Check for
Updates

Why Do Developers Use Trivial Packages?
An Empirical Case Study on npm

Rabe Abdalkareem, Olivier Nourry, Sultan Wehaibi, Suhaib Mujahid, and Emad Shihab
Data-driven Analysis of Software (DAS) Lab
Department of Computer Science and Software Engineering
Concordia University
Montreal, Canada
{rab_abdu,o_nourry,s_alweha,s_mujahi,eshihab}@encs.concordia.ca

ABSTRACT

Code reuse is traditionally seen as good practice. Recent trends
have pushed the concept of code reuse to an extreme, by using
packages that implement simple and trivial tasks, which we call
‘trivial packages’. A recent incident where a trivial package led to
the breakdown of some of the most popular web applications such
as Facebook and Netflix made it imperative to question the growing
use of trivial packages.

Therefore, in this paper, we mine more than 230,000 npm pack-
ages and 38,000 JavaScript applications in order to study the preva-
lence of trivial packages. We found that trivial packages are com-
mon and are increasing in popularity, making up 16.8% of the
studied npm packages. We performed a survey with 88 Node.js
developers who use trivial packages to understand the reasons and
drawbacks of their use. Our survey revealed that trivial packages
are used because they are perceived to be well implemented and
tested pieces of code. However, developers are concerned about
maintaining and the risks of breakages due to the extra dependen-
cies trivial packages introduce. To objectively verify the survey
results, we empirically validate the most cited reason and drawback
and find that, contrary to developers’ beliefs, only 45.2% of trivial
packages even have tests. However, trivial packages appear to be
‘deployment tested’ and to have similar test, usage and community
interest as non-trivial packages. On the other hand, we found that
11.5% of the studied trivial packages have more than 20 depen-
dencies. Hence, developers should be careful about which trivial
packages they decide to use.

CCS CONCEPTS

« Software and its engineering — Software libraries and repos-
itories; Software maintenance tools;

KEYWORDS
JavaScript; Node.js; Code Reuse; Empirical Studies

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ESEC/FSE’17, September 4-8, 2017, Paderborn, Germany

© 2017 Association for Computing Machinery.

ACM ISBN 978-1-4503-5105-8/17/09...$15.00
https://doi.org/10.1145/3106237.3106267

385

ACM Reference Format:

Rabe Abdalkareem, Olivier Nourry, Sultan Wehaibi, Suhaib Mujahid, and
Emad Shihab. 2017. Why Do Developers Use Trivial Packages? An Empirical
Case Study on npm. In Proceedings of 2017 11th Joint Meeting of the European
Software Engineering Conference and the ACM SIGSOFT Symposium on the
Foundations of Software Engineering, Paderborn, Germany, September 4-8,
2017 (ESEC/FSE’17), 11 pages.

https://doi.org/10.1145/3106237.3106267

1 INTRODUCTION

Code reuse is often encouraged due to its multiple benefits. In fact,
prior work showed that code reuse can reduce the time-to-market,
improve software quality and boost overall productivity [3, 32, 37].
Therefore, it is no surprise that emerging platforms such as Node.js
encourage reuse and do everything possible to facilitate code shar-
ing, often delivered as packages or modules that are available on
package management platforms, such as the Node Package Manager
(npm) [7, 39].

However, it is not all good news. There are many cases where
code reuse has had negative effects, leading to an increase in main-
tenance costs and even legal action [2, 29, 35, 41]. For example, in
a recent incident code reuse of a Node.js package called left-pad,
which was used by Babel, caused interruptions to some of the largest
Internet sites, e.g., Facebook, Netflix, and Airbnb. Many referred
to the incident as the case that ‘almost broke the Internet’ [33, 45].
That incident lead to many heated discussions about code reuse,
sparked by David Haney’s blog post: “Have We Forgotten How to
Program?” [26].

While the real reason for the left-pad incident was that npm
allowed authors to unpublish packages (a problem which has been
resolved [40]), it raised awareness of the broader issue of taking on
dependencies for trivial tasks that can be easily implemented [26].
Since then, there have been many discussions about the use of
trivial packages. Loosely defined, a trivial package is a package that
contains code that a developer can easily code him/herself and hence, is
not worth taking on an extra dependency for. Many developers agreed
with Haney’s position, which stated that every serious developer
knows that ‘small modules are only nice in theory’ [8], suggesting
that developers should implement such functions themselves rather
than taking on dependencies for trivial tasks. Other work showed
that npm packages tend to have a large number of dependencies [13,
14] and highlighted that developers need to use caution since some
dependencies can grow exponentially [4]. In fact, in our dataset, we
found that more than 11% of the trivial packages have more than
20 dependencies.

https://doi.org/10.1145/3106237.3106267
https://doi.org/10.1145/3106237.3106267
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3106237.3106267&domain=pdf&date_stamp=2017-08-21

ESEC/FSE’17, September 4-8, 2017, Paderborn, Germany

So, the million dollar question is “why do developers resort to
using a package for trivial tasks, such as checking if a variable is an
array?” At the same time, other questions regarding how prevalent
trivial packages are and what the potential drawbacks of using these
trivial packages remain unanswered. Therefore, we performed an
empirical study involving more than 230,000 npm packages and
38,000 JavaScript applications to better understand why developers
resort to using trivial packages. Our empirical study is qualitative
in nature and is based on survey results from 88 Node.js developers.
We also quantitatively validate the most commonly developer-cited
reason and drawback related to the use of trivial packages.

Since, to the best of our knowledge, this is the first study to
examine why developers use trivial packages, we first propose a
definition of what constitutes a trivial package, based on feedback
from JavaScript developers. We also examine how prevalent trivial
packages are in npm and how widely they are used in Node.js
applications. Our findings indicate that:

Trivial packages are common and popular. Of the 231,092 npm
packages in our dataset, 16.8% of them are trivial packages. More-
over, of the 38,807 Node.js applications on GitHub, 10.9% of them
directly depend on one or more trivial packages.

Most developers do not consider the use of trivial packages
as bad practice. In our survey of the 88 JavaScript developers,
57.9% of them said they do not consider the use of trivial packages
as bad practice, whereas only 23.9% consider it to be a bad practice.
This finding shows that there is not a clear consensus on the issue
of trivial package use.

Trivial packages provide well implemented and tested code
and increase productivity. Developers believe that trivial pack-
ages provide them with well implemented/tested code and increase
productivity. At the same time, the increase in dependency over-
head and the risk of breakage of their applications are the two most
cited drawbacks.

Developers need to be careful which trivial packages they
use. Our empirical findings show that many trivial packages have
their own dependencies. In fact, we found that 43.7% of trivial
packages have at least one dependency and 11.5% of trivial packages
have more than 20 dependencies.

In addition to the aforementioned findings, our study provides the
following key contributions:

m We provide a way to quantitatively determine trivial packages.

m To the best of our knowledge, this is the first study to examine the
prevalence, reasons for and drawbacks of using trivial packages
inNode.js applications. Our study is also one of the largest studies
on JavaScript applications, involving a survey of more than 80
JavaScript developers, 231,092 npm packages and 38,807 Node.js
applications.

m We perform an empirical study to validate the most commonly
cited reasons for and drawbacks of using trivial packages in our
developer survey.

m We make our dataset of the responses provided by the npm
developers publicly available. !

The paper is organized as follows: Section 2 provides the back-
ground and introduces our datasets. Section 3 presents how we de-
termine what a trivial package is. Section 4 examines the prevalence

!http://das.encs.concordia.ca/publications/npm-survey-data/

386

R. Abdalkareem, O. Nourry, S. Wehaibi, S. Mujahid, and E. Shihab

of trivial packages and their use in Node.js applications. Section 5
presents the results of our developer survey, presenting the reasons
and perceived drawbacks for developers who use trivial packages.
Section 6 presents our empirical validation of the most commonly
cited reason for and drawback of using trivial packages. The im-
plications of our findings are noted in section 7. We discuss the
related works in section 8, the limitations of our study in section 9,
and present our conclusions in section 10.

2 BACKGROUND AND DATASETS

JavaScript is used to write client and server side applications. Its
popularity has steadily grown, thanks to popular frameworks such
as Node.js and an active developer community [7, 46]. JavaScript
projects can be classified into two main categories: packages that
are used in other projects or applications that are used as stan-
dalone software. The Node Package Manager (npm) provides tools
to manage Node.js packages. npm is the official package manager for
Node.js and its registry contains more than 250,000 packages [25].
To perform our study, we gather two datasets from two sources.
We obtain Node.js packages from the npm registry and applications
that use npm packages from GitHub.
Packages: Since we are interested in examining the impact of
‘trivial’ packages, we mined the latest version of all the Node.js
packages from npm as of May 5, 2016. For each package we obtained
its source code from GitHub. In some cases, the package publisher
did not provide a GitHub link, in which case we obtained the source
code directly from npm. In total, we mined 252,996 packages.
Applications: We also want to examine the use of the packages
in JavaScript applications. Therefore, we mined all of the Node.js
applications on GitHub. To ensure that we are indeed only obtaining
the applications from GitHub, and not npm packages, we compare
the URL of the GitHub repositories to all of the URLs we obtained
from npm for the packages. If a URL from GitHub was also in npm,
we flagged it as being an npm package and removed it from the
application list. To determine that an application uses npm packages,
we looked for the ‘package.json’ file, which specifies (amongst
others) the npm package dependencies used by the application.
To eliminate dummy applications that may exist in GitHub, we
choose non-forked applications with more than 100 commits and
more than 2 developers. Similar filtering criteria were use in prior
work by Kalliamvakou et al. [31]. In total, we obtained 115,621
JavaScript applications and after removing applications that did not
use the npm platform, we were left with 38,807 applications.

3 WHAT ARE TRIVIAL PACKAGES ANYWAY?

Although what a trivial package is has been loosely defined in the
past (e.g., in blogs [27, 28]), we want a more precise and objective
way to determine trivial packages. To determine what constitutes
a trivial package, we conducted a survey, where we asked par-
ticipants what they considered to be a trivial package and what
indicators they used to determine if a package is trivial or not.
We devised an online survey that presented the source code of 16
randomly selected Node.js packages that range in size between 4
- 250 JavaScript lines of code (LOC). Participants were asked to 1)
indicate if they thought the package was trivial or not and 2) specify
what indicators they use to determine a trivial package. We opted to

Why Do Developers Use Trivial Packages?
An Empirical Case Study on npm

limit the size of the Node.js packages in the survey to a maximum
of 250 JavaScript LOC since we did not want to overwhelm the
participants with the review of excessive amounts of code.

We asked the survey participants to indicate trivial packages
from the list of Node.js packages provided. We provided the survey
participants with a loose definition of what a trivial package is, i.e.,
a package that contains code that they can easily code themselves
and hence, is not worth taking on an extra dependency for. Figure 1
shows an example of a trivial package, called is-Positive, which
simply checks if a number is positive. The survey questions were
divided into three parts: 1) questions about the participant’s de-
velopment background, 2) questions about the classification of the
provided Node.js packages and 3) questions about what indicators
the participant would use to determine a trivial package. We sent
the survey to 22 developers and colleagues that were familiar with
JavaScript development and received a total of 12 responses.

1 | module.exports
2 return toString.call(n) ===
n > 0;

function (n) {
'[object Number]' &&

31

Figure 1: Package is-Positive on npm

Participants Background and Experience. Of the 12 respon-
dents, 2 are undergraduate students, 8 are graduate students and 2
are professional developers. Ten of the 12 respondents have at least
2 years of JavaScript experience and half of the participants have
been developing with JavaScript for more than five years.

Survey Responses. We asked participants to list what indicators
they use to determine if a package is trivial or not and to indicate
all the packages that they considered to be trivial. Of the 12 partic-
ipants, 11 (92%) state that the complexity of the code and 9 (75%)
state that size of the code are indicators they use to determine a
trivial package. Another 3 (20%) mentioned that they used code
comments and other indicators (e.g., functionality) to indicate if a
package is trivial or not. Since it is clear that size and complexity
are the most common indicators of trivial packages, we use these
two measures to determine trivial packages. It should be mentioned
that participants could provide more than 1 indicator, hence the
percentages above sum to more than 100%.

Next, we analyze all of the packages that were marked as trivial.
In total, we received 69 votes for the 16 packages. We ranked the
packages in ascending order, based on their size, and tallied the
votes for the most voted packages. We find that 79% of the votes
consider packages that are less than 35 lines of code to be trivial.
We also examine the complexity of the packages using McCabe’s
cyclomatic complexity, and find that 84% of the votes marked pack-
ages that have a total complexity value of 10 or lower to be trivial.
It is important to note that although we provide the source code
of the packages to the participants, we do not explicitly provide
the size or the complexity of the packages to the participants, so
they are not biased by any metrics, i.e., size or complexity, in their
classification.

Based on the aforementioned findings, we used the two indi-
cators JavaScript LOC < 35 and complexity < 10 to determine
trivial packages in our dataset. Hence, we define trivial packages
as {XLOC < 35N Xcomplexity < 10}, where X1 oc represents the
JavaScript LOC and Xcomplexity represents McCabe’s cyclomatic

387

ESEC/FSE’17, September 4-8, 2017, Paderborn, Germany

NPM prevents publishers from unpublishing their packages (April st 2016)

20‘11 20‘12 20‘1 3 20‘14

Percentage of Trivial to All Packages Published on npm

20‘1 5 20‘1 6

Figure 2: Percentage of Published Trivial Packages on npm.

complexity of package X. Although we use the aforementioned
measures to determine trivial packages, we do not consider this to
be the only possible way to determine trivial packages.

Our survey indicates that size and complexity are com-
monly used measures to determine if a package is triv-
ial. Based on our analysis, packages that have < 35
JavaScript LOC and a McCabe’s cyclomatic complexity <
10 are considered to be trivial.

4 HOW PREVALENT ARE TRIVIAL
PACKAGES?

In this section, we want to know how prevalent trivial packages are.
We examine prevalence from two aspects: the first aspect is from
npm’s perspective, where we are interested in knowing how many
of the packages on npm are trivial. The second aspect considers the
use of trivial packages in JavaScript applications.

4.1 How Many of npm’s Packages are Trivial?

We use the two measures, LOC and complexity, to determine trivial
packages, which we now use to quantify the number of trivial
packages in our dataset. Our dataset contained a total of 252,996
npm packages. For each package, we calculated the number of
JavaScript code lines and removed packages that had zero LOC,
which removed 21,904 packages. This left us with a final number
of 231,092 packages. Then, for each package, we removed test code
since we are mostly interested in the actual source code of the
packages. To identify and remove the test code, similar to prior
work [22, 44, 48], we look for the term “test” (and its variants) in
the file names and file paths.

Out of the 231,092 npm packages we mined, 38,845 (16.8%) pack-
ages are trivial packages. In addition, we examined the growth of
trivial packages in npm. Figure 2 shows the percentage of trivial
to all packages published on npm per month. We see an increasing
trend in the number of trivial packages over time and approximately
15% of the packages added every month are trivial packages. We
investigated the spike around March 2016 and found that this spike
corresponds to the time when npm disallowed the un-publishing
of packages [40].

npm posts the most depended-upon packages on its website [38].
We measured the number of trivial packages that exist in the top
1,000 most depended-upon packages; we find that 113 of them are
trivial packages. This finding shows that trivial packages are not

ESEC/FSE’17, September 4-8, 2017, Paderborn, Germany

only prevalent and increasing in number, but they are also very
popular among developers, making up 11.3% of the 1,000 most
depended on npm packages.

Trivial packages make up 16.8% of the studied npm pack-

ages. Moreover, the proportion of trivial packages is in-
creasing and trivial packages make up 11.3% of the top
1,000 most depended on npm packages.

4.2 How Many Applications Depend on Trivial
Packages?

Just because trivial packages exist on npm, it does not mean that
they are actually being used. Therefore, we also examine the num-
ber of applications that use trivial packages. To do so, we examine
the package.json file, which contains all the dependencies that an
application installs from npm. However, in some cases, an applica-
tion may install a package but not use it. To avoid counting such
instances, we parse the JavaScript code of all the examined applica-
tions and use regular expressions to detect the require dependency
statements, which indicates that the application actually uses the
package in its code?. Finally, we measured the number of packages
that are trivial in the set of packages used by the applications. Note
that we only consider npm packages since it is the most popular
package manager for Node.js packages and other package managers
only manage a subset of packages (e.g., Bower [9] only manages
front-end/client-side frameworks, libraries and modules). We find
that of the 38,807 applications in our data set, 4,256 (10.9%) directly
depend on at least one trivial package.

Of the 38,807 Node.js applications in our dataset, 10.9%
of them depend on at least one trivial package.

5 SURVEY RESULTS

We surveyed Node.js developers to understand the reasons for and
the drawbacks of using trivial packages. We use a survey because
it allows us to obtain first-hand information from the developers
who use these trivial packages. In order to select the most relevant
participants, we sent out the survey to developers who use trivial
packages. We used Git’s pickaxe command on the lines that contain
the required dependency statements in the applications; a procedure
that provided us with the email and name of the developer who
introduced the trivial package dependency.

Survey Participants. To mitigate the possibility of introducing
misunderstood or misleading questions, we initially sent the survey
to two JavaScript developers and incorporated their minor sug-
gestions to improve the survey. Next, we sent the survey to 1,055
developers from 1,696 applications. To select the developers, we
ranked them based on the number of trivial packages they use. We
then took a sample of 600 developers that use trivial packages the
most, and another 600 of those that indicated the least use of trivial
packages. The survey was emailed to the 1,200 selected developers,
however, since some of the emails were returned for various rea-
sons (e.g., the email account does not exist anymore, etc.), we could
only reach 1,055 developers.

ZNote that if a package is required in the application, but does not exist, it will break
the application.

388

R. Abdalkareem, O. Nourry, S. Wehaibi, S. Mujahid, and E. Shihab

The survey listed the trivial package and the application that
we detected the trivial package in. We received 88 responses to
our survey, which translates to a response rate of 8.3%. Our survey
response rate is in line with, and even higher, than the typical 5%
response rate reported in questionnaire-based software engineering
surveys [42]. Of the 88 respondents, 83 of them identified as devel-
opers working either in industry (68) or as a full time independent
developers (15). The remaining 5 identified as being a casual devel-
opers (2) or other (3), including one student and two developers
working in executive positions at npm. As for the development
experience of the survey respondents, the majority (67) of the re-
spondents have more than 5 years of experience, 14 have between
3-5 years and 7 have 1-3 years of experience. The fact that most
of the respondents are experienced JavaScript developers gives us
confidence in our survey responses.

5.1 Do Developers Consider Trivial Packages
Harmful?

The first question of our survey to the participants is: “Do you
consider the use of trivial packages as bad practice?" The reason to
ask this question so bluntly is that it allows us to gauge, in a very
deterministic way, how the Node.js developers felt about the issue
of using trivial packages. We provided three possible replies, Yes,
No or Other in which case they were provided with a text box to
elaborate. Of the 88 participants, 51 (57.9%) stated that they do NOT
consider the use of trivial packages as bad practice. Another 21
(23.9%) stated that they indeed think that using trivial package is a
bad practice. The remaining 16 (18.2%) stated that it really depends
on the circumstances, such as the time available, how critical a piece
of code is, and if the package used has been thoroughly tested.

Most of the surveyed developers (57.9%) do NOT believe
that using trivial packages is a bad practice.

5.2 Why Do Developers Use Trivial Packages?

While we have answered the question as to whether developers
think using trivial packages is a bad practice, what we are most
interested in is why do developers resort to using trivial packages
and what do they view as the drawbacks of using trivial packages.
Therefore, the second part of the survey asks participants to list the
reasons why they resort to using trivial packages. To ensure that
we do not bias the responses of the developers, the answer fields
for these questions were in free-form text, i.e., no predetermined
suggestions were provided. After gathering all of the responses,
we grouped and categorized the responses in a two-phase iterative
process. In the first phase, the first two authors carefully read the
participant’s answers and came up with a number of categories
that the responses fell under. Next, they discussed their groupings
and agreed on the extracted categories. Whenever they failed to
agree on a category, a third author was asked to help break the
tie. Once all of the categories were decided, the same two authors
went through all the answers again and classified them into their
respective categories. For the majority of the cases, the two authors
agreed on most categories and the classifications of the responses.
To measure the agreement between the two authors, we used Co-
hen’s Kappa coefficient [10]. The Cohen’s Kappa coefficient has

Why Do Developers Use Trivial Packages?
An Empirical Case Study on npm

ESEC/FSE’17, September 4-8, 2017, Paderborn, Germany

Table 1: Reasons for using trivial packages.

Reason Description #Resp. %

Well implemented & tested Participants state that trivial packages are effectively implemented and tested. 48 54.6%

Increased productivity Trivial packages reduce the time needed to implement existing source code. 42 47.7%

Well maintained code It eases source code maintenance, since other developers maintain the trivial package. 8 9.1%

Improved readability & re- Using trivial packages improve the source code quality in terms of readability and 8 91%

duced complexity reduce complexity.

Better performance Trivial packages improve the performance of web applications compared to the use of 3 34%
large frameworks.

No reason - 7 8.0%

been used to evaluate inter-rater agreement levels for categori- of the trivial packages. For example, participant P45 states: “Also, a

cal scales, and provides the proportion of agreement corrected for
chance. The resulting coefficient is scaled to range between -1 and
+1, where a negative value means less than chance agreement, zero
indicates exactly chance agreement, and a positive value indicates
better than chance agreement [18]. In our categorization, the level
of agreement measured between the authors was of +0.90, which is
considered to be an excellent inter-rater agreement.

Table 1 shows the five reasons for using trivial packages, as
reported by our survey respondents; another category was used
to group the ‘no reason’ responses. Table 1 presents the different
reasons, a description of each category and its frequency. These
reasons are listed below, in order of their popularity:

R1. Well implemented & tested (54.6%): The most cited reason
for using trivial packages is that they provide well implemented
and tested code. More than half of the responses mentioned this
reason. In particular, although it may be easy for developers to
code these trivial packages themselves, it is more difficult to make
sure that all the details are addressed, e.g., one needs to carefully
consider all edge cases. Some example responses that mention
these issues are stated by participants P68 and P4, who cite their
reasons for using trivial packages as follows: P68: “Tests already
written, a lot of edge cases captured [...].” & P4: “There may be a more
elegant/efficient/correct/cross-environment-complatible solution to a
trivial problem than yours”.

R2. Increased productivity (47.7%): The second most cited rea-
son is the improved productivity that using trivial packages enables.
Trivial tasks or not, writing code on your own requires time and
effort, hence, many developers view the use of trivial packages as a
way to boost their productivity. In particular, early on in a project,
a developer does not want to worry about small details, they would
rather focus their efforts on implementing the more difficult tasks.
For example, participants P13 and P27 state: P13: “[...] and it does
save time to not have to think about how best to implement even
the simple things.” & P27: “Don’t reinvent the wheel! if the task has
been done before.”. The aforementioned are clear examples of how
developers would rather not code something, even if it is trivial. Of
course, this comes at a cost, which we discuss later.

R3. Well maintained code (9.1%): A less common, but cited rea-
son for using trivial packages is the fact that the maintenance of
the code need not to be performed by the developers themselves;
in essence, it is outsourced to the community or the contributors

389

highly used trivial package is probable to be well maintained.”. Even
tasks such as bug fixes are dealt with by the contributors of the
trivial packages, which is very attractive to the users of the trivial
packages, as reported by participant P80: “...], leveraging feedback
from a larger community to fix bugs, etc.”
R4. Improved readability & reduced complexity (9.1%): Par-
ticipants also reported that using trivial packages improves the
readability and reduces the complexity of their code. For example,
P34 states: “immediate clarity of use and readability for other devel-
opers for commonly used packages]...]” & P47 states: “Simple abstract
brings less complexity.”
R5. Better performance (3.4%): A few of the participants stated
that using trivial packages improves performance since it alleviates
the need for their application to depend on large frameworks. For
example, P35 states: “[...] you do not depend on some huge utility
library of which you do not need the most part.”

Only a small percentage (8.0%) of the respondents stated that
they do not see a reason to use trivial packages.

The two most cited reasons for using trivial packages are
1) they provide well implemented and tested code and 2)
they increase productivity.

5.3 Drawbacks of Using Trivial Packages

In addition to knowing the reasons why developers resort to trivial
packages, we wanted to understand the other side of the coin - what
they perceive to be the drawbacks of their decision to use these
packages. The drawbacks question was part of our survey and we
followed the same aforementioned process to analyze the survey
responses. In the case of the drawbacks the Cohen’s Kappa agree-
ment measure was +0.86, which is considered to be an excellent
agreement. Table 2 lists the drawback mentioned by the survey
respondents along with a brief description and the frequency of
each drawback.

I1. Dependency overhead (55.7%): The most cited drawback of
using trivial packages is the increased dependency overhead, e.g.,
keeping all dependencies up to date and dealing with complex
dependency chains, that developers need to bear [7]. This situation
is often referred to as ‘dependency hell’, especially when the trivial
packages themselves have additional dependencies. This drawback
came through clearly in many comments, for example, P41 states:

ESEC/FSE’17, September 4-8, 2017, Paderborn, Germany

R. Abdalkareem, O. Nourry, S. Wehaibi, S. Mujahid, and E. Shihab

Table 2: Drawbacks of using trivial packages.

Drawback Description # Resp. %
Dependency overhead Using trivial packages results in a dependency mess that is hard to update and maintain. 49 55.7%
Breakage of applica- Depending on a trivial package could cause the application to break if the package becomes 16 18.2%
tions unavailable or has a breaking update.

Decreased perfor- Trivial packages decrease the performance of applications, which includes the time to install 14 15.9%
mance and build the application.

Slows development Finding a relevant and high quality trivial package is a challenging and time consuming task. 11 12.5%
Missed learning oppor- The practice of using trivial packages leads to developers not learning and experiencing 8 9.1%
tunities writing code for trivial tasks.

Security Using trivial packages can open a door for security vulnerability. 7 8.0%
Licensing issues Using trivial packages could cause licensing conflicts. 3 34%
No drawbacks - 7 8.0%

“[...] people who don’t actively manage their dependency versions could
[be] exposed to serious problems [...]” & P40: “Hard to maintain a lot
of tiny packages”. Hence, while trivial packages may provide well
implemented/tested code and improve productivity, developers are
clearly aware that the management of the additional dependencies
is something they need to deal with.

I2. Breakage of applications (18.2%): Developers also worry
about the potential breakage of their application due to a specific
package or version becoming unavailable. For example, in the left-
pad issue, the main reason for the breakage was the removal of
left-pad, P4 states: “Obviously the whole ’left-pad crash’ exposed an
issue”. However, since that incident, npm has disabled the possi-
bility of a package to be removed [40]. Although disallowing the
removal solves part of the problem, packages can still be updated,
which may break an application. For a non-trivial package, it may
be worth it to take the risk, however, for trivial packages, it may
not be worth taking such a risk.

I3. Decreased performance (15.9%): This issue is related to the
dependency overhead drawback. Developers mentioned that incur-
ring the additional dependencies slowed down the build time and
increased application installation times. For example, P64 states:
“Too many metadata to download and store than a real code.” & P34
states: “[...], slow installs; can make project noisy and unintuitive
by attempting to cobble together too many disparate pieces instead
of more targeted code.”. As mentioned earlier, in some cases it is
not just the fact that the trivial package adds a dependency, but in
some cases the trivial package itself depends on additional packages,
which negatively impacts performance even further.

I4. Slows development (12.5%): In some cases, the use of trivial
packages may actually have a reverse effect and slow down devel-
opment. For example, as P23 and P15 state: P23: “Can actually slow
the team down as, no matter how trivial a package, if a developer
hasn’t required it themselves they will have to read the docs in order to
double check what it does, rather than just reading a few lines of your
own source.” & P15: [...], we have the problem of locating packages
that are both useful and “trustworthy" [...]”; it can be difficult to find
a relevant and trustworthy package. Even if others try to build on

390

your code, it is much more difficult to go fetch a package and learn
it, rather than read a few lines of your code.
I5. Missed learning opportunities (9.1%): In certain cases, the
use of these trivial packages is seen as a missed learning opportunity
for developers. For example, P24 states: “Sometimes people forget
how to do things and that could lead to a lack of control and knowledge
of the language/technology you are using”. This is a clear example of
where just using a package, rather than coding the solution yourself,
will lead to less knowledge about the code base.
I6. Security (8.0%): In some cases the trivial packages may have
security flaws that make the application more vulnerable. This
is an issue pointed out by a few developers, for example, as P15
mentioned earlier, it is difficult to find packages that are trustworthy.
P57 also mentions: “If you depend on public trivial packages then you
should be very careful when selecting packages for security reasons”.
As in the case of any dependency one takes on, there is always
a chance that a security vulnerability could be exposed in one of
these packages.
I7. Licensing issues (3.4%): In some cases, developers are con-
cerned about potential licensing conflicts that trivial packages may
cause. For example, P73 states: [...], possibly license-issues”, P62:
“[...], there is a risk that the ‘trivial’ package might be licensed under
the GPL must be replaced anyway prior to shipping.”

There were also 8% of the responses that stated they do not see
any drawbacks with using trivial packages.

The two most cited drawbacks of using trivial packages
are 1) they increase dependency overhead and 2) they may
break their applications due to a package or a specific ver-
sion becoming unavailable or incompatible.

6 PUTTING DEVELOPER PERCEPTION
UNDER THE MICROSCOPE

The developer survey provided us with great insights on why de-
velopers use trivial packages and what they perceive to be their
drawbacks. However, whether there is empirical evidence to sup-
port their perceptions remains unexplored. Thus, we examine the
most commonly cited reason for using trivial packages, i.e., the fact

Why Do Developers Use Trivial Packages?
An Empirical Case Study on npm

1.0
15

10

Tests Value
00 02 04 06 08

Non Trivial

5

Non Trivial

Trivial Trivial

Community Interest Value (log scaled)

Downloads Count Value (log scaled)

0
|

(a) Tests

(b) Community
Interest

(c) Download
Count

Figure 3: Distribution of Tests, Community Interest and
Download Count Metrics.

that trivial packages are well tested, and drawback, i.e., the impact
of additional dependencies, based on our findings in Section 5.

6.1 Examining the ‘Well Tested’ Perception

As shown in Table 1, 54.6% of the responses indicate that they use
trivial packages since they are well implemented and tested. And,
the developers have good reasons to believe so. npm requires that
developers provide a test script name with the submission of their
packages (listed in the package.json file). In fact, 81.2% (31,521 out
of 38,845) of the trivial packages in our dataset have some test script
name listed. However, since developers can provide any script name
under this field, it is difficult to know if a package is actually tested.
We examine whether a package is really well tested and imple-
mented from two aspects; first, we check if a package has tests
written for it. Second, since in many cases, developers consider
packages to be ‘deployment tested’, we also consider the usage of a
package as an indicator of it being well tested and implemented [47].
To carefully examine whether a package is really well tested and im-
plemented, we use the npm online search tool (known as npms [11])
to measure various metrics related to how well the packages are
tested, used and valued. To provide its ranking of the packages,
npms mines and calculates a number of metrics based on develop-
ment (e.g., tests) and usage (e.g., no. of downloads) data. We use
three metrics measured by npms to validate the ‘well tested and
implemented’ perception of developers, which are?:
1) Tests: considers the tests’ size, coverage percentage and build
status for a project. We looked into the npms source code and find
that the Tests metric is calculated as: testsSize * 0.6 + buildStatus
% 0.25 + coveragePercentage * 0.15. We use the Tests metric to
determine if a package is tested and how trivial packages compare
to non-trivial packages in terms of how well tested they are. One
example that motives us to investigate how well tested a trivial
package is the response by P68, who says: “Tests already written, a
lot edge cases captured [...].".
2) Community interest: evaluates the community interest in the
packages, using the number of stars on GitHub & npm, forks, sub-
scribers and contributors. Once again, we find through the source
code of npms that Community interest is simply the sum of the

31t is important to note that the motivation and full derivation (e.g., why they put a
weight of 0.15 on the test coverage, etc.) of the metrics is beyond the scope of this
paper. We refer interested readers to the npms documentation for more details [11].
To make our paper self-sufficient, we include how the metrics are calculated here.

391

ESEC/FSE’17, September 4-8, 2017, Paderborn, Germany

Table 3: Mann-Whitney Test (p-value) and Cliff’s Delta (d)
for Trivial vs. Non Trivial Packages

Metrics p-value d

Tests 2.2e-16 -0.119 (small)
Community interest ~ 2.2e-16 -0.269 (small)
Downloads count 2.2e-16 -0.245 (small)

aforementioned metrics, measured as: starsCount + forksCount +
subscribersCount + contributorsCount. We use this metric to com-
pare how interested the community is in trivial and non-trivial
packages. We measure the community interest since developers
view the importance of the trivial packages as evidence of its quality
as stated by P56, who says: “[...] Using an isolated module that is
well-tested and vetted by a large community helps to mitigate the
chance of small bugs creeping in.”.

3) Download count: measures the mean downloads for the last
three months. Again, the number of downloads of a package is often
viewed as an indicator of the package’s quality; as P61 mentions:
“this code is tested and used by many, which makes it more trustful
and reliable.”.

As an initial step, we calculate the number of trivial packages
that have a Tests value greater than zero, which means trivial
packages that have some of tests. We find that only 45.2% of the
trivial packages have tests, i.e., a Tests value > 0. In addition, we
compare the values of the Tests, Community interest and Download
count for Trivial and non-Trivial packages. Our focus is on the
values of the aforementioned metric values for trivial packages,
however, we also present the results for non-trivial packages to put
our results in context.

Figure 3 shows the bean-plots for the Tests, Community interest
and Download count. The figures show that in all cases trivial pack-
ages have, on median, a smaller Tests value, Community interest
value and Download count compared to non-trivial packages. That
said, we observe from Figure 3 a) that the distribution of the Tests
metric is similar for both, trivial and non-trivial packages. Most
packages have a Tests value of zero, then there are small pockets
of packages that have values of aprox. 0.25, 0.6, 0.8 and 1.0. In the
case of the Community interest and Download count metrics, once
again, we see similar distributions, although clearly the median
values are lower for trivial packages.

To examine whether the difference in metric values between
trivial and non-trivial packages is statistically significant, we per-
formed a Mann-Whitney test to compare the two distributions and
determine if the difference is statistically significant, with a p-value
< 0.05. We also use Cliff’s Delta (d), which is a non-parametric
effect size measure to interpret the effect size between trivial and
non-trivial packages. As suggested in [23], we interpret the effect
size value to be small for d < 0.33 (positive as well as negative
values), medium for 0.33 < d < 0.474 and large for d > 0.474.

Table 3 shows the p-values and effect size values. We observe
that in all cases the differences are statistically significant, however,
the effect size is small. The results show that although the majority
of trivial packages do not have tests written for them, and have

ESEC/FSE’17, September 4-8, 2017, Paderborn, Germany

= Non Trivial Packages

m Trivial Packages

1 2 5
Number of Releases (log scaled)

Figure 4: Number of Releases for Trivial Packages Com-
pared to Non-trivial Packages.

= Non Trivial Packages
m Trivial Packages
T T T T

0 2 4 6
Number of Direct & Indirect Dependencies (log scaled)

Figure 5: Distribution of Direct & Indirect Dependencies for
Trivial and Non-trivial Packages (p-value < 2.2e-16 & Cliff’s
Delta (d) -0.279 (small)).

statistically lower Tests, Community interest, and Download count
values, their effect size is smaller than non-trivial packages.

[Contrary to developers’ perception, only 45.2% of triv- |
ial packages actually have tests. Albeit, trivial pack-
ages have lower Tests, Community interest and Download
count values, the values of the metrics do not seem to have
a large difference compared to non-trivial packages, i.e.,
trivial packages are similar to non-trivial packages in
terms of how well they are tested.

6.2 Examining the ‘Dependency Overhead’
Perception

As discussed in Section 5, the top cited drawback of using trivial
packages is the fact that developers need to take on and maintain ex-
tra dependencies, i.e, dependency overhead. Examining the impact
of dependencies is a complex and well-studied issue (e.g,. [1, 12, 15])
that can be examined in a multitude of ways. We choose to examine
the issue from both, the application and the package perspectives.
Applications: When compared to coding trivial tasks themselves,
using a trivial package imposes extra dependencies. One of the most
problematic aspects of managing dependencies for applications is
when these dependencies update, causing a potential to break their
application. Therefore, as a first step, we examined the number
of releases for trivial and non-trivial packages. The intuition here
is that developers need to put in extra effort to assure the proper
integration of new releases. Figure 4 shows that trivial packages
have less releases than non-trivial packages (median is 2 for trivial
and 3 for non-trivial packages), hence trivial packages do not re-
quire more effort than non-trivial packages. The fact that the trivial
packages are updated less frequently may be attributed to the fact
that trivial packages ‘perform less functionality’, hence they need
to be updated less frequently.

392

R. Abdalkareem, O. Nourry, S. Wehaibi, S. Mujahid, and E. Shihab

Table 4: Percentage of Packages vs. the Number of Depen-
dencies Used.

npm # Dependencies (Direct & Indirect)
Packages o6 110 11-20 >20
Trivial 563% 27.9% 4.3% 11.5%
Non Trivial 34.8% 30.6% 7.3% 27.3%

Next, we examined how developers choose to deal with the

updates of trivial packages. One way that application developers re-
duce the risk of a package impacting their application is to ‘version
lock’ the package. Version locking a dependency/package means
that it is not updated automatically, and that only the specific ver-
sion mentioned in the packages.json file is used. As stated in a
few responses from our survey, e.g., P8: "[...] Also, people who don’t
lock down their versions are in for some pain.". There are different
types of version locks, i.e., only updating major releases, updat-
ing patches only, updating minor releases or no lock at all, which
means the package automatically updates. The version locks are
specified in the packages.json file next to every package name. We
examined the frequency at which trivial and non-trivial packages
are locked. We find that on average, trivial packages are locked
14.9% of the time, whereas non-trivial packages are locked 11.7% of
the time. However, the Wilcox test shows that the difference is not
statistically significant, p-value > 0.05. Hence, we cannot say that
developers version lock trivial packages more.
Packages: At the package level, we investigate the direct and indi-
rect dependencies of trivial packages. In particular, we would like
to determine if the trivial packages have their own dependencies,
which makes the dependency chain even more complex. For each
trivial and non-trivial package, we install it and then count the ac-
tual number of (direct and indirect) dependencies that the package
requires. Doing so, allows us to know the true (direct and indirect)
dependencies that each package requires. Note that simply looking
into the . json file and the require statements will provide the
direct dependencies, but not the indirect dependencies.

Figure 5 shows the distribution of dependencies for trivial and
non-trivial packages. Since most trivial packages have no dependen-
cies, the median is 0. Therefore, we bin the trivial packages based
on the number of their dependencies and calculate the percentage
of packages in each bin. Table 4 shows the percentage of packages
and their respective number of dependencies. We observe that the
majority of trivial packages (56.3%) have zero dependencies, 27.9%
have between 1-10 dependencies, 4.3% have between 11-20 depen-
dencies and 11.5% have more than 20 dependencies. The table shows
that some of the trivial packages have many dependencies, which
indicates that indeed, trivial packages can introduce significant
dependency overhead.

Trivial packages have fewer releases and developers are

less likely to be version locked than non-trivial pack-
ages. That said, developers should be careful when us-
ing trivial packages, since in some cases, trivial packages
can have numerous dependencies. In fact, we find that
43.7% of trivial packages have at least one dependency
and 11.5% of trivial packages have more than 20 depen-
dencies.

Why Do Developers Use Trivial Packages?
An Empirical Case Study on npm

7 RELEVANCE AND IMPLICATIONS

A common question that is asked in empirical studies is - so what?
what are the implications of your findings? why would practitioners
care about your findings? We discuss the issue of relevance of our
study to the developer community, based on the responses of our
survey and highlight some of the implications of our study.

7.1 Relevance: Do Practitioners care?

At the start of the study, we were not sure how practically relevant
our study of trivial packages is. However, we were surprised by the
interest of developers in our study. In fact, one of the developers
(P39) explicitly mentioned the lack of research on this topic, stating
“There has not been enough research on this, but I've been taking note of
people’s proposed “quick and simple” code to handle the functionality
of trivial packages, and it’s surprised me to see the high percentage of
times the proposed code is buggy or incomplete.”

Moreover, when we conducted our study, we asked respondents
if they would like to know the outcome of our study and if so, they
provide us with an email address. Of the 88 respondents, 66 (aprox.
74%) of them provided their email for us to provide them with the
outcomes of our study. Some of these respondents hold very high
level leadership roles in npm. To us this is an indicator that our
study and its outcomes are of high relevance to the npm and Node.js
development community.

7.2 Implications of Our Study

Our study has a number of implications on both, software engineer-
ing research and practice.

Implications for Future Research: Our study mostly focused on
determining the prevalence, reasons for and drawbacks of using
trivial packages. Based on our findings, we find a number of impli-
cations/motivations for future work. First, our survey respondents
indicated that the choice to use trivial packages is not black or white.
In many cases, it depends on the team and the project. For example,
one survey respondent stated that on his team, less experienced
developers are more likely to use trivial packages, whereas the
more experienced developers would rather write their own code
for trivial tasks. The issue here is that the experienced developers
are more likely to trust their own code, while the less experienced
are more likely to trust an external package. Another aspect is the
maturity of the project. As some of the survey respondents pointed
out, they are much more likely use trivial packages early on in the
project, so they do not waste time on trivial tasks and focus on
the more fundamental tasks of their project. However, once their
project matures, they start to look for ways to reduce dependencies
since they pose potential points of failure for their project. Hence,
our study motivates future work to examine the relationship be-
tween team experience and project maturity and the use of trivial
packages.

Second, survey respondents also pointed out that using trivial
packages is seen favourably compared to using code from Q&A
sites such as StackOverflow or Reddit. When compared to using
code on StackOverflow, where the developer does not know who
posted the code, who else uses it or whether the code may have
tests or not, using a trivial package that is on npm is a much better
option. In this case, using trivial packages is not seen as the best

393

ESEC/FSE’17, September 4-8, 2017, Paderborn, Germany

choice, but it is certainly a better choice. Although there have been
many studies that examined how developers use Q&A sites such as
StackOverflow, we are not aware of any studies that compare code
reuse from Q&A sites and trivial packages. Our findings motivate
the need for such a study.

Practical Implications: A direct implication of our findings is that
trivial packages are commonly used by others, perhaps indicating
that developers do not view their use as bad practice. Moreover,
developers should not assume that all trivial packages are well
implemented and tested, since our findings show otherwise. npm
developers need to expect more trivial packages to be submitted,
making the task of finding the most relevant package even harder.
Hence, the issue of how to manage and help developers find the
best packages needs to be addressed. To some extent, npms has been
recently adopted by npm to specifically address the aforementioned
issue. Developers highlighted that the lack of a decent core or
standard JavaScript library causes them to resort to trivial packages.
Often, they do not want to install large frameworks just to leverage
small parts of the framework, hence they resort to using trivial
packages. Therefore, there is a need by the Node.js community to
create a standard JavaScript API or library in order to reduce the
dependence on trivial packages. However, the issue of creating such
a standard JavaScript library is under much debate [20].

8 RELATED WORK

Studies of Code Reuse. Prior research on code reuse has been
shown its many benefits, which include improving quality, de-
velopment speed, and reducing development and maintenance
costs [3, 32, 36, 37]. For example, Sojer and Henkel [43] surveyed
686 open source developers to investigate how they reuse code.
Their findings show that more experienced developers reuse source
code and 30% of the functionality of open source software (OSS)
projects reuse existing components. Developers also reveal that
they see code reuse as a quick way to start new projects. Similarly,
Haefliger et al. [24] conducted a study to empirically investigate the
reuse in open source software, and the development practices of
developers in OSS. They triangulated three sources of data (devel-
oper interviews, code inspections and mailing list data) of six OSS
projects. Their results showed that developers used tools and relied
on standards when reusing components. Mockus [36] conducted an
empirical study to identify large-scale reuse of open source libraries.
Their study shows that more than 50% of source files include code
from other OSS libraries. On the other hand, the practice of reusing
source code has some challenging drawbacks including the effort
and resource required to integrate reused code [16]. Furthermore,
a bug in the reused component could propagate to the target sys-
tem [17]. While our study corroborates some of these findings, the
main goal is to define and empirically investigate the phenomenon
of reusing trivial packages, in particular in Node.js applications.

Studies of Other Ecosystems. In recent years, analyzing the char-
acteristics of ecosystems in software engineering has gained mo-
mentum [4, 5, 15, 34]. For example, in a recent study, Bogart et
al. [6, 7] empirically studied three ecosystems, including npm, and
found that developers struggle with changing versions as they
might break dependent code. Witter et al. [46] investigated the
evolution of the npm ecosystem in an extensive study that covers
the dependence between npm packages, download metrics and the

ESEC/FSE’17, September 4-8, 2017, Paderborn, Germany

usage of npm packages in real applications. One of their main find-
ings is that npm packages and updates of these packages is steadily
growing. Also, more than 80% of packages have at least one direct
dependency package.

Other studies examined the size characteristics of packages in an
ecosystem. German et al. [21] studied the evolution of the statistical
computing project GNU R, with the aim of analyzing the differences
between code characteristics of core and user-contributed packages.
They found that user-contributed packages are growing faster than
core packages. Additionally, they reported that user-contributed
packages are typically smaller than core packages in the R ecosys-
tem. Kabbedijk and Jansen [30] analyzed the Ruby ecosystem and
found that many small and large projects are interconnected.

In many ways, our study complements the previous work since,
instead of focusing on all packages in an ecosystem, we specifically
focus on trivial packages. Moreover, we examine the reasons devel-
opers use trivial package and what they view as their drawbacks.

We study the reuse of trivial packages, which is a subset of
general code reuse. Hence, we do expect there to be some overlap
with prior work. Like many empirical studies, we confirm some of
the prior findings, which is a contribution on its own. Moreover, our
paper adds to the prior findings through, for example, our validation
of the developers’ assumptions. Lastly, we do believe our study fills
a real gap since 74% of the participants said they wanted to know
our study outcomes.

9 THREATS TO VALIDITY

Construct validity considers the relationship between theory and
observation, in case the measured variables do not measure the
actual factors. To define trivial packages, we surveyed 12 JavaScript
developers who are mostly graduate student with some professional
experience. However, we find that there was a clear vote for what is
considered a trivial package. Also, although our data suggested that
packages with < 35 LOC and a complexity < 10 are trivial packages,
we believe that other definitions are possible for trivial packages.
That said, of the 88 survey participants that we emailed about using
trivial packages, only 1 mentioned that the flagged package is not
a trivial package (even though it fit our criteria). To us, this is a
confirmation that our definition applies in the vast majority of the
cases, although clearly it is not perfect.

We use the LOC and complexity of the code to determine trivial
packages. In some cases, these may not be the only measures that
need to be considered to determine a trivial packages. For example,
some of the trivial packages have their own dependencies, which
may need to be taken into consideration. However, our experience
tells us that most developers only look at the package itself and not
its dependencies when determining if it is trivial or not. That said,
it would be interesting to replicate this questionnaire with another
set of participants to confirm or enhance our definition of a trivial
Node.js package.

Our list of reasons for and drawbacks of using trivial packages
are based on a survey of 88 Node.js developers. Although this is
a large number of developers, our results may not hold for all
Node.js developers. A different sample of developers may result
in a different list or ranking of advantages and disadvantages. To
mitigate the risk due to this sampling, we contacted developers
from different applications and as our responses show, most are

394

R. Abdalkareem, O. Nourry, S. Wehaibi, S. Mujahid, and E. Shihab

experienced developers. Also, there is potential that our survey
questions may have influenced the replies from the respondents.
However, to minimize such influence, we made sure to ask for free-
form responses (to minimize any bias) and we publicly share our
survey and all of our anonymized survey responses.

We used npms to measure various quantitative metrics related
to testing, community interest and download counts. Our measure-
ments are only as accurate as npms, however, given that it is the
main search tool for npm, we are confident in the the npms metrics.

We do not distinguish between the domain of the npm packages,
which may impact the findings. However, to help mitigate any bias
we analyzed more than 230,000 npm packages that cover a wide
range of domains.

We removed test code from our dataset to ensure that our analy-

sis only considers JavaScript source code. We identified test code
by searching for the term ‘test’ (and its variants) in the file names
and file paths. Even though this technique is widely accepted in the
literature [22, 44, 48], to confirm whether our technique is correct,
i.e., files that have the term ‘test’ in their names and paths actually
contain test code, we took a statistically significant sample of the
packages to achieve a 95% confidence level and a 5% confidence
interval and examined them manually.
External validity considers the generalization of our findings. All
of our findings were derived from open source Node.js applications
and npm packages, hence, our findings may not generalize to other
platforms or ecosystems. That said, historical evidence shows that
examples of individual cases contributed significantly in areas such
as physics, economics, social sciences and even software engineer-
ing [19]. We believe that strong empirical evidence is built from
both, studies on individual cases and studies on large samples.

10 CONCLUSION

The use of trivial packages is an increasingly popular trend in
software development. Like any development practice, it has its
proponents and opponents. The goal of our study is to examine the
prevalence, reasons and drawbacks of using trivial packages. Our
findings indicate that trivial packages are commonly and widely
used in Node.js applications. We also find that the majority of de-
velopers do not oppose the use of trivial packages and the main
reasons developers use trivial packages is due to the fact that they
are considered to be well implemented and tested. However, they
do cite the fact that the additional dependencies’ overhead as a
drawback of using these trivial packages. That said, our empirical
study showed considering trivial packages to be well tested is a mis-
conception since more than half of the trivial package we studied do
not even have tests written, however, these trivial packages seem to
be ‘deployment tested’ and have similar Tests, Community interest
and Download count values as non-trivial packages. In addition, we
find that some of the trivial packages have their own dependencies
and, in our studied dataset, 11.5% of the trivial packages have more
than 20 dependencies. Hence, developers should be careful about
which trivial packages they use.

ACKNOWLEDGMENTS

The authors are grateful to the many survey respondents who
dedicated their valuable time to respond to our surveys.

Why Do Developers Use Trivial Packages?
An Empirical Case Study on npm

REFERENCES

(1]

[10]

(1]

[12]

[13]

[14]

[15]

[16

[17]

(18]

[19]

[20]

[21]

[22

[23]

Pietro Abate, Roberto Di Cosmo, Jaap Boender, and Stefano Zacchiroli. 2009.
Strong Dependencies Between Software Components. In Proceedings of the 2009
3rd International Symposium on Empirical Software Engineering and Measurement
(ESEM 09). IEEE Computer Society, 89-99.

Rabe Abdalkareem, Emad Shihab, and Juergen Rilling. 2017. On Code Reuse
from StackOverflow : An exploratory study on Android apps. Information and
Software Technology 88, C (2017), 148-158.

Victor R. Basili, Lionel C. Briand, and Walcélio L. Melo. 1996. How Reuse Influ-
ences Productivity in Object-oriented Systems. Commun. ACM 39, 10 (October
1996), 104-116.

Gabriele Bavota, Gerardo Canfora, Massimiliano Di Penta, Rocco Oliveto, and
Sebastiano Panichella. 2013. The Evolution of Project Inter-dependencies in
a Software Ecosystem: The Case of Apache. In Proceedings of the 2013 IEEE
International Conference on Software Maintenance (ICSM ’13). IEEE Computer
Society, 280-289.

Remco Bloemen, Chintan Amrit, Stefan Kuhlmann, and Gonzalo Ord6fiez Mata-
moros. 2014. Gentoo Package Dependencies over Time. In Proceedings of the 11th
Working Conference on Mining Software Repositories (MSR '14). ACM, 404-407.
Christopher Bogart, Christian Kastner, and James Herbsleb. 2015. When It
Breaks, It Breaks: How Ecosystem Developers Reason About the Stability of
Dependencies. In Proceedings of the 2015 30th IEEE/ACM International Conference
on Automated Software Engineering Workshop (ASEW ’15). IEEE Computer Society,
86-89.

Christopher Bogart, Christian Késtner, James Herbsleb, and Ferdian Thung. 2016.
How to Break an API: Cost Negotiation and Community Values in Three Soft-
ware Ecosystems. In Proceedings of the 2016 24th ACM SIGSOFT International
Symposium on Foundations of Software Engineering (FSE ’16). ACM, 109-120.
Stephan Bonnemann. 2015. Dependency Hell Just Froze Over. https://speakerdeck.
com/boennemann/dependency-hell-just-froze-over. (September 2015). (accessed
on 08/10/2016).

Bower. 2012. Bower a package manager for the web. https://bower.io/. (2012).
(accessed on 08/23/2016).

J. Cohen. 1960. A coefficient of agreement for nominal scales. Educational and
psychological measurement 20 (1960), 37-46.

Andre Cruz and Andre Duarte. 2017. npms. https://npms.io/. (01 2017). (accessed
on 02/20/2017).

Cleidson R. B. de Souza and David F. Redmiles. 2008. An Empirical Study of
Software Developers’ Management of Dependencies and Changes. In Proceedings
of the 30th International Conference on Software Engineering (ICSE '08). ACM,
241-250.

Alexandre Decan, Tom Mens, and Maelick Claes. 2016. On the Topology of
Package Dependency Networks: A Comparison of Three Programming Lan-
guage Ecosystems. In Proccedings of the 10th European Conference on Software
Architecture Workshops (ECSAW °16). ACM, Article 21, 4 pages.

Alexandre Decan, Tom Mens, and Maélick Claes. 2017. An Empirical Compari-
son of Dependency Issues in OSS Packaging Ecosystems. In Proccedings of the
24th International Conference on Software Analysis, Evolution, and Reengineering
(SANER °17). IEEE.

Alexandre Decan, Tom Mens, Philippe Grosjean, and others. 2016. When GitHub
Meets CRAN: An Analysis of Inter-Repository Package Dependency Problems.
In Proceedings of the 23rd IEEE International Conference on Software Analysis,
Evolution, and Reengineering (SANER ’16), Vol. 1. IEEE, 493-504.

Roberto Di Cosmo, Davide Di Ruscio, Patrizio Pelliccione, Alfonso Pierantonio,
and Stefano Zacchiroli. 2011. Supporting software evolution in component-based
FOSS systems. Science of Computer Programming 76, 12 (2011), 1144-1160.
Mehdi Dogguy, Stephane Glondu, Sylvain Le Gall, and Stefano Zacchiroli. 2011.
Enforcing Type-Safe Linking using Inter-Package Relationships. Studia Informat-
ica Universalis. 9, 1 (2011), 129-157.

J. L. Fleiss and J. Cohen. 1973. The equivalence of weighted kappa and the
intraclass correlation coefficient as measures of reliability. Educational and
Psychological Measurement 33 (1973), 613-619.

Bent Flyvbjerg. 2006. Five misunderstandings about case-study research. Quali-
tative Inquiry 12, 2 (2006), 219-245.

Thomas Fuchs. 2016. What if we had a great standard library
in JavaScript? aAS Medium. https://medium.com/@thomasfuchs/
what-if-we-had-a-great-standard-library-in-javascript-52692342ee3f.
pw7d4cq8j. (Mar 2016). (accessed on 02/24/2017).

D German, B Adams, and AE Hassan. 2013. Programming language ecosystems:
the evolution of r. In Proceedings of the 17th European Conference on Software
Maintenance and Reengineering (CSMR ’13). IEEE, 243-252.

Georgios Gousios and Andy Zaidman. 2014. A Dataset for Pull-based Develop-
ment Research. In Proceedings of the 11th Working Conference on Mining Software
Repositories (MSR ’14). ACM, 368-371.

Robert J Grissom and John J Kim. 2005. Effect sizes for research: A broad practical
approach. Lawrence Erlbaum Associates Publishers.

395

[24

[25]

[27]

[28

[29

[30

@
=

[32

[33

[34

@
i

[36

[37

[38

[39

S
=

[41

[42]

[43

[44]

[45

[46

(47]

[48]

ESEC/FSE’17, September 4-8, 2017, Paderborn, Germany

Stefan Haefliger, Georg Von Krogh, and Sebastian Spaeth. 2008. Code reuse in
open source software. Management Science 54, 1 (2008), 180-193.

Quinn Hanam, Fernando S. de M. Brito, and Ali Mesbah. 2016. Discovering Bug
Patterns in JavaScript. In Proceedings of the 24th ACM SIGSOFT International
Symposium on Foundations of Software Engineering (FSE ’16). ACM, 144-156.
David Haney. 2016. NPM & left-pad: Have We Forgotten How To Program? http:
//www.haneycodes.net/npm-left-pad-have-we-forgotten-how-to-program/.
(March 2016). (accessed on 08/10/2016).

Rich Harris. 2015. Small modules: itAAZs not quite that simple. https://medium.
com/@Rich_Harris/small-modules-it-s-not-quite- that-simple-3ca532d65de4.
(Jul 2015). (accessed on 08/24/2016).

Hemanth.HM. 2015. One-line node modules -Issue#10- sindresorhus/ama. https:
//github.com/sindresorhus/ama/issues/10. (2015). (accessed on 08/10/2016).
Katsuro Inoue, Yusuke Sasaki, Pei Xia, and Yuki Manabe. 2012. Where Does This
Code Come from and Where Does It Go? - Integrated Code History Tracker for
Open Source Systems -. In Proceedings of the 34th International Conference on
Software Engineering (ICSE ’12). IEEE Press, 331-341.

Jaap Kabbedijk and Slinger Jansen. 2011. Steering insight: An exploration of the
ruby software ecosystem. In Proceedings of the Second International Conference of
Software Business (ICSOB ’11). Springer, 44-55.

Eirini Kalliamvakou, Georgios Gousios, Kelly Blincoe, Leif Singer, Daniel M.
German, and Daniela Damian. 2014. The Promises and Perils of Mining GitHub.
In Proceedings of the 11th Working Conference on Mining Software Repositories
(MSR ’14). ACM, 92-101.

Wayne C. Lim. 1994. Effects of Reuse on Quality, Productivity, and Economics.
IEEE Software 11, 5 (1994), 23-30.

Fiona Macdonald. 2016. A programmer almost broke the Internet last week by
deleting 11 lines of code. &+#http://www.sciencealert.com/how-a-programmer-
almost-broke-the-internet-by-deleting-11-lines-of-code. (March 2016). (accessed
on 08/24/2016).

Konstantinos Manikas. 2016. Revisiting software ecosystems research: a longitu-
dinal literature study. Journal of Systems and Software 117 (2016), 84-103.
Stephen McCamant and Michael D. Ernst. 2003. Predicting Problems Caused by
Component Upgrades. In Proceedings of the 9th European Software Engineering
Conference Held Jointly with 11th ACM SIGSOFT International Symposium on
Foundations of Software Engineering (ESEC/FSE "03). ACM, 287-296.

Audris Mockus. 2007. Large-Scale Code Reuse in Open Source Software. In
Proceedings of the First International Workshop on Emerging Trends in FLOSS
Research and Development (FLOSS "07). IEEE Computer Society, 7-.

Parastoo Mohagheghi, Reidar Conradi, Ole M. Killi, and Henrik Schwarz. 2004. An
Empirical Study of Software Reuse vs. Defect-Density and Stability. In Proceedings
of the 26th International Conference on Software Engineering (ICSE ’04). IEEE
Computer Society, 282-292.

npm. 2016. Most depended-upon packages. http://www.npmjs.com/browse/
depended. (August 2016). (accessed on 08/10/2016).

npm. 2016. What is npm? | Node Package Managment Documentation. https:
//docs.npmyjs.com/getting-started/what-is-npm. (July 2016). (accessed on
08/14/2016).

The npm Blog. 2016. The npm Blog changes to npm’s unpublish policy. http://
blog.npmjs.org/post/141905368000/changes- to--unpublish-policy. (March 2016).
(accessed on 08/11/2016).

Heikki Orsila, Jaco Geldenhuys, Anna Ruokonen, and Imed Hammouda. 2008.
Update propagation practices in highly reusable open source components. In
Proceedings of the 4th IFIP WG 2.13 International Conference on Open Source Systems
(0SS *08). 159-170.

Janice Singer, Susan E Sim, and Timothy C Lethbridge. 2008. Software engineer-
ing data collection for field studies. In Guide to Advanced Empirical Software
Engineering. Springer London, 9-34.

Manuel Sojer and Joachim Henkel. 2010. Code Reuse in Open Source Software
Development: Quantitative Evidence, Drivers, and Impediments. Journal of the
Association for Information Systems 11, 12 (2010), 868-901.

Jason Tsay, Laura Dabbish, and James Herbsleb. 2014. Influence of Social and
Technical Factors for Evaluating Contribution in GitHub. In Proceedings of the
36th International Conference on Software Engineering (ICSE ’14). ACM, 356-366.
Chris Williams. 2016. How one developer just broke Node, Babel and thousands
of projects in 11 lines of JavaScript. http://www.theregister.co.uk/2016/03/23/
npm_left_pad_chaos. (March 2016). (accessed on 08/24/2016).

Erik Wittern, Philippe Suter, and Shriram Rajagopalan. 2016. A Look at the
Dynamics of the JavaScript Package Ecosystem. In Proceedings of the 13th Inter-
national Conference on Mining Software Repositories (MSR °16). ACM, 351-361.
Dan Zambonini. 2011. Testing and deployment. In A Practical Guide to Web
App Success, Owen Gregory (Ed.). Five Simple Steps, Chapter 20. (accessed on
02/23/2017).

Jiaxin Zhu, Minghui Zhou, and Audris Mockus. 2014. Patterns of Folder Use and
Project Popularity: A Case Study of Github Repositories. In Proceedings of the
8th ACM/IEEE International Symposium on Empirical Software Engineering and
Measurement (ESEM ’14). ACM, Article 30, 4 pages.

https://speakerdeck.com/boennemann/dependency-hell-just-froze-over
https://speakerdeck.com/boennemann/dependency-hell-just-froze-over
https://bower.io/
https://npms.io/
https://medium.com/@thomasfuchs/what-if-we-had-a-great-standard-library-in-javascript-52692342ee3f.pw7d4cq8j
https://medium.com/@thomasfuchs/what-if-we-had-a-great-standard-library-in-javascript-52692342ee3f.pw7d4cq8j
https://medium.com/@thomasfuchs/what-if-we-had-a-great-standard-library-in-javascript-52692342ee3f.pw7d4cq8j
http://www.haneycodes.net/npm-left-pad-have-we-forgotten-how-to-program/
http://www.haneycodes.net/npm-left-pad-have-we-forgotten-how-to-program/
https://medium.com/@Rich_Harris/small-modules-it-s-not-quite-that-simple-3ca532d65de4
https://medium.com/@Rich_Harris/small-modules-it-s-not-quite-that-simple-3ca532d65de4
https://github.com/sindresorhus/ama/issues/10
https://github.com/sindresorhus/ama/issues/10
http://www.npmjs.com/browse/depended
http://www.npmjs.com/browse/depended
https://docs.npmjs.com/getting-started/what-is-npm
https://docs.npmjs.com/getting-started/what-is-npm
http://blog.npmjs.org/post/141905368000/changes-to--unpublish-policy
http://blog.npmjs.org/post/141905368000/changes-to--unpublish-policy
http://www.theregister.co.uk/2016/03/23/npm_left_pad_chaos
http://www.theregister.co.uk/2016/03/23/npm_left_pad_chaos

	Abstract
	1 Introduction
	2 Background and Datasets
	3 What are Trivial Packages Anyway?
	4 How Prevalent are Trivial Packages?
	4.1 How Many of npm's Packages are Trivial?
	4.2 How Many Applications Depend on Trivial Packages?

	5 Survey Results
	5.1 Do Developers Consider Trivial Packages Harmful?
	5.2 Why Do Developers Use Trivial Packages?
	5.3 Drawbacks of Using Trivial Packages

	6 Putting Developer Perception Under the Microscope
	6.1 Examining the `Well Tested' Perception
	6.2 Examining the `Dependency Overhead' Perception

	7 Relevance and Implications
	7.1 Relevance: Do Practitioners care?
	7.2 Implications of Our Study

	8 Related Work
	9 Threats to Validity
	10 Conclusion
	References

