systems that are free of code license
violations, and thus, code reuse should be given serious
consideration during development. Both of these topics (i.e.,
software maintenance and license) have been investigated to
various extents, and their importance has been widely noted
in the literature. Firstly, the maintainability of a software
system is highly significant to all its stakeholders, especially
when considering project lead-times and costs [9].
Maintainability refers to the likelihood of performing
software improvements in a given period, and is said to
become more difficult with the prevalence of code reuse
[32]. Kamiya et al. [32] established that code reuse could
introduce multiple points of failure if code fragments are
‘buggy’, and in fact, it has been noted that approximately
half of the changes made to code clone groups are
inconsistent [15].

The issue of code reuse and maintainability becomes
more complex when the reused code is sourced from
external sources (e.g., Stack Overflow). This is due to
potential code incompatibility issues and sub-optimal
solutions, which are often tied to a lack of developer
understanding. Also, code fragments provided on Stack
Overflow are largely written for accompanying some textual
explanation, and not for immediate use as such. In fact, for
many developers, online sources such as Stack Overflow are
of utility, when they are faced with issues that require
knowledge they do not possess. This brings into question
their likely understanding of such code, which in turn brings
into question the software’s quality. Furthermore, security
complications may arise, as evidence has shown that Stack
Overflow portal includes insecure code [10].

An example of how catastrophic code reuse could be is
illustrated by Bi [11]. This author shows that a piece of
Stack Overflow code was used in the NissanConnect EV
mobile app, which accidentally displayed a piece of text
reading “App explanation: the spirit of stack overflow is
coders helping coders”. This example illustrates that code
reused from Stack Overflow and other similar portals are
not always examined thoroughly. Although this example
illustrates a non-threatening issue, many similar cases could
introduce security and functionality-related problems if not
inspected properly. Thus, it is important to investigate and
understand the extent of code reuse occurring between
software systems and online code resources such as Stack
Overflow.

Recently, several research studies have been conducted
on the topic of code reuse and Stack Overflow. For instance,
Abdalkareem et al. [25] investigated code reused from Stack
Overflow in Mobile Apps and found that 1.3% of the Apps
they sampled were constructed from Stack Overflow posts.
They also discovered that mid-aged and older Apps
contained Stack Overflow code introduced later in their
lifetime. An et al. [19] also investigated Android Apps and
found that 62 out of 399 (15.5%) Apps contained exact code
clones; and of the 62 Apps, 60 had potential license
violations. In terms of Stack Overflow, they discovered that
1,226 posts contained code found in 68 Apps. Furthermore,

142

Authorized licensed use limited to: Northwestern University. Downloaded on June 13,2025 at 21:26:47 UTC from IEEE Xplore. Restrictions apply.

126 snippets were involved in code migration, where 12
cases of migration involved Apps published under different
licenses. Yang et al. [8] noted that, in terms of Python
projects, over 1% of code blocks in their token form exist in
both GitHub and Stack Overflow. At an 80% similarity
threshold, over 1.1% of code blocks in GitHub were similar
to those in Stack Overflow, and 2% of Stack Overflow code
blocks were similar to those in GitHub.

In terms of attribution, in ensuring conformance to
license requirements, Baltes et al. [27] found that 7.3% of
popular repositories on GitHub contained a reference to
Stack Overflow. In the context of Java projects, a minimum
of two thirds containing copied code did not contain a
reference to Stack Overflow. Additionally, only 32% of
surveyed developers were aware of the attribution
requirements of Stack Overflow. This could result in
complicated legal issues for developers. In fact, the study of
licensing violations is also the subject of previous research
[4, 23, 21]. It has been noted that license violations occur
frequently in OS projects [4], as well as in Q&A websites
such as Stack Overflow, where the community itself has
inquired about the issue [3]. As stated by German et al. [7],
it is illegal for code fragments from one system to be
implemented in another if their licenses are incompatible.
As such, developers are required to be cautious with their
work and should be aware of the legal consequences
involved with code reuse from internet sources. Although
license violations do not have direct implications for quality,
it does pose potential legal problems, which could result in
the removal of software and court costs. Additionally, from
a software development perspective, licensing issues could
result in further costs to resolve complications, implement
system changes, and fix reputation damage.

Stack Overflow is covered under the CC BY-SA 3.0:
Creative Commons Attribution-ShareAlike 3.0 license [2],
and as such, developers have the right to transform and
build upon the content on Stack Overflow. However, new
software using Stack Overflow code must be distributed
under the same license as the original. Furthermore, credit
must be given to the specific answer on Stack Overflow, a
link must be provided for the license, and the developer
should specify if they introduced changes. Noticeably, code
reuse from Stack Overflow has been shown to exist in
various OSS projects, with varying amounts of reuse levels.
The reused code, however, is not often acknowledged, and
the lack of attribution results in license violations in many
projects [3, 25]. As such, additional research is required to
both validate and extend the current literature. We pursue
this line of work in this study, in answering our five research
questions (RQ1-RQ5 stated earlier).

III. RESEARCH SETTING

A. Data Collection and Processing
To address the research questions posed three sets of

data were extracted, including Stack Overflow code snippets
and two sets of OSS projects’ source code. For the purpose
of this study each dataset was required to only contain Java
files. To collect the necessary data, we utilized the Stack
Overflow data dump, SourceForge, and GitHub. A key
motivator for selecting these sources was their popularity in
the programming community and their open access to data.

The projects selected from SourceForge and GitHub were
all based on popularity (both weekly and all time), resulting
in projects being selected which were widely used and
contributed towards. As such, we believe that the effects of
code reuse would be more significant for these projects than
for less popular ones.

Stack Overflow Java Snippets: The Java ‘snippets’
from Stack Overflow were extracted using the data explorer
function to create the first dataset. Answer posts were then
selected based on having at least one “<code>” tag and were
filtered on the language Java. Of these answers, only those
which were selected as accepted answers were kept, on the
premise that such snippets will be trusted and thus reused.
As a final filter, only answers from 2014 to 2017 were
selected to ensure relevancy. This resulted in 117,526
answers. These answers were then separated into individual
code snippets, based on each being within
“<code>…</code>” tags. This resulted in 404,799
individual code snippets. Of these snippets, only those with
more than one line of code were selected. Ultimately,
151,954 code snippets were extracted and saved as Java
files, and 151,946 were analyzed since eight returned errors
when they were processed.

Top Weekly OSS Projects: The second dataset of files
extracted were projects with the greatest weekly popularity,
with the specific week of sourcing starting on December 18,
2017. We extracted the top 10 weekly Java projects on
SourceForge and GitHub. This resulted in a preliminary
sample of 20 projects, in line with previous research done
by Heinemann et al. [18] on Open Source Java projects.
Each of these projects was investigated, and those
containing at least one Java file was selected. Ultimately, 12
suitable projects were finally selected for the analysis,
which contained a total of 16,617 Java files. Five files
returned errors during processing, as reported in Table III.

All Time Most Popular OSS Projects: The final
dataset covered projects that had the highest all-time
popularity on SourceForge. As above, the top 20 projects
were selected, and 16 were appropriate for the analysis (i.e.,
contained at least one Java source file). We did not extract
projects from GitHub in this round given the richness of the
projects that were extracted from SourceForge. The projects
were filtered on popularity, as well as containing Java code.
However, four projects were included in the subset which
did not contain Java files, leaving 39,616 files. The final list
of projects and their summaries can be found in Table IV
with 39,558 Java files being used in our analyses after
processing.

B. Tools and Techniques
To answer our research questions an appropriate clone

(reuse) detection tool was required. We conducted a review
of several tools, including NiCad [14], SourcererCC [12]
and CCFinderX [32]. We selected CCFinderX given its
performance and popularity among researchers [5, 25, 32].
Its token-based techniques for clone detection is
computationally more efficient than alternative methods, it
has a high recall rate, and is able to detect all hidden clones
[5]. As discussed by Kamiya et al. [32], the software works
by employing a lexical analyzer to create token sequences,
after which it applies rule-based transformations to these
sequences (based on the specific programming language).

143

Authorized licensed use limited to: Northwestern University. Downloaded on June 13,2025 at 21:26:47 UTC from IEEE Xplore. Restrictions apply.

The lexical analyzer is used to transform sequences of
characters into sequences of tokens, which are word-like
entities [33]. These entities can be identifiers, keywords,
numbers, literals, operators, separators, or comments [33, 1].
The matching of clones is then computed using a suffix-tree
algorithm, “in which the clone information is represented as
a tree with sharing nodes for leading identical subsequences
and the clone detection is performed by searching the
leading nodes on the tree” [33].

When utilizing CCFinderX for the analyses, several
parameters were configured. We followed previous
recommendations and used CCFinderX default settings [25].
The minimum clone length, representing the absolute count
of tokens, was set at its default value of 50. As such, code
blocks were only considered if they contain at least 50
tokens. Additionally, the minimum unique token set value
was configured as default (being 12). Hence, code blocks
were only considered if it contains at least 12 unique tokens
in addition to having an absolute minimum count of 50
tokens. The shaper level was also set at its default of 2. The
shaper restricts code blocks from being considered a
candidate clone if an outer block ‘}’ splits the token
sequence. The final two parameters were the ‘P-match
application’ and the ‘Pre-screening application’. The P-
match application parameter is by default ticked, and
denotes that variables and function names are not replaced
with special characters. The Pre-screening application was,
by default, not ticked, as we wanted to retain all clone
instances. Pre-screen is ticked to filter outcomes where there
are visually too many code clones. The output from
CCFinderX includes both file metrics and clone metrics.
The file metrics provide file-level insights into the data,
whereas the clone metrics provide information regarding
clone sets. One set exists for each unique group of clones.
As such, a clone set will contain a minimum of 2 code
blocks. Additionally, we were able to identify the number of
files containing clones and clone-sets present in different
files in the data (refer to Figure 1 for example).

In order to determine the extent of code reuse occurring
within files, between files, and between projects/datasets,
the Radius metric (RAD) of CCFinderX was utilized.

Figure 1. Example of two files with clone-sets

After performing the analysis, clone-sets were selected
based on their specific RAD values, and in turn these were
used to select the individual files involved. The RAD
metric, as defined by Kamiya et al. [32], gives an indication
of the maximum distance to a common directory between
the files involved in a clone-set. As such, clones found

within the same file will have a Radius of 0, and clones
found between two files in the same directory will have a
Radius of 1, and so on.

C. Measures for Answering RQs
To answer the first four research questions posed (RQ1-

RQ4), five analyses were performed. These analyses involve
calculating the following metrics: Firstly, the number of
files containing at least one clone is computed. Secondly, by
using the previous measure, we got a measure of the
percentage of files containing clones. This allows us to
compare our results with those from similar studies, such as
that of Yang et al. [8]. Thirdly, by summing the population
variable (pop) of each clone-sets we identified the total
number of clones present in the files. Fourthly, the total
number of clone-sets reveals all unique clones. Fifthly,
among these clone sets we identified which clones involved
more than one file.

To answer RQ1. What is the extent of Java code reuse
within Stack Overflow?, all Stack Overflow files were stored
in the same directory when the CCFinderX was executed,
and as such a Radius of 1 was used to identify between-file
clone-sets. Answering the second research question (RQ2.
What is the extent of code reuse between answers published
under the same question in Stack Overflow?) required Stack
Overflow files to be stored in separate directories based on
the questions under which they were posted. As such, a
Radius of 1 would indicate that clones exist between
answers for the same question, and a Radius of 2 would
indicate that clones exist between answers for separate
questions. Having a Radius of 2, however, does not imply
that intra-question clones (i.e., clones under the same
question) do not exist, it simply implies that a clone is also
found between questions. This can hide intra-question
clones, and as such a manual inspection was performed on
the clone-sets with a Radius of 2 to identify intra-question
clones hidden by the maximum Radius value. Figures 2 and
3 demonstrate the situation, where both cases have a Radius
of 2, however only one (Figure 2) has an intra-question
clone. The code piece, denoted by ‘A’, is found under the
same question (Question 1).

Figure 2. Clone-set with RAD of 2 containing intra-question clone

To answer the third (RQ3. What is the extent of code
reuse between Stack Overflow and the current most popular
Open Source Java Projects?) and fourth (RQ4. What is the
extent of code reuse between Stack Overflow and the all-
time most popular Open Source Java projects?) questions
each project’s files were extracted and saved under the same
directory. Furthermore, the Stack Overflow files were saved
two directories away, which allowed us to identify clone-
sets with clones found between Stack Overflow and a
project(s) using a Radius value of 2. The primary
measurements required to answer the research questions
includes the total number of files containing at least one
clone, the total number of clones present in these files, and

144

Authorized licensed use limited to: Northwestern University. Downloaded on June 13,2025 at 21:26:47 UTC from IEEE Xplore. Restrictions apply.

the number of unique clones. RQ5. Are there differences in
the nature of reuse found between the different contexts in
terms of scale and size? was answered through follow up
statistical analyses involving the outcomes above.

Figure 3. Clone-set with RAD 2 containing no intra-question clone

D. Reliability Checks
To ensure that the results obtained from our analyses

were reliable, we conducted a manual investigation of 60
clone pairs detected by CCFinderX. Initially author AL
(first author) performed the checks, which were then
discussed with author SAL (second author) who triangulated
the outcomes and provided confirmation. Within the sample
of the 60 clone pairs, 20 were randomly obtained from the
Stack Overflow analysis in Section IV (A), 20 from Section
IV (C – a), and 20 from Section IV (D – a). For each
selected clone-pair, it was determined to what extent the two
pieces of code were similar, and the nature of the code was
also recorded (i.e., is it a class, method, or piece of code
within a method that was detected as being a clone). The
extent to which clones were similar was rated either ‘Exact’,
‘High’, or ‘Medium’. For those rated as ‘Exact’, the code in
question would be identical copies, including all identifiers,
the structure, and the functionality. For those rated as
‘High’, the primary difference between the two pieces of
code would be the identifiers. Finally, those ranked as
‘Medium’ were considered to still be similar in structure,
although identifiers, minor pieces of data structures, and
minor pieces of functionality may be different. The results
from the analyses are given in Tables I and II, where Table I
reflects the number of clone pairs considered similar to a
given extent, and Table II displays the nature of code
elements detected in the sample.

TABLE I. MANUAL CHECK OF DETECTED CLONE SIMILARITY

Similarity SO SO & All Time
Most Popular

SO & Current
Most Popular

Total

Exact 10 6 3 19
High 10 12 13 35
Medium 0 2 4 6

TABLE II. CODE CLONES ELEMENTS

Nature of
Code Element

SO SO & All Time
Most Popular

SO & Current
Most Popular

Total

Class 5 0 1 6
Method 5 6 8 19
Part of Method 10 14 11 35

Our results show that it is highly plausible that these
pieces of code could have been copied directly, or at least
have been adapted to fit the software in question (refer to
Table I for details). Furthermore, Table II shows that the
majority of clones were code found within methods. Thus, it
appears that if a developer is to copy a piece of code from
Stack Overflow, then it is likely that this code would
provide some additional functionality to a method.

IV. RESULTS

A. Java Code Reuse within Stack Overflow (RQ1)
Our analysis of the Stack Overflow files revealed that,

overall, 5,041 files (out of 151,946) contained at least one
clone (or were reused). Thus, 3.3% of Stack Overflow Java
code snippets have a duplicate found elsewhere in Stack
Overflow. Furthermore, it was observed that within the
5,041 files, a total of 8,786 clones were present, indicating
that some contained multiple clones. In terms of clone sets,
3,530 unique code snippets were observed to have clones.
However, when focusing on clones found in at least two
files, this number reduced to 2,338. As a result, we are able
to determine that there were potentially 2,338 unique license
violations existing within the Stack Overflow files extracted
(refer to Section II for Stack Overflow licensing
requirements), and that these cumulatively appear in 5,863
places. The additional 1,192 (i.e., 3530 minus 2338) unique
clones were found within the same files, and as such, do not
present potential license violations as they are contained
within the same answers by the same author.

B. Java Code Reuse between Answers on Stack Overflow
(RQ2)
To further investigate code reuse within Stack Overflow

we also looked at the amount of reuse occurring within
answers given to the same questions. Our analyses reveal
that of the 151,946 Stack Overflow files 2,666 contained
clones found under the same question. This equates to 1.8%
of the total files, and implies that this amount of snippets
had at least one clone (code duplication) published under the
same question. Within these 2,666 files, a total of 3,559
clones were found, again indicating that some answers
contained multiple clones. Out of the 3,559 clones
discovered, the number of unique clones were found to be
1,763. Additionally, from the 2,666 Stack Overflow files
containing clones, we were able to identify that they were
present in the answers in responses to 1,207 unique
questions (out of 46,082 in total). Hence, 2.6% of Java
related questions on Stack Overflow can be expected to
contain two or more answers with the same code.

C. Code Reuse between Stack Overflow and Current
Popular Projects (RQ3)

a) Stack Overflow and Project Reuse Analysis: The
analysis of the Stack Overflow and our top weekly OSS
projects revealed that 12,763 files (out of 168,558; five
project files were removed by CCFinderX’s due to errors)
contained at least one clone. Based on this result we
observed that 7.6% of the files under consideration contain
at least one clone. Of the 12,763 files, a total of 5,447 of
these were Stack Overflow files (out of 151,946 files), and
7,316 were top weekly OSS project files (out of 16,612
files). This indicates that when introducing the project files,
406 additional Stack Overflow files contain clones (refer to
Section IV (A)). This implies that these 406 Stack Overflow
files contain code that is not found anywhere else on Stack
Overflow, with the clones being solely between Stack
Overflow and at least one project. Additionally, the project
files with clones account for 44% of the total project files,
which, as a proportion is much greater than that of the Stack
Overflow files (just 3.3%). This is primarily believed to be a

145

Authorized licensed use limited to: Northwestern University. Downloaded on June 13,2025 at 21:26:47 UTC from IEEE Xplore. Restrictions apply.

result of the size of the project files, with their average token
size being 617, compared to a much smaller 48 for the Stack
Overflow files. We performed further probing of the data,
observing that in the 12,763 files containing at least one
clone, 21,893 clone sets existed. In other words, there were
21,893 unique code snippets which have at least one clone.
Of these, a smaller number of clone sets contained clones
found in both Stack Overflow and top weekly OSS project
files. This figure is 223, indicating that 223 unique code
snippets are found between the Stack Overflow and project
files. These clones cumulatively appear in 1,627 files (1.0%
of 168,558), with each appearing in an average of 7.3 files.
In total, these 223 unique code snippets appear 1,995 times.

b) Inter-Project Reuse Analysis: Of the 12,763 files
containing clones, a total of 75,959 clones were discovered
within these. When the project files were analyzed
independently, it was found that 7,287 (i.e., 57%) of the
project files contained clones among themselves, giving an
average of 2,979.1 clones per project (as depicted in Table
III). Additionally, when investigating clone-sets, we observe
212 clones in at least two projects, with these appearing
1,995 times. Further probing also revealed that 29 project
files (out of 7,316) contained clones that are only found in
Stack Overflow files, and not in any other project. In other
words, these 29 clones are found in a one to one fashion
between one project and Stack Overflow, and as such they
are most likely to have migrated directly between Stack
Overflow and a project, since there is no evidence of these
originating internal to the project. The direction of this
migration, however, is not known, although independent of
these situations, our reliability checks above show that there
were no attributions, and thus, licensing issues could arise.

D. Code Reuse between Stack Overflow and All-Time Most
Popular Projects (RQ4)

a) Stack Overflow and Project Reuse Analysis: The
analysis of the Stack Overflow and all time most popular
Java projects revealed that overall 24,537 files (out of
191,504; 58 project files were removed by CCFinderX’s due
to errors) contained at least one clone. Based on this result
we observe that approximately 12.8% of the files under
question contain at least one clone. However, only 5,554
Stack Overflow files contained a clone, which is 513 more
than when Stack Overflow files were considered on their
own. On the other hand, 18,983 project files (out of 39,558
files) contained at least one clone, which is approximately
48% of the total project files. Again, it should be noted, that
the average length of a project file was 652 tokens.
Furthermore, of the 24,537 files containing at least one
clone, 51,282 clone sets existed. In other words, there were
51,282 unique code snippets which had at least one clone.
Of these, a smaller number of clone sets contain clones
found in both Stack Overflow and the projects. This figure
is 450, indicating that 450 unique code snippets were found
between the Stack Overflow and project files. These clones
cumulatively appear 4,334 times (2.3% of 191,504), or in
6.4 files on average.

b) Inter-Project Reuse Analysis: Within the 24,537
files a total of 245,750 clones were discovered.
Additionally, when analyzed independently, it was found
that 18,935 of the project files contained clones among

themselves (i.e., 77.2%), giving an average of 9,186.9
clones per project (as depicted in Table IV). Additionally,
when investigating clone-sets, it was found that 726 clones
were found it at least two projects, with these appearing
6,377 times. We noticed that 48 project files (out of 18,983)
contained clones that are only found in Stack Overflow files,
and not in any other project. As above, these 48 files are
found directly between one project and Stack Overflow, and
as such is highly likely to have migrated directly between
Stack Overflow and a project.

TABLE III. SUMMARY OF THE TOP WEEKLY JAVA PROJECTS (INTER-
PROJECT)

Project Number of
Java files

Average
number of
tokens/file

Number of
clones

Number of
files with
clone/s

Awesome Java
Leetcode

57 220 18 15

Dubbo 1327 498.4 1996 486
Elastic-Search 5576 936.7 13823 2869
Java Design
Patterns

1018 120.5 320 189

Apache
OpenOffice

3966 673 13674 2327

Proxyee down 25 342.1 3 3
Qmui Android 172 842.9 225 81
Sap NetWeaver
Server Adapter
for Eclipse

239 713.4 2906 140

Sofia 17 252.3 11 9
Spring Boot 3799 277.7 2356 1037
Timber 164 673.2 230 71
YiZhi 252 286.6 187 89
Total 16612 5836.8 35749 7316
Average/mean 1384.3 486.4 2979.1 609.7

E. Contextual Differences in Scale and Size of Reuse (RQ5)
In addition to the findings above, the results displayed in

Table V and Figure 4 show that the sizes of clones found
within the various contexts are different. Of primary interest
is the larger mean sizes of the clones within Stack Overflow
(refer to boxplots in Figure 4-A, B). These larger sizes
suggest that there is a likelihood of the clones detected being
true positives, i.e., they are indeed evidence of reuse where
entire snippets are copied. Additionally, the median and
upper quartile of the top weekly Java projects clone sizes are
greater than that of the other four contexts where project
files were included. This is displayed in Figure 4, graphs C,
D, E, and F; where D can be seen to have a greater median
and upper quartile value. This indicates that newer projects
are constructed to a greater extent from reused elements.

In Table V the average and maximum sizes of clones
found within the various contexts are presented.
Interestingly, the clones in terms of their maximum sizes are
smaller for the two analyses looking at Stack Overflow and
OSS projects together (277 and 324 respectively). As such,
we can see that the code clones found between Stack
Overflow and OSS projects are at most 324 tokens in length.
However, when looking at inter-project clones, we notice
that the maximum values are much higher, with the biggest
clone consisting of 1,369 tokens. This suggests that code
reuse between projects involves copying of larger pieces of
code, including entire components. In contrast to this, Stack
Overflow code usually provides smaller code snippets as
answers to specific coding questions, and so, evidence here
may be linked to this reality.

146

Authorized licensed use limited to: Northwestern University. Downloaded on June 13,2025 at 21:26:47 UTC from IEEE Xplore. Restrictions apply.

To test for statistically significant differences between
the six groups of measures (refer to Table V), in terms of
clone sizes, a Kruskal-Wallis test was performed. This test
was selected as it is non-parametric in nature (i.e., does not
assume that the data follows a Normal distribution), and it
does not require sample sizes to be equivalent [28].

TABLE IV. SUMMARY OF THE ALL-TIME MOST POPULAR JAVA PROJECTS
(INTER-PROJECT)

Project Number of
Java files

Average
number of
tokens/file

Number of
clones

Number of
files with
clone/s

Angry IP Scanner 219 397 102 48
Catacombae 91 758.6 223 33
Cyclops Group 2609 151.9 2545 1291
Eclipse
Checkstyle
Plug-in

1708 319 3115 782

Freemind 529 772 495 192
Hibernate 2392 285.6 2148 627
Hitachi Vantara -
Pentaho

24494 673.2 112415 12008

Libjpeg-turbo 12 2061.3 44 7
OpenCV 148 1003.9 508 94
Sap NetWeaver
Server Adapter
for Eclipse

239 713.4 2921 144

Sweet Home 3D 233 2408.3 1476 142
TurboVNC 245 886.5 495 114
Vuze – Azureus 3639 750 5784 1461
Webmin 42 1505.1 66 21
Weka 2803 1100 14185 1948
Xtreme
Download
Manager

155 806.4 468 71

Total 39558 14592.2 146990 18983
Average/mean 2472.4 912 9186.9 1186.4

TABLE V: CLONE SIZE STATISTICS

Data Group Median Mean Max Mean Rank
A. Stack Overflow 66 85.7 938 14869.7
B. Stack Overflow Intra-
Answers

69 87.2 938 15480.4

C. Stack Overflow and
Top Weekly

57 67.9 277 11014.3

D. Top Weekly 60 84.3 774 13478.7
E. Stack Overflow and
Top All Time

58 71.2 324 11646.4

F. Top All Time 58 69.2 1369 11392.1

Figure 4. Clone size comparison between the groups defined in Table V

Our result reveals a statistically significant outcome
(significance level = 0.05), providing evidence that our
outcomes are different (H(5) = 1409, p <0.01). Given this
finding we further examined the distributions for A, B, D in

Table V against others (C, E, F) with post hoc Kruskal-
Wallis tests. Outcomes confirm that there were significantly
bigger clones (p <0.05) for Stack Overflow, Stack Overflow
Intra-Answers and Top Weekly projects when compared to
the other distributions. This, alongside the results in Table V
and the boxplots in Figure 4, provide preliminary evidence
that the nature of clones, in terms of their sizes, are different
for different data sets. We thus plan further analyses to
investigate why these differences exist.

V. DISCUSSION AND IMPLICATIONS

Discussion: Quality is an important element in all
software development projects. In particular, the quality of
freely available software should be a key consideration for
its users. However, the migration of code between OSS
projects and online Q&A platforms complicates such
assessments. Stack Overflow as a platform, for instance,
often acts as a medium through which code migrates
between many projects, and as such, the quality of the code
in many projects is influenced by factors that are beyond the
control of their programmers. Furthermore, OSS projects are
often published under specific licenses, which adds an
additional level of complexity in terms of understanding
their availability for reuse. In fact, users of the code
published on Q&A platforms often lack the required
understanding of the code, which can have direct
implications for quality management if such code is reused
in software projects. In order to investigate the extent of
code reuse in these situations we focused on Java code from
Stack Overflow and popular OSS projects. Here we revisit
our outcomes to answer our five research questions (RQ1-
RQ5).

RQ1. What is the extent of Java code reuse within Stack
Overflow? Our results indicate that within Stack Overflow,
approximately 3.3% of the Java code sampled have at least
one clone elsewhere on the website. Additionally, we found
that up to 2,338 unique license violations could be present
within these answers. This evidence duplicates that of
Python code, which also revealed a 3.3% duplication [8]. It
should be noted, however, that the Python code examined in
Yang et al.’s [8] study was processed to remove the effects
of white space and comments, which increase the
performance of clone detection tools and lead to better
comparisons. To this end, our outcomes is at best
conservative, and so Java code reuse could be actually
higher than 3.3% in Stack Overflow.

The results from our study, along with that of Yang et al.
[8], indicate that code reuse is prevalent in Stack Overflow
in both Java and Python contexts. The near identical results
obtained by these two studies suggest that users and
developers of the Stack Overflow platform should expect
just over 3% of code on Stack Overflow to be duplicated.
When considering the parameter settings for these code
blocks to be considered candidate clones, it should be
emphasized that these clones are of significant size (at least
50 tokens). Unlike many small snippets found on Stack
Overflow, these clones meet the specified requirements set
before the analysis, and as such, it is more likely that these
code blocks are not clones by coincidence, rather they are
reused. Hence, developers need to be cautious with reusing
larger code blocks from Stack Overflow, and be prepared to
rigorously evaluate such code before its usage. In addition,

147

Authorized licensed use limited to: Northwestern University. Downloaded on June 13,2025 at 21:26:47 UTC from IEEE Xplore. Restrictions apply.

instances of reuse demand proper attribution so that the
community is aware of how Stack Overflow knowledge is
recycled. We believe that a software tool could be of utility
in terms of aiding developers wanting to evaluate the
appropriateness of code for reuse, and also detecting exactly
where such code originated from to help with correct
attribution.

RQ2. What is the extent of code reuse between answers
published under the same question in Stack Overflow? We
observed that 1.8% of all Java snippets (i.e., code in
answers) have at least one clone within other answers
provided for the same question. Our evidence also revealed
that 2.6% of questions sampled contain at least one clone
pair between its answers. Furthermore, there were 1,763
potential unique license violations in our sample data. As
with insights provided in response to RQ1, this outcome has
implication for developers using Stack Overflow code in
terms of the need to be aware of the rate of code duplication
within Stack Overflow. With an overall duplication rate of
3.3%, we notice that a significant proportion of this
duplication refers to clones between answers in different
questions. As a result, developers may not give attribution to
the original authors. Furthermore, in cases where these code
blocks have migrated from external sources, having
duplicates within Stack Overflow may make it more
difficult to find these original sources. Without complete
knowledge of the origin of reused code, developers may
publish their OSS under different licenses, which will result
in license violations. In fact, given the conservative settings
used for our analyses, we anticipate that the reuse rate for
smaller code snippets may be much higher. As such, if
duplicated code can be identified by Stack Overflow, then
the process of identifying the most appropriate solution
(code) may be expedited, since users will be able to avoid
duplicated answers. Having repeated duplicate answers may
also result in convoluted pages, which could lead to slower
problem solving for developers.

RQ3. What is the extent of code reuse between Stack
Overflow and the current most popular Open Source Java
Projects? Our evidence showed that between Stack
Overflow and the top weekly Java projects, approximately
223 unique code snippets appeared in both sets of files.
Between the Stack Overflow and project files, these snippets
appeared in a total of 1,627 files. This evidence shows that,
overall, 1.0% of the project files contain one of these Stack
Overflow clones. However, it should be noted that the
percentage of project files containing clones is higher when
compared to the percentage of Stack Overflow files that
contained code. This outcome suggests that the current most
popular open source Java projects tend to use code copied
from Stack Overflow. In fact, within the projects, we
discovered that approximately 57% of these files contained
a clone. These clones were found either within a single
project, or between projects. In a study by Koschke et al.
[26], they discovered that approximately 7.2% of all lines of
code in Open Source Java projects were exact clones. These
findings indicate that there is a high levels of code reuse and
duplication within Open Source Java projects. Our findings
suggest that an opportunity exists for developers to reduce
their intra-project reuse, which could result in less
maintainability issues. Furthermore, developers should also
consider that code reuse is occurring between these projects,

and as such, they should become acquainted with licensing
requirements (refer to Section II).

RQ4. What is the extent of code reuse between Stack
Overflow and the all-time most popular Open Source Java
projects? When we compared Stack Overflow Java code
against the all-time most popular OSS projects on
SourceForge we observed that 450 unique code fragments
were evident in both datasets, and that these appear in 4,334
files in total. This evidence shows that approximately 2.3%
of the files sampled contained at least one clone, and that
there is one unique clone for every 54.5 project files. In fact,
the proportion of project files containing clones was quite
high, with approximately 77.2% containing clones when
excluding the Stack Overflow files.

Considering our outcomes against those of previous work
[26], where 7.2% of code reuse was found, we believe that
code reuse is high in popular Open Source Java projects.
Interestingly, the percentage of files containing clones is
higher for the all-time most popular projects, when
compared to the newer, top weekly projects. It is thus more
likely that code copied from these projects could have
originally came from a different source, hence, creating a
nested code reuse situation. Furthermore, the developers of
these systems may potentially benefit from reducing the
amount of reused code, thus improving the maintainability
of their projects.

RQ5. Are there differences in the nature of reuse found
between the different contexts in terms of scale and size?
Our results show that there are differences in the sizes of
clones found across our datasets. Our evidence shows that
when reuse was done in Stack Overflow most of the
snippets were copied. We also observed that current popular
Java projects had a greater extent of reused elements from
other projects. We believe that newer projects may be
constructed more commonly from whole elements of other
projects, i.e., the mean clone length is greater than that of
the ‘Top All-Time’ group in Table V, possibly due to the
availability of these elements, or perhaps developers are
more willing to reuse in recent times. Similar outcomes
were reported for Android Mobile Apps [25], which tends to
dominate recent application development environments.
Evidence here indicates that developers’ behaviors are
potentially changing, as we are seeing them incorporate
larger pieces of copied code into their work. As such, the
effects, both negative and positive, resulting from copying
code will be amplified for these projects. In situations where
the copied code is well explained in the respective sections
on websites such as Stack Overflow, it could lead to better
quality software, since the functionality is well understood,
tested, and documented by developers. However, if larger
pieces of code are copied and pasted without having
sufficient accompanying documentation (e.g., comments),
then it is likely that the software in question will contain
code which is not understood by developers, thus bringing
into questions its functionality, reliability, debuggability,
and overall quality.

Our results also show a great degree of code duplication
between all-time popular OSS projects, and, in fact, the
scale and size of reuse was generally higher between OSS
projects. This evidence is understandable given that Stack
Overflow is generally known for shorter code snippets
aimed at answering specific questions. Code duplication

148

Authorized licensed use limited to: Northwestern University. Downloaded on June 13,2025 at 21:26:47 UTC from IEEE Xplore. Restrictions apply.

between projects was possibly driven by the use of common
third party libraries, but could also be through intentional
duplication of similar functionalities. The fact that Stack
Overflow snippets were also copied suggests that reuse may
be a part of practitioners’ culture. Thus, there are
implications for making sure the correct license is used, and
developers are aware of the strengths and weaknesses of the
code that are copied. Furthermore, on the backdrop of the
need for the community to develop high quality,
maintainable and secured code, developers should carefully
evaluate code that is reused.

Implications: Our investigation has shown that code
clones do exist across Java-based projects and Stack
Overflow. Having clones or duplicates within a system is
unavoidable, since many software elements often rely on the
same functionalities. However, in cases where many code
clones exist, it is possible that developers may experience
negative side-effects. Firstly, it is important to understand
that high levels of code cloning can have negative effects on
software quality, in terms of inconsistencies in code. Studies
have found that around half of the software projects
investigated had clones which contained inconsistencies,
i.e., clones are changed inconsistently, with many of these
being unintentional [15, 37]. Furthermore, these works also
found that between 3-23% of code clones represented a
fault. Thus, it is important for developers to be aware of the
levels of code clones that exist within their software. To this
end, we believe that tracking clones could improve the
overall quality of software. This notion of tracking clones,
and thus, being more aware of them, have been shown to
improve software debugging [38, 39]. Another implication
of our findings relates to probable licensing violations.
Copying code from other projects or websites such as Stack
Overflow without adhering to licensing requirements may
result in complicated legal issues, and thus developers
should take caution when doing so.

VI. THREATS TO VALIDITY

Our analyses were conducted with CCFinderX, which
uses a token-based approach to identify clones. This
technique itself has some limitations, including a lower
precision rate compared to some alternative techniques,
primarily Abstract Syntax Tree (AST) techniques [5].
Additionally, CCFinderX had preset parameter settings for
its analyses. These parameters were given specific values,
which were used to filter all texts in order to identify
candidate clones. As such, the detection of clones was based
on code meeting the set requirements given by CCFinderX,
possibly leading to some clones being missed by the
software. This is particularly important when considering
that we worked with Stack Overflow data, with which we
had an average file token size of 48. Thus, we can assume
that some smaller snippets from Stack Overflow reused in
our Open Source projects were not detected, and thus, our
results could be conservative.

In fact, our reliability checks show that many clones were
of smaller sizes (refer to Table II). However, as code chunks
get smaller, the ability to trace these back to their original
source becomes challenging. Smaller code fragments may
also be labelled as clones accidentally. That said, our
contextual analyses performed for reliability evaluation
ascertained that code was duplicated, and that there were no

attributions. This evidence thus confirms the potential for
future maintenance and quality issues, and possible
licensing complications.

Additionally, we did not introduce a time element to
determine the direction of reuse. As such, we cannot make
conclusive statements regarding the temporal copying of
code from Stack Overflow into OSS projects, and in terms
of the direction of the copying (i.e., if code was copied from
Stack Overflow to OSS projects, or OSS to Stack
Overflow). Lastly, our sample of projects may not be
representative of all software projects, and as such a large-
scale study may produce more generalizable insights. The
total number of projects on SourceForge containing Java
code alone is over 40,000, and GitHub has over 3.5 million
available Java-based repositories. Thus, a larger study may
help validate the results obtained from this study. However,
the initial study completed here reflects the findings from
highly-used projects, making code reuse an important
element to consider.

VII. CONCLUSION AND FUTURE RESEARCH

There is an imperative that the software engineering
community develop and deliver high quality software.
Improper code reuse as a practice may create barriers to the
delivery of high-quality software however, and particularly
in terms of software maintainability and confirming to legal
requirements. With code reuse being a popular practice in
the software engineering community, and Q&A forums such
as Stack Overflow fueling this practice, it is pertinent to
understand how this practice could affect future software
maintenance and correct use of license to avoid legal issues.
Towards this goal, we investigated the levels of code reuse
within Stack Overflow, and between Stack Overflow and
popular OSS projects.

Our findings have indicated that clones (reuse) do exist in
all of the examined contexts (within Stack Overflow,
between Stack Overflow and OSS, and between OSS), with
numerous cases of code duplication detected in each setting.
Outcomes in the work show that projects are all highly
likely to contain code that has been copied from sources
external to their own code. Additionally, our findings are
similar to the research conducted on mobile apps and
Python projects. As such, the levels of code reuse in these
studies indicate that Java developers need to be made aware
of licensing issues and the problems that could arise from
ad-hoc copying. In particular, the quality assurance
activities in software projects can be more comprehensive
and could place greater emphasis on code reused from
platforms such as Stack Overflow. This stands in agreement
with [40], which discussed the benefits that code clone
analysis can provide for software analysis. We also further
believe that due to the increased amount of external code
being integrated into projects, an even greater need exists
for utilizing clone analysis software. If licensing knowledge
and correct attribution is improved, then code fragments
implemented from external sources will be less likely to
cause licensing violations.

Our inter-project analyses showed that the top weekly
Java projects had a greater average token size when
compared to the all-time most popular Java projects. To
further analyze this phenomenon, a time-based comparison
of code reuse in OSS projects could be beneficial in

149

Authorized licensed use limited to: Northwestern University. Downloaded on June 13,2025 at 21:26:47 UTC from IEEE Xplore. Restrictions apply.

identifying the changes in reuse behavior over time. From
our preliminary results it appears that newer projects have
larger pieces of reused code, which could indicate that inter-
project reuse of whole components is occurring. The work
completed here can be replicated for a larger sample of
projects in order to validate our results and assess the scale
of reuse more generally. Additionally, research may look
beyond the scope of OSS projects to contrast our findings
with closed source projects. Our research may also be
expanded to provide insights into the direction of migration
of clones. An et al. [19] published results on code migration
for Android mobile apps, and Inoue et al. [17] have
developed a tool for tracking code in open source
repositories, however dedicated work is required to
investigate the direction of code migration from Stack
Overflow (and other such portals) to OSS projects.

REFERENCES

[1] A. V. Aho, M. S. Lam, R. Sethi, and J. D. Ullman, Compilers:
principles, techniques, and tools. Harlow, Essex: Pearson, 2014.

[2] Anon. Creative Commons License Deed. Available:
https://creativecommons.org/licenses/by-sa/3.0/, Feb. 2018.

[3] Anon. Do I have to worry about copyright issues for code posted on
Stack Overflow? Available: http://meta.stackexchange.com/questions
/12527/do-i-haveto-worry-about-copyright-issues-for-code-posted-on-
stack-overflow, Feb. 2018.

[4] A. Mathur, H. Choudhary, P. Vashist, W. Thies, and S. Thilagam.
“An Empirical Study of License Violations in Open Source Projects,”
presented at the 35th Annual IEEE Software Engineering Workshop.
DOI:http://dx.doi.org/10.1109/sew.2012.24, 2012.

[5] C. K. Roy, J. R. Cordy, and R. Koschke, “Comparison and evaluation
of code clone detection techniques and tools: A qualitative approach,”
Science of Computer Programming, vol. 74, pp. 470–495, 2009.

[6] J. Cordeiro, B. Antunes, and P. Gomes, “Context-based
recommendation to support problem solving in sof. Development,” In
Proceedings of 3rd Int.Workshop on RSSE. 2012.

[7] D. M. German, M. Di Penta, Y-G. Gueheneuc, and G. Antoniol,
“Code siblings: Technical and legal implications of copying code
between applications,” In Proc. of 6th Working Conference on Mining
Software Repositories, 2009.

[8] D. Yang, P. Martins, V. Saini, and C. Lopes, “Stack Overflow in
Github: Any Snippets There?” In Proc. of 14th International
Conference on Mining Software Repositories (MSR), 2017.
DOI:http://dx.doi.org/10.1109/msr.2017.13

[9] E. Johansson, A. Wesslen, L. Bratthall, and M. Host. “The importance
of quality requirements in software platform development-a survey,”
In Proc. of 34th Annual Hawaii International Conference on System
Sciences, 2001.

[10] Felix Fischer et al, “Stack Overflow Considered Harmful? The Impact
of Copy&Paste on Android Application Security,” IEEE Symposium
on Security and Privacy (SP), 2017.

[11] F. Bi, “Nissan app developer busted for copying code from Stack
Overflow," May. 2016. Available: https://www.theverge.com/tldr/
2016/5/4/11593084/dont-get-busted-copying-code-from-stack-
overflow

[12] H. Sajnani, V. Saini, J. Svajlenko, C. K. Roy, and C. V. Lopes,
“SourcererCC,” In Proc. of 38th International Conference on Software
Engineering – ICDE 16, 2016.

[13] I. J. Mojica, B. Adams, M. Nagappan, S. Dienst, T. Berger, and A.
Hassan, “A Large-Scale Empirical Study on Software Reuse in
Mobile Apps,” IEEE Software, vol. 31, no. 2, pp. 78–86, 2014.
DOI:http://dx.doi.org/10.1109/ms.2013.142

[14] J. R. Cordy and C. K. Roy, “The NiCad Clone Detector,” Presented
at the IEEE 19th International Conference on Program
Comprehension, 2011.

[15] J. Krinke, “A Study of Consistent and Inconsistent Changes to Code
Clones,” Presented at the 14th Working Conference on Reverse
Engineering (WCRE), 2007.

[16] J. C. Knight and M. F. Dunn, “Software quality through domain-
driven certification,” Ann. Softw. Eng., vol. 5, pp. 293-315, 1998.

[17] K. Inoue, Y. Sasaki, P. Xia, and Y. Manabe, “Where does this code
come from and where does it go? — Integrated code history tracker
for open source systems,” In Proc. of 34th International Conference
on Software Engineering, 2012.

[18] L. Heinemann, F. Deissenboeck, M. Gleirscher, B. Hummel, and M.
Irlbeck, “On the Extent and Nature of Software Reuse in Open Source
Java Projects,” Lecture Notes in Computer Science Top Productivity
through Software Reuse, pp. 207–222, 2011.

[19] L. An, O. Mlouki, F. Khomh, and G. Antoniol, “Stack Overflow: A
code laundering platform?” In Proc. of IEEE 24th SANER, 2017.

[20] M. Sojer and J. Henkel, “Code Reuse in Open Source Software
Development: Quantitative Evidence, Drivers, and Impediments,”
Journal of the Association for Information Systems, vol. 11, pp. 868–
901, 2010.

[21] M. Sojer and J. Henkel, “License risks from ad hoc reuse of code
from the internet,” Communications of the ACM, vol. 54, pp. 74,
2011.

[22] M. Singh, A. Mittal, and S. Kumar, “Survey on Impact of Software
Metrics on Software Quality,” International Journal of Advanced
Computer Science and Applications, vol. 3, 2012.

[23] O. Mlouki, F. Khomh, and G. Antoniol, “On the Detection of
Licenses Violations in the Android Ecosystem,” In Proc. of IEEE
23rd International Conference on Software Analysis, Evolution, and
Reengineering (SANER), 2016.

[24] P., L., A. Bacchelli, and M. Lanza, “Leveraging crowd knowledge for
software comprehension and development,” CSMR, IEEE Computer
Society, 2013, p. 57–66.

[25] R. Abdalkareem, E. Shihab, and J. Rilling, “On code reuse from
StackOverflow: An exploratory study on Android apps,” Information
and Software Technology, vol. 88, pp. 148–158, 2017.

[26] R. Koschke and S. Bazrafshan, “Software-Clone Rates in Open-
Source Programs Written in C or C++,” In Proc. of IEEE 23rd
SANER, 2016.

[27] S. Baltes, R. Kiefer, and S. Diehl, “Attribution Required: Stack
Overflow Code Snippets in GitHub Projects,” In Proc. of IEEE/ACM
39th International Conference on Software Engineering Companion
(ICSE-C), 2017.

[28] S. Sawilowsky and G. Fahoome, Kruskal-Wallis Test: Basic, Wiley
StatsRef: Statistics Reference Online, 2014.

[29] S. Haefliger, G. Von Krogh, and S. Spaeth, “Code Reuse in Open
Source Software,” Management Science, vol. 54, pp. 180-193, 2008.

[30] S. H. Kan, Metrics and Models in Software Quality Engineering (2nd
ed.), Addison-Wesley Longman Publishing Co., Inc., Boston, MA,
USA, 2002.

[31] V. Suma and T.R. Gopalakrishnan nair, “Effective Defect Prevention
Approach in Software process for Achieving Better Quality levels,”
World Academy of Science, Engineering and Technology, vol. 42, pp.
258-262, 2008.

[32] T. Kamiya, S. Kusumoto, and K. Inoue, “CCFinder: a multilinguistic
token-based code clone detection system for large scale source code,”
IEEE TSE, vol. 28, pp. 654–670, 2002.

[33] T. Ægidius Mogensen, “Lexical Analysis,” Introduction to Compiler
Design Undergraduate Topics in Computer Science, pp. 1–37, 2011.

[34] V. Bauer, J. Eckhardt, B. Hauptmann, and M. Klimek, “An
exploratory study on reuse at google,” In Proc. of 1st International
Workshop on Software Engineering Research and Industrial
Practices - SER&IPs, 2014.

[35] W.b. Frakes and K. Kang, “Software reuse research: status and
future,” IEEE Transactions on Software Engineering, vol. 31, pp.
529–536, 2005. DOI:http://dx.doi.org/10.1109/tse.2005.85

[36] Y. Kashima, Y. Hayase, N. Yoshida, Y. Manabe, and K. Inoue, “An
Investigation into the Impact of Software Licenses on Copy-and-paste
Reuse among OSS Projects,” In Proc. of 18th Working Conference on
Reverse Engineering, 2011.

[37] Elmar Juergens, Florian Deissenboeck, Benjamin Hummel, and
Stefan Wagner, “Do code clones matter?” In Proc. of IEEE 31st
International Conference on Software Engineering, 2009.

[38] Z. Li, S. Lu, S. Myagmar, and Y. Zhou, “CP-Miner: Finding copy-
paste and related bugs in large-scale software code,” IEEE Trans.
Softw. Eng, vol. 32, pp. 176–192, 2006.

[39] L. Jiang, Z. Su, and E. Chiu, “Context-based detection of clone-
related bugs,” In Proc. ESEC-FSE, ACM, 2007.

[40] C. K. Roy, J. Cordy, and R. Koschke, “Comparison and evaluation of
code clone detection techniques and tools: A qualitative approach,”
Science of Computer Programming, vol 74, no. 7, pp. 470-495, 2009.

150

Authorized licensed use limited to: Northwestern University. Downloaded on June 13,2025 at 21:26:47 UTC from IEEE Xplore. Restrictions apply.

