
Empir Software Eng (2017) 22:1537–1577
DOI 10.1007/s10664-016-9438-4

License usage and changes: a large-scale study on gitHub

Christopher Vendome1 ·Gabriele Bavota2 ·
Massimiliano Di Penta3 ·Mario Linares-Vásquez1 ·
Daniel German4 ·Denys Poshyvanyk1

Published online: 6 June 2016
© Springer Science+Business Media New York 2016

Abstract Open source software licenses determine, from a legal point of view, under which
conditions software can be integrated and redistributed. The reason why developers of a
project adopt (or change) a license may depend on various factors, e.g., the need for ensuring
compatibility with certain third-party components, the perspective towards redistribution
or commercialization of the software, or the need for protecting against somebody else’s
commercial usage of the software. This paper reports a large empirical study aimed at quan-
titatively and qualitatively investigating when and why developers adopt or change software
licenses. Specifically, we first identify license changes in 1,731,828 commits, represent-
ing the entire history of 16,221 Java projects hosted on GitHub. Then, to understand the
rationale of license changes, we perform a qualitative analysis on 1,160 projects written in
seven different programming languages, namely C, C++, C#, Java, Javascript, Python, and
Ruby—following an open coding approach inspired by grounded theory—on commit mes-
sages and issue tracker discussions concerning licensing topics, and whenever possible, try
to build traceability links between discussions and changes. On one hand, our results high-
light how, in different contexts, license adoption or changes can be triggered by various
reasons. On the other hand, the results also highlight a lack of traceability of when and why
licensing changes are made. This can be a major concern, because a change in the license of
a system can negatively impact those that reuse it. In conclusion, results of the study trigger

Communicated by: Lin Tan

� Christopher Vendome
cgvendome@email.wm.edu

1 The College of William and Mary, Williamsburg, VA, USA

2 Free University of Bozen-Bolzano, Bozen-Bolzano, Italy

3 University of Sannio, Benevento, Italy

4 University of Victoria, British Columbia, Canada

http://crossmark.crossref.org/dialog/?doi=10.1007/s10664-016-9438-4&domain=pdf
mailto:cgvendome@email.wm.edu

1538 Empir Software Eng (2017) 22:1537–1577

the need for better tool support in guiding developers in choosing/changing licenses and in
keeping track of the rationale of license changes.

Keywords Software licenses · Mining software repositories · Empirical studies

1 Introduction

In recent and past years, the diffusion of Free and Open Source Software (FOSS) projects
is increasing significantly, along with the availability of forges hosting such projects (e.g.,
SourceForge1 or GitHub2) and foundations supporting and promoting the development and
diffusion of FOSS (e.g., the Apache Software Foundation,3 the GNU Software Founda-
tion,4 or the Eclipse Software Foundation5). The availability of FOSS projects is a precious
resource for developers, who can reuse existing assets, extend/evolve them, and in this way
create new work productively and reduce costs. For example, a blog post by IBM6 outlines
the reasons pushing companies to reuse open source code: “Yes, this [the cost factor] is one
of the most important factors that attract not only the small companies or start-up’s but also
the big corporations these days”. This can happen not only in the context of open source
projects, but it is more and more frequent in commercial projects. In a survey conducted
by Black Duck,7 it was found that 78 % of the companies use open source code (double
from 2010), 93 % claimed an increase in open source reuse, 64 % contribute to open source
development, and over 55 % indicated a lack of formal guidance when utilizing open source
code. The findings by Black Duck demonstrate two key implications: i) commercial reuse
of open source code has been increasing, and ii) in general, there is a lack of oversight in
how this reuse occurs.

Nevertheless, whoever is interested in integrating FOSS code in their software project
(and redistributing along with the project itself), or modifying existing FOSS projects to
create a new work—referred to as “derivative work”—must be aware that such activities
are regulated by software licenses and in particular by the specific FOSS license of the
project being reused. In order to license software projects, developers either add a licensing
statement to source code files (as a comment at the beginning of each file) and/or include
a textual file containing the license statement in the project source code root directory or in
its sub-directories.

Generally speaking, FOSS licenses can be classified into restrictive (also referred to as
“copyleft” or “reciprocal”) and permissive licenses. A restrictive license requires develop-
ers to use the same license to distribute new software that incorporates software licensed
under such restrictive license (i.e., the redistribution of the derivative work must be licensed
under the same terms); meanwhile, permissive licenses allow re-distributors to incorpo-

1http://sourceforge.net
2https://github.com
3https://www.apache.org
4http://www.gnu.org
5http://www.eclipse.org/
6https://www.ibm.com/developerworks/community/blogs/6e6f6d1b-95c3-46df-8a26-b7efd8ee4b57/entry/
why big companies are embracing open source119?lang=en
7https://www.blackducksoftware.com/future-of-open-source

http://sourceforge.net
https://github.com
https://www.apache.org
http://www.gnu.org
http://www.eclipse.org/
https://www.ibm.com/developerworks/community/blogs/6e6f6d1b-95c3-46df-8a26-b7efd8ee4b57/entry/why_{b}ig_{c}ompanies_{a}re_{e}mbracing_{o}pen_{s}ource119?lang=en
https://www.ibm.com/developerworks/community/blogs/6e6f6d1b-95c3-46df-8a26-b7efd8ee4b57/entry/why_{b}ig_{c}ompanies_{a}re_{e}mbracing_{o}pen_{s}ource119?lang=en
https://www.blackducksoftware.com/future-of-open-source

Empir Software Eng (2017) 22:1537–1577 1539

rate the reused software under a difference license (Singh and Phelps 2009, Free Software
Foundation 2015). The GPL (in all of its versions) is a classic example of a restrictive
license. In Section 5 of the GPL-3.0, the license addresses code modification stating that
“You must license the entire work, as a whole, under this License to anyone who comes into
possession of a copy” (http://www.gnu.org/licenses/gpl.html). The BSD licenses are exam-
ples of permissive licenses. For instance, the BSD 2-Clause has two clauses that detail the
use, redistribution, and modification of licensed code: (i) the source must contain the copy-
right notice and (ii) the binary must produce the copyright notice and contain the disclaimer
in documentation (http://opensource.org/licenses/BSD-2-Clause).

When developers (or organizations) decide to make a project available as open source,
they can license their code under one or many different existing licenses. The choice
may be dictated by the set of dependencies that the project has (e.g., what libraries it
uses) since those dependencies might have specific licensing constraints to those that reuse
them. For instance, if a project links (statically) some GPL code, then it must be released
under the same GPL version; failing to fulfill such a constraint could create a poten-
tial legal risk. Also, as shown by Di Penta et al. (2010), the choice of the licenses in a
FOSS project may have a massive impact on its success, as well as on projects using it.
For example—as it happened for the IPFilter project (http://www.openbsd.org/faq/pf)—a
highly restrictive license may prevent others from redistributing the project (in the case
of IPFilter, this caused its exclusion from the OpenBSD distributions). An opposite case
is the one of MySQL connect drivers, originally released under GPL-2.0, whose license
was modified with an exception (Oracle http://www.mysql.com/about/legal/licensing/
foss-exception/) to allow the driver’s inclusion in other software released under some open
source licenses, which would otherwise be incompatible with the GPL (e.g., the original
Apache license). In summary, the choice of the license—or even a decision to change an
existing license—is a crucial crossroad point in the context of software evolution of every
FOSS project.

In order to encourage developers to think about licensing issues early in the development
process, some forges (e.g., GitHub) have introduced mechanisms such as the possibility of
picking the project license at the time the repository is created. Also, there are some Web
sites (e.g., http://choosealicense.com) helping developers to choose a license. Furthermore,
there are numerous research efforts aimed at supporting developers in classifying source
code licenses (Gobeille 2008; Germán et al. 2010b) and identifying licensing incompatibil-
ities (Germán et al. 2010a). Even initiatives such as the Software Package Data Exchange
(SPDX) (http://spdx.org) have been aimed at proposing a formal model to document the
license of a system. However, despite of the effort put by the FOSS community, researchers,
and independent companies, it turns out that developers usually do not have a clear idea on
the exact consequences of licensing (or not) their code using a specific license, or they are
unsure (for example, on how to re-distribute code licensed with a dual license among the
other issues Vendome et al. 2015b).

Paper Contributions This paper reports the results of a large empirical study aimed at
quantitatively and qualitatively investigating when and why licenses change in open source
projects, and to what extent is it possible to establish traceability links between licensing
related-discussions and changes. First, we perform a quantitative analysis conducted on
16,221 Java projects hosted on GitHub. To conduct this study, we first mined the entire
change history of the projects, extracting the license name (e.g., GPL or Apache) and ver-
sion (e.g., v1, v2), when applicable, from each of the 4,665,611 files involved in a total
of 1,731,828 commits. Starting from this data, we provide quantitative evidence on (i) the

http://www.gnu.org/licenses/gpl.html
http://opensource.org/licenses/BSD-2-Clause
http://www.openbsd.org/faq/pf
http://www.mysql.com/about/legal/licensing/foss-exception/
http://www.mysql.com/about/legal/licensing/foss-exception/
http://choosealicense.com
http://spdx.org

1540 Empir Software Eng (2017) 22:1537–1577

diffusion of licenses in FOSS systems, (ii) the most common license-change patterns, and
(iii) the traceability between the license changes to both the commit messages and the issue
tracker discussions. After that, following an open coding approach inspired by grounded
theory (Corbin and Strauss 1990), we qualitatively analyze a sample of commit messages
and issue tracker discussions likely related to license changes. Such a qualitative analy-
sis has been performed on 1,160 projects written in seven different languages: 159 C, 91
C++, 78 C#, 324 Java, 166 Javascript, 147 Python, and 195 Ruby projects. The results of
this analysis provide a rationale on why developers adopt specific license(s), both for initial
licensing and for licensing changes.

The study reported in this paper poses its basis on previous work aimed at exploring
license incompatibilities (Germán et al. 2010a), license changes (Di Penta et al. 2010),
license evolution (Manabe et al. 2010), and integration patterns (Germán and Hassan 2009).
Building upon previous work on licensing analysis, this paper:

1. Constitutes, to the best of the authors’ knowledge, the largest study aimed at analyzing
the change patterns in licensing of software systems (earlier work was limited to the
analysis of up to six projects Manabe et al. 2010; Di Penta et al. 2010).

2. To the best of our knowledge, it is the first work aimed at explaining the rationale of
license changes by means of a qualitative analysis of commit notes and issue tracker
discussions.

The achieved results suggest that determining the appropriate license of a software
project is far from trivial and that a community’s usage and expectations can influence
developers when picking a license. We also observe that licensing expectations may be
different based on the programming language. Although choosing a license is considered
important for developers, even from early releases of their projects, forges and third party-
tools provide little or no support to developers when performing licensing-related tasks,
e.g., picking a license, declaring the license of a project, changing license from a restrictive
one towards a more permissive one (or vice versa) and, importantly, keeping track of the
rationale for license changes. For example, during the creation of a new repository, GitHub
allows the user to select an initial license from a list of commonly used ones, but offers
no guidance on the implications of such a choice, and simply redirects the user to http://
choosealicense.com/; aside from this, GitHub offers no support for licensing management.
Also, there is a lack of consistency and standardization in the mechanism that should be
used for declaring a license (e.g., putting it in source code heading comments, separate
license files, README files, etc.). Moreover, the legal nature of the licenses exacerbate this
problem since the implications and grants or restrictions are not always clear for developers
when the license is present. Last, but not least, the currently available Software Con-
figuration Management (SCM) technology provides no support to trace licensing-related
discussions and decisions onto actual changes, whereas such traceability links can be useful
to understand the impact of such decisions.

Paper Structure The paper is organized as follows. Section 2 relates this work to the
existing literature on licensing analysis. Section 3 describes the study design and details the
data analysis procedure. Results are reported and discussed in Section 4. Lessons learned
from the study results are summarized in Section 5, while Section 6 discusses the threats to
the study’s validity. Finally, Section 7 concludes the paper and outlines directions for future
work.

http://choosealicense.com/
http://choosealicense.com/

Empir Software Eng (2017) 22:1537–1577 1541

2 Related Work

Our work is mainly related to (i) techniques and tools for automatically identifying and
classifying licenses in software artifacts, and (ii) empirical studies focusing on different
aspects of license adoption and evolution.

2.1 Identifying and Classifying Software Licenses

The problem of license identification has firstly been tackled in the FOSSology project
(Gobeille 2008) aimed at building a repository storing FOSS projects and their licensing
information and using a machine learning approach to classify licenses. Tuunanen et al.
(2009) proposed ASLA, a tool aimed at identifying licenses in FOSS systems; the tool has
been shown to determine licenses in files with 89 % accuracy.

Germán et al. (2010b) proposed Ninka, a tool that uses a pattern-matching based
approach for identifying statements that characterize various licenses. Given any text file
as an input, Ninka outputs the license name and version. In the evaluation reported by the
authors, Ninka achieved a precision ∼95 % while detecting licenses. Ninka is currently
considered the state-of-the-art tool in the automatic identification of software licenses.

While the typical license classification problem arises when source code is available, in
some cases, source code is not available—i.e., only byte code or binaries are available—and
the goal is to identify whether the byte code has been produced from source code under a
certain license. To this aim, Di Penta et al. (2010) combined code search and textual analysis
to automatically determine a license under which jar files were released. Their approach
automatically infers the license from decompiled code by relying on the Google Code search
engine. Note that, differently from the previous techniques, the approach in Di Penta et al.
(2010) is only able to identify the license family (e.g., GPL) without specifying the version
(e.g., 2.0).

2.2 Empirical Studies on Licenses Adoption and Evolution

Di Penta et al. (2010) investigated—on six open source projects written in C, C++ and
Java—the migration of licenses over the course of a project’s lifetime. The study suggests
that licenses changed version and type during software evolution, but there was no generic
patterns generalizable to the six analyzed FOSS projects. Also, Manabe et al. (2010) ana-
lyzed the changes in licenses but of FreeBSD, OpenBSD, Eclipse, and ArgoUML, finding
that each project had different evolution patterns.

Germán and Hassan (2009) analyzed 124 open source packages exploited by sev-
eral applications to understand how developers deal with license incompatibilities. Based
on this analysis, they built a model outlining when specific licenses are applicable and
what are their advantages and disadvantages. Later, Germán et al. (2010a) presented
an empirical study focused on the binary packages of the Fedora-12 Linux distribution
aimed at (i) understanding if licenses declared in the packages were consistent with those
present in the source code files, and (ii) detecting licensing issues derived by depen-
dencies between packages; they were able to find some licensing issues confirmed by
Fedora.

Germán et al. (2009) analyzed the presence of cloned code fragments between the Linux
Kernel and two distributions of BSD, i.e., OpenBSD and FreeBSD. The aim was to ver-
ify whether the cloning was performed in accordance to the terms of the licenses. Results

1542 Empir Software Eng (2017) 22:1537–1577

show that, in most cases, these code-migrations were admitted since they went from less
restrictive licenses towards more restrictive ones.

Wu et al. (2015) investigated license inconsistencies between cloned files. They per-
formed an empirical study on Debian 7.5 to demonstrate the ways in which licensing can
become inconsistent between the file clones (e.g., the removal of a license in one of the
clone pairs).

In our previous work (Vendome et al. 2015a), we focused our analysis only on Java
projects. In this work, we expand our analysis to include six new languages—C, C++, C#,
Javascript, Python, and Ruby. Also, our new grounded theory analysis features a catego-
rization of commit messages and issue discussions into seven categories, in turn further
detailed in a total of 27 sub-categories. In addition to extracting new support and rationale,
we also defined new sub-categories and subsequently distilled lessons from this new data.
For example, we observed that asserting a license is not standardized or consistent across
languages, and it would benefit developers to have a consistent means of documenting and
presenting the license of a system within a forge.

Vendome et al. (2015b) conducted a survey with developers that contributed to projects
that had experienced changes in licensing to understand the rationale for adopting and
changing licensing. The survey results indicated that facilitating commercial reuse is a com-
mon reason for license changes. Also the survey highlighted that, in general, developers
have a lack of understanding of the legal implications of open source licenses, highlighting
the need for recommenders aimed at supporting them in choosing and changing licenses.

While we share similar goals with prior related work—understanding insights into
license usage and migration—our analysis is done on a much larger scale, including a (i)
quantitative analysis on 16,221 Java projects, and (ii) a qualitative analysis upon a sample
of commit messages and issue tracker discussions from 1,160 projects written in seven dif-
ferent programming languages. The latter allowed us to perform in-depth analysis of the
rationale behind license usages and migrations.

3 Design of the Empirical Study

The goal of our study is to investigate license adoption and evolution in FOSS projects, with
the purpose of understanding the overall rationale behind picking a particular license or
changing licenses and of determining the underlying license change patterns. The perspec-
tive is of researchers interested in understanding what are the main factors leading towards
specific license adoption and change. The context consists of (i) the change history of 16,221
Java open source projects mined from GitHub, which will be used to quantitatively inves-
tigate the goals of the study, and (ii) commit messages and issue tracker discussions from
1,160 projects written in seven different programming languages (i.e., C, C++, C#, Java,
JavaScript, Python, and Ruby), which will be exploited for qualitative analysis.

3.1 Research Questions

We aim at answering the following research questions:

1. RQ1 What is the usage of different licenses by projects in GitHub? This research ques-
tion examines the proportions of different types of licenses that are introduced by FOSS
projects hosted in GitHub. In doing this, we should consider that GitHub is a relatively
young forge (launched in April 2008), which has seen exponential growth in the number

Empir Software Eng (2017) 22:1537–1577 1543

of projects over the past few years, and that most of the projects it hosts are young in
terms of the first available commit or the date that the repository was created.

2. RQ2 What are the most common licensing change patterns? Our second research ques-
tion investigates the popular licensing change patterns in the GitHub Open Source
community with the aim of driving out—from a qualitative point of view—the rationale
behind such change patterns (e.g., satisfying dependency constraints).

3. RQ3 To what extent are licensing changes documented in commit messages or issue
tracker discussions? This research question investigates on whether licensing changes
in a system can be traced to commit messages or issues’ discussions.

4. RQ4 What rationale do these sources contain for the licensing changes? This research
question investigates the rationale behind the particular change in license(s) from a
developer’s perspective.

We address our four research questions by looking at the licensing phenomenon from
two different points of view, namely (i) a quantitative analysis of the licenses under which
projects were released, their changes across their evolution history, and the ability to match
these changes to either commit messages or issue tracker discussions; and (ii) a qualitative
analysis of licensing-related discussions made by developers over the issue trackers and
of the way in which developers documented licensing changes through commit messages.
For the quantitative analysis of licensing changes, we are interested in analyzing license
migration patterns that fall in the following three categories:

– No license → some License(s) – N2L. This reflects the case in which developers
realized the need for a license and added a licensing statement to files;

– some License(s) → No license – L2N . In this case, for various reasons, licensing state-
ments have been removed from source code files; for example, because a developer
accidentally added a wrong license/license version;

– some License(s) → some other License(s) – L2L. This is the most general case of a
change in licensing between distinct licenses.

To address RQ1, RQ2, and RQ3, we perform a quantitative analysis by mining the ver-
sion history of 16,221 Java projects, while to address RQ4 we perform a qualitative analysis
on the commit messages and issue tracker discussion of the 1,160 projects written in seven
different programming languages. In the following subsections, we describe the two kinds
of analysis in detail.

3.2 Quantitative Analysis

In order to generate the dataset to be used in the study, we mined the version history
of 16,221 Java projects publicly available on GitHub. GitHub hosts over twelve million
Git repositories covering many popular programming languages, and provides a public
API (https://developer.github.com/v3/) that can be used to query and mine project informa-
tion. Also, the Git version control system allows for local cloning of the entire repository,
which facilitates the comprehensive analysis of the project change-history and thus of the
license changes happened in each commit.

To extract data for our quantitative analysis, we first identified a comprehensive list
of projects hosted on GitHub by implementing a script exploiting GitHub’s APIs. The
computation of the comprehensive list resulted in over twelve million projects. Since
the infrastructure we use for license extraction only supports Java systems (as it will be
explained later), we filtered out all systems that were not written in Java, obtaining a list

https://developer.github.com/v3/

1544 Empir Software Eng (2017) 22:1537–1577

of 381,161 Java projects hosted on GitHub. We cloned all 381,161 git repositories locally
for a total of 6.3 Terabytes of storage space. In our analysis, we randomly sampled 16,221
projects due to the computation time of the aforementioned infrastructure.

Once the Git repositories had been cloned, we used a code analyzer developed in the
context of the MARKOS European project (Bavota et al. 2014) to extract license infor-
mation at commit-level granularity. The MARKOS code analyzer uses the Ninka license
classifier (Germán et al. 2010b) to identify and classify licenses contained in all the files
hosted under the version control system of each project. For each of the 16,221 projects
in our study, the MARKOS code analyzer mined the change log, producing the following
information for each commit:

1. Commit Id: The identifier of the commit that is currently checked out from the Git
repository and analyzed;

2. Date: The timestamp associated with the commit;
3. Author: The person responsible for the commit;
4. Commit Message: The message attached to the commit;
5. File: The path of the files committed;
6. Change to File:A field to indicate whether each file involved in the commit was Added,

Deleted, or Modified;
7. License Changed: A boolean value indicating whether the particular file has experi-

enced a change in license in this commit with respect to its previous version. This
feature applies to modified files only. In the case of an addition or deletion of a file, this
field is set to false;

8. License: The name and version (e.g., GPL-2.0) of each license applied to the file.

The computation of such information for all 16,221 projects took almost 40 days, and
resulted in the analysis of a total of 1,731,828 developers’ commits involving 4,665,611
files. Note that for the BSD and CMU licenses Ninka was not able to correctly identify its
variants (reporting it as BSD var and CMU var). Additionally, the GPL and the LGPL may
contain a “+” after the version number (e.g., 3.0+), which represents a clause in the license
granting the ability to use future versions of the license (i.e., the GPL-2.0+ would allow
for utilization under the terms of the GPL-3.0). Also, we have values of “no license” and
“unknown”, which represents the case that no license was attached to the file or Ninka was
unable the determine the license.

To determine whether there is a trend in the proportions of adopted licenses over the
observed years, we used the Augmented Dickey-Fuller (ADF) test (Dickey and Fuller 1979,
1981). This test is widely used to test stationarity of time series. The test can be used to reject
two different null hypotheses H0s : the time series is not significantly stationary or H0e: the
time series is not significantly explosive; the latter can be used to determine whether there
is a significantly increasing trend in the time series. In our statistical tests, we considered a
significance level of 0.05 (i.e., we rejected null hypotheses for p-values < 0.05).

We quantitatively analyzed the collected data by presenting descriptive statistics about
the license adoption and the most common atomic license changes that we found. The latter
are defined as the commits in which we detected a specific kind of license change within at
least one source code or textual file. For example, given a commit with three files experienc-
ing the licensing change No license → Apache-2.0, and 10 files with GPL-2.0 → GPL-3.0,
the atomic license changes from that commit are one No License → Apache-2.0 change
and one GPL-2.0 → GPL-3.0 change. We prefer not to count the number of changes at file
level as it was done in previous work (Di Penta et al. 2010) to avoid inflating our analy-
sis because of large commits and to make comparable commits performed on both small

Empir Software Eng (2017) 22:1537–1577 1545

and large projects. It is possible that this coarse-grained analysis may fail to capture some
license changes, for example due to a change in licensing of a dependency, although also
in this case, in principle, the licensing changes should be reflected at project level when
appropriate.

In the end, we identified a total of 1,833 projects with atomic license changes out of our
dataset of 16,221 projects. This subset of projects was used to investigate license change
traceability. Intuitively, we require the presence of license changes in order to determine how
well changes in licensing are documented in either the commit messages or issue tracker
discussion. Therefore, we used a web crawler to identify, among these 1,833 projects, those
using the GitHub issue tracker, finding a total of 1,586 projects having at least one issue
on it. To link the licensing changes to commit messages/issue reports, we performed both
string matching and date matching between either the commit messages or the issue tracker
discussions and the extracted licensing information (e.g., license name or date that license
was committed). We decided to rely on commit messages and issue discussions because (i)
these two sources of information are publicly available for the considered subject projects;
and (ii) both commit messages and issue discussions are likely to report, with a different
level of detail, the rationale behind a specific change implemented (or just considered in the
case of issues) by developers, including changes related to software licenses.

3.3 Qualitative Analysis

Our qualitative analysis aims at answering RQ4 and it is based on manual inspection and
categorization of commit messages and issue tracker discussions. Since we do not have lim-
itations in terms of the project’s programming language to analyze (unlike the quantitative
analysis), we performed our qualitative analysis on commit messages and issue tracker dis-
cussions from a set of 1,160 projects written in seven different languages: 159 C, 91 C++,
78 C#, 324 Java, 166 Javascript, 147 Python, and 195 Ruby projects. Note that the choice of
the languages considered in our study is not random: we focused on seven of the ten most
popular programming languages during 2014 and 2015 (Zapponi http://githut.info; Cass
http://spectrum.ieee.org/computing/software/the-2015-top-ten-programming-languages).

The considered projects were instead selected by applying the following procedure.
Firstly, from our list of twelve million repositories, we extracted those written in the seven
languages of interest. Then, we extracted only the repositories satisfying the following two
criteria: (i) they were not forks of the main repository, and (ii) they had at least one star (i.e.,
at least one user expressed appreciation for the repository) or watcher (i.e., at least one user
asked to receive notification about changes made in the repository). These selection criteria
were used to exclude from our analysis personal repositories (e.g., the website of a GitHub
user) that might have biased our results. However, it is important to note that for Java, we
considered the comprehensive list of all 381,161 projects. In our initial investigation of Java
projects (Vendome et al. 2015a), we observed the need for refinement that was thus adopted
for the additional six languages, because we observed a high proportion of false positive
commit messages and issues discussions. Thus, the filtering sought to improve the generated
taxonomy.

Then, we extracted the change log of the cloned projects in order to analyze them
and identify the commit messages likely related to licensing. In total, 103,128,211 com-
mits were considered. To identify commit messages likely related to license changes, we
adopted a case-insensitive keyword-based filtering based on the critical words exploited by
Ninka during license identification, and augmented them with license names. The detailed
set of keywords being used for this matching is reported in Table 1. In some cases, our

http://githut.info
http://spectrum.ieee.org/computing/software/the-2015-top-ten- programming-languages

1546 Empir Software Eng (2017) 22:1537–1577

Table 1 List of keywords used to match candidate licensing-related commit messages and issue tracker
discussions

copyright, compliance, gpl, gpl-2, gpl-3, gplv2, gplv3, gplv2+, gplv3+, lgpl, lgpl-2, lgpl-2.1, lgpl

-3, lgplv2, lgplv2.1, lgplv3, lgplv2+, lgplv2.1+, lgplv3+, licenses, license, licensed, licensee, lgpl,

merchantability, mit/x-derivative, mpl, written permission, prior permission, see the copyright.txt,

licensing, licencing, liability, legal, public domain, special exception, copyright holders, to permit

this exception, disclaims copyright, gpl, apache-2, apache-2.0, apache 2, apache 2.0, apache v2,

apache v2.0, apache-1.1, apache 1.1, apache v1.1, apl-1.1, apl-1.1, apl 1.1, apl v1.1, gpl 3, gpl

3+, gpl 2, gpl 2+, lgpl 2, lgpl 2+, lgpl 2.1, lgpl 2.1+, lgpl 3, lgpl 3+, gpl v3, gpl v3+, gpl v2, gpl

v2+, lgpl v2, lgpl v2+, lgpl v2.1, lgpl v2.1+, lgpl v3, lgpl v3+, mit/x, mit/x11, mit x11, mit expat,

cpl-1.0, cpl-1, epl-1.0, epl-1, cpl 1.0, cpl 1, epl 1.0, epl 1, cddl-1.0, cddl-1, cddl 1.0, cddl 1, cpl

v1.0, cpl v1, epl v1.0, epl v1, cddl v1.0, cddl v1, mpl-1.0, mpl-2.0, mpl-1, mpl-2, mpl 1.0, mpl 2.0,

mpl 1, mpl 2, mpl v1.0, mpl v2.0, mpl v1, mpl v2, bsd-3, bsd-2, bsd-4, bsd 3-clause, bsd 2-clause,

bsd 4-clause

keyword-filters included bi-grams composed of the license type and version, since some
license types (e.g., apache) produced a very large amount of false positive discussions when
they were considered alone (e.g., all the commit message talking about Apache projects).

In the end, the keyword-based filtering allowed us to identify a total of 746,874 commit
messages (742,671 for Java, which amounted to approximately∼1% of the overall commits
for Java). Given the high number of relevant commits, we sampled 20 % of the commits
found for each language as object of our manual inspection. However, we set a minimum
threshold of 100 commits per language, and a maximum threshold of 500. These thresholds
were adopted to ensure representativeness for each of the studied language, while keeping
the manual analysis effort reasonable. Note that our sampling is statistically significant with
a 95 % confidence interval ±10 % or better. This resulted in a total of 1,413 commits to be
inspected. It is worth noting that for Java projects, in addition to the 500 sampled commit
messages matching the keywords in Table 1, we also considered 224 randomly sampled
commit messages from the commits of the 1,833 projects in which we identified (in our
quantitative analysis) an instance of an atomic license change, because we were interested in
investigating the reasons behind such changes. Clearly, this was not possible for the systems
written in other programming languages that, as said before, were not part of our quantitative
analysis. The number of sampled commits by each programming language is reported in the
second column of Table 2.

Table 2 The number of
commits and issue tracker
discussions considered in the
qualitative analysis

Language #of commits # of issue tracker discussions

C 227 30

C# 100 6

C++ 139 12

Python 130 41

Java 724 273

JavaScript 122 79

Ruby 195 45

Overall 1,637 486

Empir Software Eng (2017) 22:1537–1577 1547

Concerning the issue tracker discussions, we built a Web crawler collecting the infor-
mation present in all issue trackers of the studied projects. In particular, for each issue, our
crawler collected (i) its title and description, (ii) the text of each comment added to it, (iii)
and the date the issue was opened and closed (when applicable). Then, in order to find the
relevant issues (i.e., those presenting discussions about software licenses), we used a key-
word search mechanism aimed at matching, in the issue title, keywords related to licensing
(as previously explained for the commit messages).8 By applying this procedure, we iden-
tified a total of 486 issue discussions potentially related to licensing, as shown in the third
column of the Table 2.

After collecting commit messages and issue discussions, in order to analyze and cate-
gorize them, we followed an open coding process inspired by the Grounded Theory (GT)
principles formulated by Corbin and Strauss (1990). This analysis of commit messages and
issue tracker discussions aimed at finding the rationale for licensing changes; in particu-
lar, we aimed at answering the following two sub-questions: What are the reasons pushing
developers to associate a particular license to their project? and What causes them to
migrate licenses or release their project under a new license (i.e., co-licensing)?

To perform the open coding, we distributed the commit messages and the issue tracker
discussions among the authors such that two authors were randomly assigned to each mes-
sage (a message can be a commit message or an entire issue tracker discussion). After
each round of open coding in which the authors independently created classifications for
the messages, we met to discuss the coding identified by each of us, and we refined them
into categories. Note that during each round the categories defined in previous rounds were
refined accordingly to the new knowledge created from the additional manual inspections
and from the authors’ discussions. Overall, the open coding concerned (i) 1,413 randomly
selected licensing-related commit messages identified via the keywords-based mechanism;
(ii) the 224 commit messages from the Java systems’ commits where a licensing change was
observed in our quantitative analysis; and (iii) the 486 issue tracker discussions matching
licensing-related keywords. The output of our open coding procedure is a set of categories
and group explaining why licenses are adopted and changed. We qualitatively discuss the
findings of this analysis in Section 4.4, presenting our categories classification and examples
of commit messages and issue tracker discussions belonging to the various categories.

3.4 Dataset Diversity Analysis

To get an idea of the external validity of our dataset, we measured the diversity metric
proposed by Nagappan et al. (2013) for our dataset by matching the list of our mined projects
from GitHub to the list of available projects from Boa (Dyer et al. 2013). Given the different
datasets exploited in the context of our quantitative and qualitative analysis, we discuss the
diversity metrics separately.

3.4.1 Quantitative Analysis

Wewere able to match by name 1,556 out of the 16,221 projects exploited in our quantitative
analysis against the names of the projects in the diversity metric dataset by Nagappan et al.
(2013). This subset was used in the computation of the diversity metric, obtaining a score

8We looked for the target keywords only in the issue titles, because we found that including the issue
descriptions in the search generates a considerable number of false positives.

1548 Empir Software Eng (2017) 22:1537–1577

of 0.35, indicating that around 10 % of our dataset covers just over a third of the open
source projects according to six dimensions: programming language, developers, project
age, number of committers, number of revisions, and number of programming languages.
The dimensional scores are 0.45, 0.99, 1.00, 0.99, 0.96, 0.99, respectively, suggesting that
our subset covers the relevant dimensions for our analysis. However, the focus on Java
projects limits the programming language score, affecting the overall score.

Another important aspect to evaluate is the representativeness of the licenses present
in our dataset with respect to those diffused in the FOSS community. The Open Source
Initiative (OSI) specifies a list of 70 approved licenses, indicating the ones reported in the
first column of Table 3 as the most commonly used in FOSS software (they do not specify
any order). The second column of Table 3 reports the top licenses as extracted from the
FLOSSmole’s SourceForge snapshot of December 2009 (Howison et al.), while the third
column shows the top licenses as extracted from our sample of GitHub projects exploited
for the quantitative analysis.

The licenses declared by OSI as the most commonly used were also the most commonly
found in our dataset (BSD 2 and 3 fall both in the BSD type). In the comparison between our
dataset and SourceForge, while the order of diffusion for the different licenses is not exactly
the same, six of the top eight licenses in SourceForge are also present in our dataset (all
but Public Domain and Academic Free License). This analysis, together with the diversity
metric, suggests that the dataset we exploited in our quantitative analysis is representative
of Open Source systems.

Table 4 reports the year of the first commit date for each of the 16,221 considered
projects. This table clearly shows the exponential growth of GitHub until 2012, confirming
what already was observed by people in the GitHub community (Doll http://tinyurl.com/
muyxkru). While GitHub also experienced exponential growth in 2013 (https://octoverse.
github.com/), our dataset does not mirror this fact. This is due to a design choice we made
while randomly choosing the projects to clone. In particular, we cloned projects during
January 2014, excluding projects with a commit history less than one year from the set
of 381,161 Java projects (i.e., projects with the first commit performed no later than Jan-
uary 2013). This was needed since, in the context of RQ2, we are interested in observing
migration patterns occurring over the projects’ history. Thus, projects having a very short
commit history were not likely to be relevant for the purpose of this study. Moreover, since
in RQ1 we are interested in observing licenses’ usage in the context of the GitHub’s drastic

Table 3 Top licenses: OSI, SourceForge, and our dataset

OSI popular license (unordered) SourceForge (Dec. 2009) Our Github data set (Quant. Analys.)

Apache-2 Lic GNU Public Lics GNU Public Lics

BSD 2-Clause Lic Lesser GNU Public Lics Apache Lics

BSD 3-Clause Lic BSD Lics Lesser GNU Public Lics

GNU Public Lics Apache Lics MIT Lic

Lesser GNU Public Lics Public Domain Eclipse Public Lic

MIT Lic MIT Lic Comm. Dev. and Dist. Lic

Mozilla Public Lic 2 Academic Free Lic Mozilla Public Lic

Comm. Dev. and Dist. Lic Mozilla Public Lics BSD Lics

Eclipse Public Lic

http://tinyurl.com/muyxkru
http://tinyurl.com/muyxkru
https://octoverse.github.com/
https://octoverse.github.com/

Empir Software Eng (2017) 22:1537–1577 1549

Table 4 Projects in our dataset with an initial commit for each year

Year Projects Year Projects Year Projects Year Projects Year Projects

1992 1 2000 7 2004 22 2008 186 2012 14159

1996 1 2001 11 2005 36 2009 263 2013 60

1997 3 2002 10 2006 72 2010 440

1999 6 2003 35 2007 91 2011 811

expansion, we decided to exclude the 60 projects having the first commit in 2013 from our
analysis due to the severe lack of representation in our sample despite the continued growth
of GitHub.

3.4.2 Qualitative Analysis

Similarly, we were able to match by name 471 out of the 1,160 projects (against the names of
the projects in the diversity metric dataset (Nagappan et al. 2013)) from which we manually
investigated commit messages and issue discussions in our qualitative analysis. As done
for the quantitative analysis, we considered the matched subset for the computation of the
diversity metric, obtaining a score of 0.32, indicating that ∼40 % of our dataset covers
just under a third of the open source projects according to six dimensions: programming
language, developers, project age, number of committers, number of revisions, and number
of programming languages. The dimensional scores are 0.43, 0.99, 1.00, 0.99, 0.94, and
1.0, respectively. Intuitively, these scores are directly impacted by the limited number of
projects that we were able to match. However, we still observe relatively high diversity
scores suggesting that our qualitative analysis is representative for a substantial portion of
the open source systems.

3.5 Replication Package

The working data set of our study is available at: http://www.cs.wm.edu/semeru/data/
EMSE15-licensing. It includes (i) the lists of projects and their urls, (ii) the issues tracker
and commit data, (iii) the analysis scripts, and (iv) a summary of the achieved results.

4 Study Results

This section discusses the achieved results answering the four research questions formulated
in Section 3.1.

4.1 RQ1: What is the Usage of Different Licenses in gitHub?

Figure 1 depicts the percentage of licenses that were first introduced into a project in the
given year, which we refer to as relative license usage. We only report the first occurrence
of each license committed to any file of the project. To ease readability, the bars are grouped
by permissive (dashed bars) or restrictive licenses (solid bars). Additionally, we omit data
prior to 2002 due to the limited number of projects created during those years in our sampled
dataset (see Table 4).

http://www.cs.wm.edu/semeru/data/EMSE15-licensing
http://www.cs.wm.edu/semeru/data/EMSE15-licensing

1550 Empir Software Eng (2017) 22:1537–1577

Fig. 1 Relative license usage of the analyzed Java projects between 2002 and 2012 (dashed pattern
representing permissive licenses)

For the year 2002, we observed that restrictive licenses and permissive licenses had been
used approximately equally with a slight bias towards using restrictive licenses. Although
the LGPL-2.1 and LGPL-2.1+ variants are restrictive licenses, they are less restrictive than
their GPL counter-part. The LGPL specifically aimed at ameliorating licensing conflicts
that arose when linking code to a non-(L)GPL library. Instead, the various versions of the
GPL license require the system to change its license to the same version of the GPL, or else
the component would not legally be able to be redistributed together with the project source
code. Thus, it suggests a bias toward using less restrictive licenses even among the mostly
used copyleft licenses. By the subsequent year (2003), a clear movement towards using less
restrictive licenses can be seen with the wider adoption of the MIT/X11 license as well as
the Apache-1.1 license. Additionally, we observe that the LGPL is still prominent, while the
CMU, CPL-1.0, and GPL-2.0+ licenses were declining.

During the following five years (2004–2008), the Apache-2.0, CDDL-1.0, EPL-1.0,
GPL-3.0, LGPL-3.0, and DWTFYW-2 licenses were created. For the same observation
period, Bavota et al. found that the Apache ecosystem grew exponentially (Bavota et al.
2013). This observation explains the rapid diffusion of the Apache-2.0 license among FOSS
projects. We observed a growth that resulted in the Apache-2.0 license accounting for
approximately 41 % of licensing in 2008. Conversely, we observed a decline in the relative
usage of both GPL and LGPL licenses. These two observations suggest a clear shift toward
permissive licenses, since ∼60 % of licenses attributed were permissive starting from 2003
(with small drops in 2007 and 2009).

Another interesting observation was that the newer version of the GPL (GPL-3.0 or
GPL-3.0+) had a lower relative usage compared to its earlier version until 2011. Addition-
ally, the adoption rate was more gradual than for the Apache-2.0 license that appears to
supersede Apache-1.1 license. However, the LGPL-3.0 and LGPL-3.0+ do not have more

Empir Software Eng (2017) 22:1537–1577 1551

popularity than prior versions in terms of adoption, despite the relative decline of the LGPL-
2.1’s usage starting in 2010. Our manual analysis of commits highlighted explicit reasons
that pushed some developers to choose the LGPL license. For instance, a developer of the
hibernate-tools project when committing the addition of the LGPL-2.1+ license to
her project wrote:

The LGPL guarantees that Hibernate and any modifications made to Hibernate will
stay open source, protecting our and your work.

This commit note indicates that LGPL-2.1+ was chosen as the best option to balance the
freedom for reuse and guarantee that the software will remain free.

Conversely, we observed the abandonment of old licenses and old license versions
as newer FOSS licenses are introduced. For example, Apache-1.1 and CPL-1.0 become
increasingly less prevalent or no longer used among the projects. In both cases, a newer
license appears to replace the former license. While the Apache-2.0 offers increased pro-
tections (e.g., protections for patent litigation), the EPL-1.0 and the CPL-1.0 are the same
license, with the only difference that IBM is replaced by the Eclipse Foundation as the stew-
ard of the license. Thus, the two licenses are intrinsically the same from a legal perspective,
and most likely projects migrated from the CPL to the EPL; this would explain why the
EPL adoption grew as the CPL usage shrunk.

Finally, we observed fluctuations in the the adoption of the MIT/X11 license. As the
adoption of permissive licenses grew with the introduction of the Apache-2.0 license, it first
declined in adoption and was followed by growth to approximately its original adoption.
Ultimately, we observed a stabilization of theMIT/X11 usage at approximately 10% starting
in 2007.

In order to determine whether the proportions for a given license exhibited a stationary
trend, or a clearly increasing trend over the observed years, we performed ADF-tests as
explained in Section 3.2. Results are reported in Table 5, where significant p-values (shown
in bold face) in the second column indicate that the series is stationary (H0s rejected), while
significant p-values in the third column indicates that the series has an explosive, i.e., clearly
increasing, trend (H0e rejected). The results indicate that:

– Almost no license is exhibiting a stationary trend. The results only show significant
differences for the zend-2.0 license, which is not particularly popular, and a marginal
significance for CMU, CPL-1.0 and GPL-1.0+.

– Confirming the discussion above, we have a clearly increasing trend not only for
permissive licenses such as Apache-2.0 and MIT/X11 but also for new versions of
restrictive licenses facilitating the integration with other licenses (in particular, GPL-
3.0, which eases the compatibility with the Apache license, as well as LGPL-2.0,
which facilitates compatibility when code is integrated as a library). We also see an
increase for DWTFYW-2.0, but, as it will be discussed in Section 5, this can be likely
due to cases in which developers do not have a clear idea about the license to be
used.

Summary for RQ1 For the analyzed Java projects, we observed a clear trend towards
using permissive licenses like Apache-2.0 and MIT/X11. Additionally, the permissiveness
or restrictiveness of a license can impact the adoption of newer license versions, where per-
missive licenses are more rapidly adopted. Conversely, restrictive licenses seem to maintain
a greater ability to survive in usage as compared to the permissive licenses, which become
superseded. Restrictive (GPL-3.0) or semi-restrictive (LGPL-2.0) licenses that facilitate

1552 Empir Software Eng (2017) 22:1537–1577

Table 5 The results of the
augmented Dickey-Fuller test to
determine stationary or explosive
trends in the license usage

License Stationary trend Explosive Trend

(p-value) (p-value)

Apache-1.1 0.14 0.86

Apache-2.0 0.98 0.02

BSD 0.73 0.27

CDDL v1 0.42 0.58

CMU 0.05 0.95

CPL-1.0 0.43 0.57

EPL-1.0 0.07 0.93

DWTFYW-2.0 0.99 0.01

MPL-1.0 0.90 0.10

MPL-1.1 0.32 0.68

NPL-1.1 0.55 0.45

svnkit+ 0.78 0.22

zend-2.0 0.01 0.99

MIT/X11 0.97 0.03

GPL-1.0+ 0.05 0.95

GPL-2.0 0.67 0.33

GPL-2.0+ 0.66 0.34

GPL-3.0 0.98 0.02

GPL-3.0+ 0.69 0.31

LGPL-2.0 0.99 0.01

LGPL-2.0+ 0.67 0.33

LGPL-2.1 0.35 0.65

LGPL-2.1+ 0.54 0.46

LGPL-3.0 0.63 0.37

LGPL-3.0+ 0.52 0.48

integration with other licenses also exhibit an increasing trend. Finally, we observed a sta-
bilization in the license adoption proportions of particular licenses, despite the exponential
growth of the GitHub code base.

4.2 RQ2: What are the Most Common Licensing Change Patterns?

We analyzed commits, where a license change occurred, with a two-fold goal (i) analyze
license change patterns to understand both the prevalence and types of licensing changes
affecting software systems, and (ii) understand the rationale behind these changes. Overall,
we found 204 different atomic license change patterns. To analyze them, we identified the
patterns having the highest proportion across projects (i.e., global patterns) and within a
project (i.e., local patterns). We sought to distinguish between dominant global patterns
(Table 6) and dominant local patterns (Table 7) to study, on one hand, the overall trend of
licensing changes and, on the other hand, to understand specific phenomena occurring in
certain projects.

The global patterns were extracted by identifying and counting the presence of a pattern
only once per project and then aggregating the counts over all projects. For instance, 823

Empir Software Eng (2017) 22:1537–1577 1553

Table 6 Top ten global atomic
license change patterns Top Patterns (Overall) Frequency

no license or unknown → Apache-2.0 823

Apache-2.0 → no license or unknown 504

no license or unknown → GPL-3.0+ 269

GPL-3.0+ → no license or unknown 181

no license or unknown → MIT/X11 163

no license or unknown → GPL-2.0+ 113

GPL-2.0+ → no license or unknown 111

MIT/X11 → no license or unknown 98

no license or unknown → EPL-1.0 94

no license or unknown → LGPL-2.1+ 91

Top Migration Patterns Between Licenses Frequency

GPL-3.0+ → Apache-2.0 25

GPL-2.0+ → GPL-3.0+ 25

Apache-2.0 → GPL-3.0+ 24

GPL-2.0+ → LGPL-2.1+ 22

GPL-3.0+ → GPL-2.0+ 21

LGPL-2.1+ → Apache-2.0 16

GPL-2.0+ → Apache-2.0 15

Apache-2.0 → GPL-2.0+ 13

MPL-1.1 → MIT/X11 11

MIT/X11 → Apache-2.0 11

projects in our dataset experienced at least one change (each) from No license → Apache-
2.0, thus the final count (globally) for the pattern is 823. The most dominant global patterns
were either a change from either no license or an unknown license to a particular license,
or a change from either a particular license to no license or an unknown license. Table 6
shows the top ten global patterns. We observe that the inclusion of Apache-2.0 was the most
common pattern for unlicensed or unknown code. Clearly, this is likely due to the specific
programming language (i.e., Java) exploited by the sample of projects we quantitatively
analyzed.

Table 6 also shows the most common global migrations when focusing the attention
on changes happened between different licenses. We observe that the migration towards
the more permissive Apache-2.0 was a dominant change among the top ten atomic license
changes for global license migrations. An interesting observation is the license upgrade and
downgrade between GPL-2.0+ and GPL-3.0+. GPL-3.0 is considered by the Free Software
Foundation as a compatible license with the Apache-2.0 license.9 Due to the large usage of
the Apache license in Java projects, this pattern is quite expected. However, the migration
GPL-3.0+ → GPL-2.0+ is interesting, since it not only still allows for the project to be
redistributed as GPL-3.0 but also allows for the usage as GPL-2.0, which is less restrictive,
as well.

Regarding the local patterns (Table 7), the frequencies were computed by first identifying
the most frequent (i.e., dominant) pattern in each project, and then counting the number of

9http://gplv3.fsf.org/wiki/index.php/Compatible licenses

http://gplv3.fsf.org/wiki/index.php/Compatible_{l}icenses

1554 Empir Software Eng (2017) 22:1537–1577

Table 7 Top ten local atomic
license change patterns between
different licenses

Pattern Frequency

GPL-2.0+ → GPL-3.0+ 36

GPL-2.0+ → LGPL-3.0+ 15

LGPL-3.0+;Apache-2.0 → Apache-2.0 12

GPL-3.0+;Apache-2.0 → Apache-2.0 12

GPL-2.0+ → LGPL-2.1+ 10

GPL-1.0+ → LGPL-2.0+ 9

GPL-2.0+ → GPL-3.0+ 9

GPL-3.0+ → Apache-2.0 8

GPL-3.0+ → GPL-2.0+ 8

GPL-3.0+ → LGPL-3.0+ 8

times a specific pattern is the most frequent across the whole dataset. For instance, the GPL-
1.0+ → GPL-3.0+ pattern is the most frequent in 36 projects from our dataset. Table 7
summarizes the most common local migrations. The migrations appear to be toward a less
restrictive license or license version. The low frequency of the atomic license change local
patterns indicates that migrating licenses is non-trivial. It can also introduce problems with
respect to reuse. For example, we observed a single project where GPL-1.0+ code was
changed to LGPL-2.0+ a total of nine times. LGPL is less restrictive than GPL, when the
code is used as a library. Thus, if parts of the system are GPL, the developer must comply
with the more restrictive and possibly incompatible constraints.

Until now, we considered atomic license changes among any file in the repository. This
was needed since most of the analyzed projects lack of a specific file (e.g., license.txt)
declaring the project license. To extract the declared project license, we considered a file in
the top level directory named: license, copying, copyright, or readme. When just focusing on
projects including such files, we extracted 24 different change patterns. Table 8 illustrates
the top eight licensing changes between particular licenses (i.e., we excluded no license
or unknown license from this table) for declared project licenses. We only considered the
top eight, since there was a tie between five other patterns or the next group of change
patterns. We observe that the change from Apache-2.0 → MIT/X11 was the most prevalent
license change pattern, and the co-license of MIT/X11 with Apache-2.0 is the second most
prevalent one. Interestingly, this pattern was not dominant in our file-level analysis, although
the Grounded Theory analysis provided us support for this pattern. The MIT/X11 license

Table 8 Top eight license
change patterns in a declared
license file of a project
(license,copying,copyright, or
readme file), excluding no
license or unknown license

Pattern Frequency

Apache-2.0 → MIT/X11 12

Apache-2.0 → MIT/X11;Apache-2.0 8

GPL-2.0+ → GPL-3.0+ 7

MIT/X11 → Apache-2.0 6

GPL-3.0+ → Apache-2.0 6

MIT/X11;Apache-2.0 → Apache-2.0 5

Apache-2.0 → GPL-3.0+ 5

GPL-3.0+ → MIT/X11 3

Empir Software Eng (2017) 22:1537–1577 1555

was used to allow commercial reuse, while still maintaining the open source nature of the
project.

The pattern of GPL-2.0+ → GPL-3.0+ (Top-3 in Table 8) was expected since it was
tied for the most prevalent among global atomic license changes. Similarly, the patterns of
MIT/X → Apache-2.0, GPL-3.0+ → Apache-2.0, and Apache-2.0 → GPL-3.0 were also
among the top eight global changes. Another notable observation is that license changes are
frequently happening toward permissive licenses. Excluding the five changes from Apache-
2.0 → GPL-3.0+, the remaining changes for the top eight are either a licensing change from
a restrictive (or copyleft) license to a permissive license or a licensing change between two
different permissive licenses.

Summary for RQ2 The key insight from the analysis of atomic license change pat-
terns observed on the studied Java projects is that the licenses tend to migrate toward less
restrictive licenses.

4.3 RQ3: to What Extent are Licensing Changes Documented in Commit Notes
or Issue Tracker Discussions?

Table 9 reports the results of the identification of traceability links between licensing
changes and commit messages/issue tracker discussions. We found a clear lack of traceabil-
ity between license changes in both the commit message history and the issue tracker. In
both data sources, we first extracted the instances (i.e., commit messages and issue tracker

Table 9 Traceability between licensing changes and commit messages or issue tracker discussion comments

Data Linking query Links

source

Commit Commits with the keyword “license” 70,746

Messages Commits containing new license name 519

Commits containing new license name and the keyword “license” 399

Issue Comments from closed issues containing the keyword “license” 0

Tracker Comments from closed issues containing the new license 0

Comment Comments from closed issues containing the new license and the keyword “license” 0

Matching Comments from open issues containing the keyword “license” 68

Comments from open issues containing the new license 712

Comments from open issues containing the new license and the keyword “license” 16

Issue Closed comments opened before license change and closed before or at license change 197

Tracker Open comments open before the license change 2,241

Date- Comments from closed issues open before the license change and closed before or at the

based license change with keyword “license” 0

Matching Comments from open issues open before the license change with keyword “license” 0

Issue Comments in closed issues containing the keyword “Fixed #[issue num]” 66,025

and Comments in open issues containing the keyword “Fixed #[issue num]” 3,407

Commit Comments in closed issues containing the commit hash where the license change occurs 0

Matching Comments in open issues containing the commit hash where the license change occurs 1

1556 Empir Software Eng (2017) 22:1537–1577

discussions) where the keyword “license” appears or where a license name was mentioned
(e.g., “Apache”). In the former case, we are identifying potential commits or issues that are
related to licensing, while the latter attempts to capture those related to specific types of
licenses.

By using the first approach, we retrieved 70,746 commits and 68 issues; while looking
for license names, we identified 519 commits and 712 issues. However, these numbers are
inflated by false positives (e.g., “Apache” can relate to the license or it can relate to one of
the Apache Software Foundation’s libraries). For this reason, we then looked for commit
messages and issue discussions containing both the word “license” as well as the name of
a license. This resulted in a drop of the linked commit messages to 399 and in zero issue
discussions. Such results highlight that license changes are rarely documented by developers
in commit messages and issues.

We also investigated whether relevant commits and issues could be linked together. We
linked commit messages to issues when the former explicitly mentions fixing a particular
issue (e.g., “Fixed #7” would denote issue 7 was fixed). We observed that this technique
resulted in a large number of pairs between issues and commits; thus, our observation of a
lack of license traceability is not simply an artifact of poor traceability for these projects.
To further investigate the linking, we extracted the commit hashes where a license change
occurred and attempted to find these hashes in the issue tracker’s comments. Since the issue
tracker comments contain the abbreviated hash, we truncated the hashes appropriately prior
to linking. Our results indicated only one match for an open issue and zero matches for
closed issues.

Finally, we attempted to link changes to issues by matching date ranges of the issues to
the commit date of the license change. The issue had to be open prior to the change and if
the issue had been closed the closing date must have been after the change. However, we
did not find any matches with a date-based approach.

Summary for RQ3 For the analyzed Java projects, both the issue tracker discussions and
commit messages yielded very minimal traceability to license changes, suggesting that the
analysis of licensing requires fine-grained approaches analyzing the source code.

4.4 RQ4: What Rationale do These Sources Contain for the Licensing Changes?

In this section, we firstly present the taxonomy that resulted from the open coding of commit
messages and issue tracker discussions. As explained in Section 3, this analysis has been
performed on 1,637 commit messages and 486 issue tracker discussions from 1,160 projects
written in seven programming languages, and aims at modeling the rationale of license
adoption and changes. Secondly, we present our findings when looking at the commits that
introduce atomic license changes in the analyzed Java projects.

4.4.1 Analyzing Commit Messages and Issue Discussions

Table 10 reports the categories obtained in the open coding process. In total, we grouped
commit messages and issue tracker discussions into 28 categories, and organized them into
seven groups that will be described in detail in the rest of this section. Additionally, 430
commits and 161 issue discussions identified by means of pattern matching as potentially
related to licensing were classified as false positives. This is mainly due to the wide range
of matching keywords that we used for our filtering (see Section 3) to identify as many
commits/issues as possible. Finally, for 16 commits and two issue discussions that were

Empir Software Eng (2017) 22:1537–1577 1557

Table 10 Categories defined through open coding for the Issue tracker discussion comments and Commit
notes

Category C C++ C# Java Javascript Python Ruby Overall

I C I C I C I C I C I C I C I C

Generic license additions

Choosing license 1 0 0 0 0 0 6 0 2 0 1 0 1 0 11 0

License added 1 22 3 19 0 15 25 75 22 34 9 34 1 33 59 232

License change

License change 2 14 1 8 1 5 3 14 4 9 2 6 2 18 15 74

License upgrade 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 4

License rollback 0 0 0 0 0 0 0 1 0 0 0 2 0 0 0 3

Removed licensing 0 3 0 3 0 4 0 6 1 8 0 2 0 3 1 29

Changes to copyright

Copyright added 0 6 0 3 0 2 0 0 0 2 0 2 0 0 0 15

Copyright update 2 24 0 7 1 6 5 89 2 7 2 4 1 8 13 138

License fixes

Link broken 7 0 2 0 0 0 1 0 16 0 1 0 19 0 46 0

License mismatch 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

Fix licensing 4 2 0 1 0 2 1 3 2 0 0 1 2 1 9 10

License file modification 0 11 0 8 0 14 0 0 1 11 1 7 1 29 3 80

Missing licensing 1 1 0 0 0 3 2 0 7 0 12 0 4 1 26 5

License compliance

Compliance discussion 1 9 0 5 1 1 0 1 0 3 0 1 0 0 2 20

Derivative work inconsistency 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0

Add compatible library 0 1 0 0 0 0 3 0 0 0 0 2 0 0 3 3

Removed third-party code 3 13 1 8 0 1 0 1 0 2 0 4 0 3 4 32

License compatibility 0 0 0 0 0 0 6 0 0 0 0 0 0 0 6 0

Reuse 1 1 1 0 0 0 17 0 1 0 1 0 0 0 21 1

Dep. license added 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1

Dep. license issue 2 0 0 0 0 0 1 0 1 0 0 0 0 0 4 0

Clarifications/Discussions

License clarification 2 0 2 1 1 0 19 0 2 1 4 0 2 0 32 2

Terms clarification 0 0 0 0 0 0 5 0 2 0 0 0 0 0 7 0

Verify licensing 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 2

License agreement 0 0 0 0 0 0 2 0 2 0 0 0 0 0 4 0

Request for a license

Licensing request 1 0 0 0 0 0 0 0 4 0 0 0 6 0 11 0

License output for the end user

Output licensing 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0

related to licensing, it was not possible, based on the available information, to perform a
clear categorization. Thus, they were excluded from this study.

In the following, we discuss examples related to the various groups of categories.

1558 Empir Software Eng (2017) 22:1537–1577

Generic License Additions This group of categories concerns cases in which a license
was added in a file, project or component where it was not present, as well as discussions
related to choosing the license to be added in a project. One typical example of commit
message, related to the very first introduction of a software license into the repository,
mentioned:

“Added a license page to TARDIS.” (https://github.com/tardis-sn/tardis/commit/
07b2a072d89d45c386d5f988f04435d76464750e)

Other commit messages falling in this category were even precise in reporting the exact
license committed into the repository, e.g.,:

“Add MIT license. Rename README to include rst file extension.”
(https://github.com/Schevo/schevorecipe.db/commit/b73bef14adeb7c87c002a90838425
3c8f686c625)

Finally, commit messages automatically generated by the GitHub’s licensing feature were
present, e.g.,:

“Created LICENSE.md.”

While commit messages show the addition of a license to a project, they do not provide
the rationale behind the specific choice. This can be found, sometimes, in the discussions
carried out by the developers in the issue trackers to establish the license under which
their project would be released. For example, one of the issue discussions we analyzed
was titled “Add LICENSE file” (https://github.com/rosedu/web-workshops/issues/1) in the
project web-workshops, and the issue opener explained the need for (i) deciding the license
to adopt and (ii) involve all projects’ contributors in such a decision:

“A license needs to be chosen for this repo. All contributors need to agree with the
chosen license. A list of contributors is enclosed below.”

Doubts and indecision about which license to adopt were also evident in several of the issue
discussions that we manually analyzed:

“What license to use? BSD, GNU GPL, or APACHE?” (https://github.com/
kovmarci86/d3-armory/issues/5)

Interestingly, one developer submitted an issue for the project InTeX entitled “Dual
license under LGPL and EPL” (https://github.com/mtr/intex/issues/1) that related to adding
a new license to balance code reuse of the system, while avoiding “contagious” licensing
(the term “contagious” was used by the original developer of the system). The developer
commented:

“Your package is licensed under GPL. I’m not a lawyer but as far as I understand
the intention of the GPL, all LaTeX documents compiled with the InTeX package will
have to be made available under GPL, too. [...] I think, you want users to publish
changes they did at your code. A dual license under LGPL and EPL would ensure that
a) changes on your code have to be published along with a binary publication and b)
that your code can be used in GPL and non-GPL projects. See JGraphT’s relicensing
for more background.”

This response demonstrates a potential lack of understanding regarding the license impli-
cations to compiled LaTeX and proposes dual-licensing as a solution. However, the original

https://github.com/tardis-sn/tardis/commit/07b2a072d89d45c386d5f988f044 35d76464750e
https://github.com/tardis-sn/tardis/commit/07b2a072d89d45c386d5f988f044 35d76464750e
https://github.com/Schevo/schevorecipe.db/commit/b73bef14adeb7c87c002a9 08384253c8f686c625
https://github.com/Schevo/schevorecipe.db/commit/b73bef14adeb7c87c002a9 08384253c8f686c625
https://github.com/rosedu/web-workshops/issues/1
https://github.com/kovmarci86/d3-armory/issues/5
https://github.com/kovmarci86/d3-armory/issues/5
https://github.com/mtr/intex/issues/1

Empir Software Eng (2017) 22:1537–1577 1559

developer also indicates a lack of legal background and is not willing to offer a dual-license
based on his understanding stating:

“Thank you for your interest. I not a lawyer myself either, but my intentions are:
1. I want changes to the source code of InTeX to be made available so that others

can benefit from them too.
2. I do not want any “contagious” copyright of documents compiled with InTeX.

However, I’ve always thought of InTeX as a (pre)compiler, and given this GPL FAQ
answer, I think licensing the compiler’s source code under GPL does not limit or affect
the copyright of the documents it is used to process.
Unless you can prove me wrong about this, I will close this issue.”

Thus, the developer responds by providing his understanding of the GPL by referencing a
response by GNU regarding compiled Emacs.10 However, the developer does indicate an
openness to adding a new license if the GPL would in fact be applied to generated LaTeX
documents. This example is particularly interesting, since it shows the original developer’s
rationale for picking the GPL as well as the difficulty that developers have with respect to
licensing.

License Change This group of categories concerns cases in which (i) a licensing statement
was changed from one license towards a different one; (ii) a license was upgraded towards
a new version, e.g., from GPL-2.0 to GPL-3.0; (iii) cases of license rollback (i.e., when a
license was erroneously changed, and then a rollback to the previous license was needed to
ensure legal compliance); and (iv) cases in which for various reasons developers removed a
previously added license.

Most commit messages briefly document the performed change, e.g., “Switched to a
BSD-style license”, “Switch to GPL”. Some others, partially report the rationale behind the
change:

“The NetBSD Foundation has granted permission to remove clause 3 and 4 from their
software”

The commit message explains that permission has been granted for the license change by the
NetBSD Foundation. However, the committer does not explain the reason for the removal
of the two clauses. Other commits are instead very detailed in providing full picture of what
happened in terms of licensing:

“Relicensed CZMQ to MPLv2 - fixed all source file headers - removed COPY-
ING/COPYING.LESSER with GPLv3 and LPGv3 + exceptions - added LICENSE
with MPLv2 text - removed ztree class which cannot be relicensed - (that should be
reintroduced as foreign code wrapped in CZMQ code).”

The commit message from the project CZMQ (https://github.com/zeromq/czmq/commit/
eabe063c2588cde0af90e5ae951a2798b7c5f7e4) is very informative, reporting the former
license (i.e., GPL-3.0 and LGPL-3.0), the new license (i.e., MPL-2.0), and the changes
applied in the repository to ensure compliance to the new licensing terms (e.g., the removal
of the ztree class). This license change demonstrates a move towards a more permissive
license, which has been shown to be prevalent in our study of Java projects.

10http://www.gnu.org/licenses/old-licenses/gpl-2.0-faq.html#CanIUseGPLToolsForNF

https://github.com/zeromq/czmq/commit/eabe063c2588cde0af90e5ae951a2798b 7c5f7e4
https://github.com/zeromq/czmq/commit/eabe063c2588cde0af90e5ae951a2798b 7c5f7e4
http://www.gnu.org/licenses/old-licenses/gpl-2.0-faq.html#CanIUseGPLToolsForNF

1560 Empir Software Eng (2017) 22:1537–1577

We also found commit messages reporting the rationale behind specific license changes,
such as the following commit from the project nimble (https://github.com/bradleybeddoes/
nimble/commit/e1e273ff18730d2f8e0d7c2af1951970e676c8d1):

“Change in project License from AGPL 3.0 to Apache 2.0 prior to first public release.
Several factors influenced this decision the largest being community building and
making things as easy as possible for folks to get started with the project. We don’t
however believe Open Source == Free and will continue to investigate the best way
to commercialize this. Restrictive copy-left licenses aren’t however the answer.”

While the developers want to enable external developers to reuse the system, they are
also interested in commercializing the software product. The developers acknowledge that
copy-left licenses do not meet their needs.

For License Rollback, we observed that the project PostGIS reverted back licensing
to a custom license (https://github.com/postgis/postgis/commit/4eb4127299382c971ea579c
8596cc 41cb1c089bc). The commit does not offer rationale since it simply states:

“Restore original license terms.”

From the analysis of the commit emerged that the author had re-licensed the system
under the GPL earlier and subsequently reverted back the licensing to his own custom
license. However, it is not clear if this rollback was due to a misappropriation of GPL, an
incompatibility in the system, or to other factors.

Additionally, we found commit messages illustrating that license removals do not
necessarily indicate that the licensing of the system was removed. For instance:

“Removing license as it is declared elsewhere” (https://github.com/ros/ros comm/
commit/e451639226e9fe4eebc997962435cc454687567c)

“Remove extra LICENSE files
One repository, one license. No need to put these on the box either.” (https://github.

com/openatv/enigma2/commit/b4dfdf09842b3dcacb2a6215fc040f7ebbbb3c03)

“Remove licenses for unused libraries” (https://github.com/ttop/cuanto/commit/
a1e58f2c93de40ab304c494e05853957c549fd44)

In these cases, the system contains redundant or superfluous license files that can be
removed. This observation highlights that strictly analyzing the license changes that have
happened in the history of a software system could (wrongly) suggest that the system has
migrated toward closed-source. The third commit message, instead, indicates that licenses
were removed due to unused code, which required those licenses. Such cases, in which
a project is adopting unnecessary licenses due to third-party libraries no longer needed,
should be carefully managed since it may discourage other developers to reuse the project,
especially if the unnecessary licenses are restrictive.

Changes to Copyright This group of categories includes commits/issues related to sim-
ple changes/additions applied to the copyright statement, like copyright year, or authors.
Changes to a list of author names occur to indicate names of people who provided a substan-
tial contribution to the project, therefore claiming their ownership. Previous work indicated
that often such additions occur in correspondence of large changes performed by contrib-
utors whose names are not mentioned yet in the copyright statement (Penta and Germán

https://github.com/bradleybeddoes/nimble/commit/e1e273ff18730d2f8e0d7c2 af1951970e676c8d1
https://github.com/bradleybeddoes/nimble/commit/e1e273ff18730d2f8e0d7c2 af1951970e676c8d1
https://github.com/postgis/postgis/commit/4eb4127299382c971ea579c8596cc 41cb1c089bc
https://github.com/postgis/postgis/commit/4eb4127299382c971ea579c8596cc 41cb1c089bc
https://github.com/ros/ros_comm/commit/e451639226e9fe4eebc997962435cc45 4687567c
https://github.com/ros/ros_comm/commit/e451639226e9fe4eebc997962435cc45 4687567c
https://github.com/openatv/enigma2/commit/b4dfdf09842b3dcacb2a6215fc040 f7ebbbb3c03
https://github.com/openatv/enigma2/commit/b4dfdf09842b3dcacb2a6215fc040 f7ebbbb3c03
https://github.com/ttop/cuanto/commit/a1e58f2c93de40ab304c494e05853957c 549fd44
https://github.com/ttop/cuanto/commit/a1e58f2c93de40ab304c494e05853957c 549fd44

Empir Software Eng (2017) 22:1537–1577 1561

2009). Changes to copyright years have also been previously investigated, and are often
added to allow claiming right on source code modified in a given year (Di Penta et al. 2010).

License Fixes This group of categories is related to changes in the license mainly due
to various kinds of mistakes or formatting issues, as well as to cases in which a licensing
statement was accidentally missing (note that this is different to cases of license addition in
which the license was originally intended to be absent from the project).

For example, in this group, we observed cases of issues discussing license mismatch,
where developers found conflicting headers or conflicts between the declared license and
the license headers. In the former case, a developer posted an issue to the project gtksource-
completion’s issue tracker (https://github.com/chuchiperriman/gtksourcecompletion/issues/
1):

“The license states that this is all LGPL-3, but the copyright headers of the source
files say otherwise (and some are missing). Is this intentional, or should these all be
under the same license? I’ve included licensecheck output below.”

Subsequently, the issue poster listed files in the system with GPL, LGPL, and no copy-
right. Additionally, he indicated cases where the Free Software Foundation address was
incorrect as well. We observed a similar situation in another project: a developer opened
the issue “LICENSE file doesn’t match license in header of svgeezy.js” (https://github.com/
benhowdle89/svgeezy/issues/20) to svgeezy’s issue tracker and stated:

The LICENSE file specifies the MIT license, but the header in svgeezy.js says it’s
released under the WTFPL. Which is the correct license?

In this second case, we observe that the declared license and source header are not con-
sistent. However, the issue has not been resolved at the time of writing this paper and so
we cannot report the resolution or any feedback offered by the original developers of the
system.

Other interesting cases are the ones related to the fix of missing licenses. Often develop-
ers are made aware of missing licenses via the issue tracker by projects’ users reporting the
issue. Sometimes, the complete project may be unlicensed, leading to discussions like the
one titled “GNU LGPL license is missing” from the project rcswitch-pi (https://github.com/
r10r/rcswitch-pi/issues/17):

Under which license is this source code published? This project is heavily based on
wiring-pi and rc-switch: rc-switch: GNU Lesser GPL wiring-pi: GNU Lesser GPL
The GNU Lesser GPL should be added: http://www.gnu.org/licenses/lgpl.html

Based on the project’s characteristics (i.e., its foundations on previously existing projects),
the developer recommends the addition of the missing LGPL license.

The commits and issues falling in the License File Modification category are related
to changes applied to the license file type or name. For example, developers may change
the license file from the default LICENSE.md file generated by GitHub to a .txt or .rtf.
Additionally, developers change the file name often to make it more meaningful as illus-
trated in this commit message of the project Haml (https://github.com/haml/haml/commit/
537497464612f1f5126a526e13e661698c86fd91):

“Renamed the LICENSE to MIT-LICENSE so you don’t have to open the file to find
out what license the software is released under. Also wrapped it to 80 characters
because I’m a picky [edited]” (quote edited for language)

https://github.com/chuchiperriman/gtksourcecompletion/issues/1
https://github.com/chuchiperriman/gtksourcecompletion/issues/1
https://github.com/benhowdle89/svgeezy/issues/20
https://github.com/benhowdle89/svgeezy/issues/20
https://github.com/r10r/rcswitch-pi/issues/17
https://github.com/r10r/rcswitch-pi/issues/17
http://www.gnu.org/licenses/lgpl.html
https://github.com/haml/haml/commit/537497464612f1f5126a526e13e661698c8 6fd91
https://github.com/haml/haml/commit/537497464612f1f5126a526e13e661698c8 6fd91

1562 Empir Software Eng (2017) 22:1537–1577

Other typical changes concern the renaming of the COPYRIGHT file to LICENSE or the
move of the license file in the project’s root directory. These cases do not indicate changes
towards a different license or in general any change to the license semantics, but only in the
way in which the license is presented.

License Compliance This group of categories is probably the most interesting to analyze,
and concerns categories related to discussions and changes because of license compliance.
Specifically, other than generic compliance discussions, there are cases in which (i) a deriva-
tive work’s legal inconsistency was spotted or discussed; (ii) a compatible library is added
to replace another incompatible library from a licensing point of view; (iii) third-party code
is completely removed when no legally-compliant alternative was possible; (iv) cases of
discussion related to license compatibility in the context of reuse; and (v) cases in which an
added dependency or an existing dependency has conflicts with the current license.

A very interesting example is the issue discussion entitled “Using OpenSSL vio-
lates GPL licence” in the project SteamPP (https://github.com/seishun/SteamPP/issues/1).
Surprisingly, the developer of the project initially commented:

gnutls and libnss have terrible documentation and I don’t consider this a priority
issue anyway. If you would like to submit a pull request, then be my guest.

Despite this initial reaction, the OpenSSL library was replaced by Crypto++ within a week
in order to meet the licensing requirements.

Examples of third-party libraries removed due to licensing issues are also prevalent in
commit messages, e.g., :

“Remove elle(1) editor, due to an incompatible license.” (https://github.com/
booster23/minixwall/commit/342171fa9e9d769ce4aa48525142a569b34962f7)

The incompatibility in this case was due to elle’s clause explicitly reporting: “NOT
be sold or made part of licensed products.”. Additionally, we saw the commit from
the project wkhtmltopdf-qt-batch, where files were removed due to a recommendation
by the project’s legal staff: “Remove some files as instructed by Legal department”
(https://github.com/alexkoltun/wkhtmltopdf-qt-batch/commit/9b142a07a7576afa15ba458e
97935aac5921ef8d). This shows that license compliance may not be always straightforward
to developers and that they may need to rely on legal council in order to determine whether
licensing terms have been met.

We also observed changes in the system’s licensing aimed at satisfying compliance with
third-party code in the project gubg (https://github.com/gfannes/gubg.deprecated/commit/
4d291ef433f0596dbd09d5733b25d27b3a921cf4):

Changed the license to LGPL to be able to use the msgpack implementation in GET
nv.

Similarly, we found issue tracker discussions about conflicting licenses or about the com-
patibility of licenses between the project and third-party libraries. Interestingly, there was
an issue opened by a non-contributor of the project android-sensorium (https://github.com/
fmetzger/android-sensorium/issues/11), stating:

Google Play Services (GMS) is proprietary, hence not compatible with GNU LGPL.
(The jar inside the Android library referred to in the project.properties).
F-Droid.org publishes theo3gm package, but we cant publish this without

removing this library.

https://github.com/seishun/SteamPP/issues/1
https://github.com/booster23/minixwall/commit/342171fa9e9d769ce4aa48525 142a569b34962f7
https://github.com/booster23/minixwall/commit/342171fa9e9d769ce4aa48525 142a569b34962f7
https://github.com/alexkoltun/wkhtmltopdf-qt-batch/commit/9b142a07a7576 afa15ba458e97935aac5921ef8d
https://github.com/alexkoltun/wkhtmltopdf-qt-batch/commit/9b142a07a7576 afa15ba458e97935aac5921ef8d
https://github.com/gfannes/gubg.deprecated/commit/4d291ef433f0596dbd09d 5733b25d27b3a921cf4
https://github.com/gfannes/gubg.deprecated/commit/4d291ef433f0596dbd09d 5733b25d27b3a921cf4
https://github.com/fmetzger/android-sensorium/issues/11
https://github.com/fmetzger/android-sensorium/issues/11

Empir Software Eng (2017) 22:1537–1577 1563

Thus, the license incompatibility not only created a potential license violation for the
project but also prevented the non-contributor from cataloging the system among projects
hosted on F-Droid (https://f-droid.org/), a well-known forge of open source Android
apps.

Additionally, we observed issues related to reuse, where one contributor suggests a dual
license to allow for greater reuse in other applications. The contributor of the project python-
hpilo (https://github.com/seveas/python-hpilo/issues/85) stated,

Due to incompatibility between GPLv3 and Apache 2.0 it is hard to use python-hpilo
from, for instance, OpenStack. It would therefore be helpful if the project code could
also be released under a more permissive license, like for instance Apache 2.0 (which
is how OpenStack is licensed)

The other contributors subsequently utilized the thread to vote and ultimately agreed upon
the dual license. Not only does this example indicate the consideration for reuse but it also
demonstrates that licensing decisions are determined by all copyright holders and not by a
single developer. It is also important to note that GPL-3.0 and Apache-2.0 are not consider
incompatible by the Free Software Foundation.

Conversely, we also observed an interesting discussion in which the issue posted in the
project patchelf (https://github.com/NixOS/patchelf/issues/37) asked “Is it possible for you
to change GPL to LGPL? It would help me using your software.”. The developer posting
the question was developing a system licensed under the BSD license with which GPL
would not be compatible. A contributor refused to change licensing by stating: “GPL would
not be compatible”. Moreover, one of the contributors explained that changing licensing is
non-trivial by responding:

It wouldn’t be easy to change the license, given that it contains code from several
contributors, who would all need to approve of the change.

Again, this response highlights the importance for all contributors to approve a license
change. However, reaching an agreement among all contributors might be far from triv-
ial, due to personal biases developers could have with respect to licensing (Vendome et al.
2015b).

We also observed a case related to derivative work, where the license differed from the
original system’s licensing (category: Derivative Work Inconsistency). A developer created
the issue “Origin and License Issue” for the project tablib (https://github.com/kennethreitz/
tablib/issues/114) to which he offered support, but first noted:

While tablib is MIT-licensed, there are several potential provenance and license
issues with Oo, XLS and XLSX formats that tablib embeds. I have collected some
of these potential issues here. This is at best ... byzantine. [...] https://bitbucket.org/
ericgazoni/openpyxl/ is reported as being derived from PHPExcel which is LGPL-
licensed at https://github.com/PHPOffice/PHPExcel but openpyxl is not LGPL but
MIT-licensed. If this is really derived then there is a possible issue as the license may
be that of the original not of the derivative.

The issue poster lists the various components used with their licensing to point out incom-
patibility issues, and in particular those related to the derivative code that the system
utilizes.

Clarifications/Discussions This group of categories contains issues related to clarifying
the project’s licensing, the terms or implications of the licensing, and the agreement between

https://f-droid.org/
https://github.com/seveas/python-hpilo/issues/85
https://github.com/NixOS/patchelf/issues/37
https://github.com/kennethreitz/tablib/issues/114
https://github.com/kennethreitz/tablib/issues/114
https://bitbucket.org/ericgazoni/openpyxl/
https://bitbucket.org/ericgazoni/openpyxl/
https://github.com/PHPOffice/PHPExcel

1564 Empir Software Eng (2017) 22:1537–1577

contributors made in a Contributor License Agreement (CLA). License Clarification were
about the actual license of the project and typically occurred when the system did not contain
a license file (i.e., a declared project license). For example, one project’s user created the
issue “Please add a LICENSE file” for the Mozilla’s project 123done (https://github.com/
mozilla/123done/issues/139) stating:

The repo is public, but it’s not easy to find out how I’m allowed to use or share the
code.
Could you add a LICENSE file to make it easier for users to understand how you’d

like it to be used?

Similarly, another project, pyelection, has the issue “What license is this code released
under?” (https://github.com/alex/pyelection/issues/1) with no further comments from the
poster. Thus, we observe that developers use the issue tracker as a mean to understand the
licensing and request an explicit licensing file.

Another surprising issue discussion is related to understanding the terms of a license.
The issue was posted to the neunode’s issue tracker (https://github.com/snakajima/neunode/
issues/5) by an external developer looking to reuse the code and asked:

We are impressed with what you’ve done with neu.Node and are interested in using it
for offline mapping applications. However, we work at a company that has more than
1M$ in revenue. Your license terms say MIT for companies with less than 1M$ in rev-
enue (which is not an approach I’ve seen before). Please could you clarify the license
terms for a company that is larger that that? We’re trying to make some decisions on
our direction at the moment, so a quick response would be appreciated if possible.

Interestingly, the license terms set conditions based on the money value of the com-
pany looking to reuse the code. In this case, the external developer’s company exceeds
the threshold. The original developer indicates that his software is intended to benefit
the developer community as a whole, and more specifically students and individuals. The
original developer gave two options: (i) a large check without maintenance support, or
(ii) detail descriptions of the product, a compelling argument for giving a free license to
reuse the system, and acknowledgment in the description. Thus, the original developer
is not interested to financial gain (though, he could reasonably be convinced at the right
price), but rather wants to support the open source community and receive credit for his
work.

We identified a category of License Agreement. This scenario arises when an external
developer to the project submits some code contribution to the project, and the project con-
tributors require that developer to complete a Contributor License Agreement (CLA) to
avoid licensing/copyright disputes. We observed a discussion related to updating the textual
information of the project’s CLA with respect to country designations (http://github.com/
adobe/brackets/issues/8337). Similarly, in our previous Java study (Vendome et al. 2015a), a
developer submitted a patch, but it could not be merged into the system until that developer
filled out the CLA (https://github.com/FasterXML/jackson-module-jsonSchema/issues/35).
A CLA makes it explicit that the author of a contribution is granting the recipient project
the right to reuse and further distribute such contribution (Brock 2010). Thus, it prevents
the contributed code from becoming a ground for a potential lawsuit.

Request for a License This group contains issue discussions in which a developer asks
for a license or a license file. While these are similar to reuse, it differs since the developers

https://github.com/mozilla/123done/issues/139
https://github.com/mozilla/123done/issues/139
https://github.com/alex/pyelection/issues/1
https://github.com/snakajima/neunode/issues/5
https://github.com/snakajima/neunode/issues/5
http://github.com/adobe/brackets/issues/8337
http://github.com/adobe/brackets/issues/8337
https://github.com/FasterXML/jackson-module-jsonSchema/issues/35

Empir Software Eng (2017) 22:1537–1577 1565

do not necessarily state that they want to reuse the system, since it is possible that they
want to contribute as well. Thus, these are more generic requests for the developer to
attribute a license to the system without explaining the reason for such a request. For
example, we found the issue titled “No license included in repository” for the project jquery-
browserify (https://github.com/jmars/jquery-browserify/issues/20) in which the poster
commented:

Would you consider adding a license to the repository? It’s currently missing one and
according to TOS.
[Not posting a license] means that you retain all rights to your source code and that

nobody else may reproduce, distribute, or create derivative works from your work.
This might not be what you intend.
Even if this is what you intend, if you publish your source code in a public repository

on GitHub, you have accepted the Terms of Service which do allow other GitHub
users some rights. Specifically, you allow others to view and fork your repository.
If you want to share your work with others, we strongly encourage you to include

an open source license.
If you don’t intend on putting a license up that’s fine, but if you do want to use an

open source license please do so. I’d be happy to fork/PR for you if you just let me
know which license you want to put in (MIT/BSD/Apache/etc.)

This comment demonstrates that licensing also impacts derivative work and can prevent
other developers from contributing to a system. This is an important distinction, since find-
ings and prior work (Vendome et al. 2015a, b; Sojer and Henkel 2010) demonstrate that
licensing could be an impediment to reuse and not an impediment to contribute towards a
project/system.

License Output for the End User This category describes a unique case where an issue
was posted regarding the output of the license to the end user. The issue stated:

“This output could be read by monitoring tools, for example to automatically warn
about expiration (although Phusion also emails expiration warnings, the desired
upfront time for the warning is not configurable like that).” (http://github.com/
phusion/passenger/issues/1482)

Unlike the previous categories, this issue relates to end user licensing the software. The
contributor of the system suggests the inclusion of a feature to aid in monitoring the
license expiration. Interestingly, this category shows that developers also consider licens-
ing from the impact on the “client” using the system. This aspect of understanding
the impact of licensing on the “client” or end user has also been unexplored in prior
studies.

4.4.2 Analysing Commits Implementing Atomic License Changes in Java Systems

In this analysis, we specifically targeted commit messages where a licensing change
occurred so that we could understand the rationale behind the change. We did not apply a
keyword for these commit messages since we knew they were commits related to changes
in licensing. When reading these commits, we also included the atomic license change pat-
tern that was observed at that particular commit to add context. We observed new support
for the existing categories and the results are reported in Table 11. We refer to new support
as commit messages indicating new rationale for the existing categories.

https://github.com/jmars/jquery-browserify/issues/20
http://github.com/phusion/passenger/issues/1482
http://github.com/phusion/passenger/issues/1482

1566 Empir Software Eng (2017) 22:1537–1577

Table 11 Categories defined
through open coding for the
commit messages in which a
license change occurred

Category Commits

Generic license additions

Choosing license 0

License added 63

License change

License change 9

License upgrade 1

License rollback 1

License removal 19

Changes to copyright

Copyright added 0

Copyright update 1

License fixes

Link broken 0

License mismatch 0

Fix missing licensing 9

License file modification 0

Missing licensing 1

License compliance

Compliance discussion 0

Derivative work inconsistency 0

Add compatible library 0

Removed third-party code 1

License compatibility 0

Reuse 0

Dep. license added 0

Dep. license issue 0

Clarifications/Discussions

License clarification 0

Terms clarification 0

Verify licensing 0

License agreement 0

Request for a license

Licensing request 0

License output for the end user

Output licensing 0

As for the License Change group of categories, we observed general messages indicating
a license change occurred and in some cases explicitly stating the new license, such as the
following commit messages:

“Rewrite to get LGPL code.”

“Changed license to Apache v2”

Empir Software Eng (2017) 22:1537–1577 1567

These two commit messages do not offer rationale, but they at least indicate the new license
that has been attributed to the system. So, a developer inspecting the change history would
be able to accurately understand the particular license change.

Since we observed many instances of no license → some license, the prevalence of
License Added was expected. However, these License Added commit messages resem-
bled the License Change messages since they often did not include a clear rationale
(i.e., while being part of the License Added category, their level of detail was similar to
the License Change category). For example, a developer asserted the Apache-2.0 license
to the headers of the source files across his project, but his commit message simply
stated:

“Enforce license”

In the case of License Removal, we observed that licenses were removed due to code
clean up, files deletion, and dependencies removal. For example, we observed the removal
of the GPL-2.0 license with the following commit message,

“No more smoketestclientlib”

It indicates the removal of a previously exploited library. Additionally, licenses were
removed as developers cleaned up the project.

Fix Missing Licensing is related to a license addition, but it occurred when the author
intended to license the file, but forgot either in the initial commit or in the commit
introducing the licensing. For example, one commit message stated:

“Added missing Apache License header.”

This indicates that the available source code may inaccurately seem unlicensed.
Additionally, License Upgrade refers to license change, where the version of the license

is modified to the most recent. In this particular case, we observed a change from GPL-2.0+
to GPL-3.0+. The commit message stated:

“...Change copyright header to refer to version + 3 of the GNU General Public
License and to point readers at the + COPYING3 file and the FSF’s license web page.”

While the commit message describes the version change, it does not supply rationale.
Instead, the message is a log of the changes.

An important observation from the second round of our analysis was the ambiguity of
commit messages. For example, we observed a commit classified as Copyright Update
stating,

“Updated copyright info.”

However, this commit corresponded to a change in licensing from GPL-2.0 to LGPL-2.1+.
This case both illustrates the lack of detail offered by developers in commit messages, and
it illustrates that an update can be more significant than adding a header or changing a
copyright year.

Since we sampled commits from all Java projects, it was infeasible to sample a larger rep-
resentative number of commit messages. Thus, augmenting the second round by considering
commits in which an atomic license change occurred benefited the taxonomy by target-
ing relevant commits better. However, we were able to sample statistically representative
sample sizes in this work due to pre-filtering the projects. The results corroborate the
representativeness, since we observed the same categories.

1568 Empir Software Eng (2017) 22:1537–1577

Another important observation that appears to support the supposition from our trace-
ability analysis that developers remove licensing related issues from the issue tracker is that
we found links that were removed in the period of time between our crawling and our data
analysis. These were categorized as Link Broken and amounted to 45 of the overall issues.
It is also possible that these cases represent developers that utilize external bug tracking
systems as well.

Summary for RQ4 While our open coding analysis, based on grounded theory, indicated
some lack of documentation (e.g., prevalence of false positives) and poor quality in doc-
umentation with respect to licensing in both issue tracker discussion and commits notes,
we formally categorized the available rationale. We also found that the rationale may be
incomplete or ambiguously describe the underlying change (e.g., “Updated copyright info”
representing a change between different licenses). Finally, we observed that issue trackers
also served as conduits for project authors and external developers to discuss licensing.

5 Lessons and Implications

The analysis of the commit messages and issue tracker discussions highlighted that the
information offered with respect to licensing choice/change is very often quite limited. A
developer interested in reusing code would be forced to check the source code of the com-
ponent to understand the exact licensing or to ask for clarification (using the issue tracker,
for example). Additionally, the reason behind the change is not usually well documented.
This detail is particularly important when a system uses external/third-party libraries since
a license may change during the addition or removal of those libraries.

An important observation from our open coding analysis also stresses the need for better
licensing traceability and aid in explaining the license grants/restrictions. We found several
instances in which the issue tracker was used to ask for clarifications regarding licensing by
external developers who sought to reuse the code. For example, we observed that developers
interpret the implications of licensing differently, which generates misunderstandings in
terms of reuse. This suggests that code reuse is problematic for developers due to licensing.
Therefore, our study demonstrates a need for clear and explicit licensing information for the
projects hosted on a forge.

Similarly, we observed that external developers would request a license, since the
projects appeared to be unlicensed; however, a subset of these requests were due to licens-
ing being attributed in a different manner than external developers expected (e.g., part of
the gemspec file for Ruby projects and not a LICENSE file). We also observed develop-
ers adding license files to parent directories as opposed to headers in the source code as
well as appending the license name to the license file (e.g., LICENSE would be renamed
LICENSE.MIT). This way of declaring a license is particularly used in GitHub project
where the system asks the developer(s) to choose a license, when a project is created, and
then it creates the LICENSE file in the project’s root directory.

These observations indicate a lack of standardization in how licensing is expressed
among both projects in the same language and projects across different languages. It
suggests that developers need a standardized mechanism to declare the license of a soft-
ware project. Third-party tools or forges could support developers by maintaining this
standardized documentation automatically.

Another important observation is the type of difficulty that developers have with the
licensing of third-party code and the ways in which they achieve compliance. We observe in

Empir Software Eng (2017) 22:1537–1577 1569

both the issue discussions and commit messages that libraries are removed due to incompat-
ible licensing terms. Conversely, libraries are also chosen due to the particular license of the
source code. This feature can be important for open source developers that aim for a wide
adoption of their systems. Their choice in licensing may directly impact the adoption. This
suggests that the choice in licensing can directly impact the adoption of libraries. There-
fore, we foresee that library/code recommenders based on open source code base should be
license aware. This consideration applies, for example, to approaches recommending code
examples or libraries by sensing the developers’ context (Cubranic et al. 2005; Holmes
and Murphy 2005; Ponzanelli et al. 2013, 2014). In other words, on one hand the project’s
license should be a relevant part of the context, on the other hand, the code search engines
(e.g., Grechanik et al. 2010; McMillan et al. 2012a, b, c, 2011, 2013) should consider the
target code license as a constraint in the search.

The lack of traceability of licensing changes is also important for researchers investi-
gating software licensing on GitHub. While we cannot generalize to other features, it does
suggest that commit message analysis may be largely incomplete with respect to details of
the licensing-related changes made during that commit. One way to achieve this for devel-
opers is to take advantage of summarization tools such as ARENA (Moreno et al. 2014)
and ChangeScribe (Cortés-Coy et al. 2014; Linares-Vásquez et al. 2015). While ARENA
analyzes and documents licensing changes at release level, ChangeScribe automatically
generates commit messages; however, using ChangeScribe would require extending it to
analyze licensing changes at commit level. Another option is that forges (and software tools
in general) verify that every file contains a license and that every project properly docu-
ments its license (this feature could be optional). In summary, it would greatly improve
traceability between license changes and their rationale, and assert a consistency among the
repositories. Also, it would be beneficial for developers using another project to be informed
when a licensing change occurs. For example, a developer could mark specific projects as
dependents and receive automated notifications when particular changes occur. This would
be very beneficial with licensing since a change in the license of a dependency could result
in license incompatibilities.

The open coding of commit messages and issue tracker discussions also suggests that
commercial usage of code is a concern in the open source community. Currently, theMIT/X
license and the Apache license seem to be the most prominent licenses for this purpose.
Indeed, also the quantitative analysis of Java projects showed a trend towards the use of
permissive licenses. The lack of a license is an important consideration in open source
development, since it suggests that the code may in fact be closed source (or copyrighted
by the original author). We observed such issues in discussions related to lack of licensing,
since it hindered reuse. Indeed, sometimes developers initiate an open source project without
attributing it a license. This is either because they lack a deep knowledge of the importance
of the licensing on the possibility of (dis)allowing certain types of reuse for their code
(Vendome et al. 2015b), but also because there is limited support in the task of choosing the
most suitable license for a project. Existing tool support, such as Choose A License,11 helps
users in choosing a license, but the tool is completely context-insensitive with respect to
the constraints imposed. A better, context-sensitive tool support is provided in the Markos
project (Bavota et al. 2014), but it mainly provides the list of compatible licenses for a given
component.

11http://choosealicense.com

http://choosealicense.com

1570 Empir Software Eng (2017) 22:1537–1577

6 Threats to Validity

Threats to construct validity concern the relationship between theory and observation, and
relate to possible measurement imprecision when extracting data used in this study. In min-
ing the Git repositories, we relied on both the GitHub API and the git command line
utility. These are both tools under active development and have a community supporting
them. Additionally, the GitHub API is the primary interface to extract project information.
We cannot exclude imprecision due to the implementation of such API. In terms of license
classification, we rely on Ninka, a state-of-the-art approach that has been shown to have
95 % precision (Germán et al. 2010b); however, it is not always capable of identifying the
license (15 % of the time in that study). For what concerns the open coding performed in
the context of RQ4, we have identified, through a stratified sampling, a sample of commit
messages and issue tracker discussions large enough to ensure an error of ±10 % with a
confidence level of 95 %. Such a sample has been identified starting from candidate commit
messages and discussions identified by means of pattern matching, using the keywords of
Table 1. Although we aimed to build a comprehensive set of licensing-related keywords, it is
possible that we missed licensing-related discussions not matching any of these keywords.

Threats to internal validity can be related to confounding factors, internal to our study,
that could have affected the results. For the atomic licensing changes, we reduced the threat
of having the project size as a confounding factor by representing the presences of a particu-
lar change at each commit. A license change typically is handled at a given instance and not
frequency. By using commit-level analysis, we prevent the number of files from inflating
the results so that they do not inappropriately suggest large numbers of changes occurred
in a project. To analyze the changes across projects, we took a binary approach of analyz-
ing the presence of a pattern. Therefore, a particular project would not dominate our results
due to size. To limit the subjectiveness of the open coding, classifications were always per-
formed by two of the authors, and then every case of discording classification was discussed
as explained in Section 3.3.

Threats to external validity represent the ability to generalize the observations in our
study. Our quantitative study is based on the analysis of over 16K Java projects. This makes
us confident that our findings have a good generalizability for what concerns Java systems,
while they cannot be extended to systems written in other programming languages. Our
qualitative study has been performed instead on commit messages and issue discussions
extracted from software systems written in seven different languages. However, the gener-
alizability of our qualitative results is limited to the seven considered languages and it is
supported by the relatively low number of considered systems (i.e., 1,160) due to the manual
effort required for the identification of the rationale behind licensing decisions (as well as
the limited number of potential repositories with license-related commit messages or issue
discussions).

GitHub’s exponential growth and popularity as a public forge indicates that it represents
a large portion of the open source community. While the exponential growth or relative
youth of projects can be seen as impacting the data, these two characteristics represent the
growth of open source development and should not be discounted. Additionally, GitHub
contains a large number of repositories, but it may not necessarily be a comprehensive
set of all open source projects or even all Java projects. However, the large number of
projects in our dataset (and relatively high diversity metrics values as shown in Section 3.4)
gives us enough confidence about the obtained findings. Further evaluation of projects

Empir Software Eng (2017) 22:1537–1577 1571

across other open source repositories (and other programming languages for the quantita-
tive part) would be necessary to validate our observations in a more general context. It is
also important to note that our observations only consider open source projects. Since we
need to extract licenses from source code, we did not consider any closed source projects
and we cannot assert that any of our results would be representative in closed source
projects.

7 Conclusions

This paper reported an empirical study aimed at analyzing, from a quantitative and quali-
tative point of view, the adoption and change of licenses in open source projects hosted on
GitHub. The study consists of (i) a quantitative part, in which we studied license usage and
licensing changes in a set of 16,221 Java projects hosted on GitHub, and (ii) a qualitative
analysis in which we analyzed commit messages and issue tracker discussions from 1,160
projects hosted on GitHub and developed using seven most popular programming languages
(i.e., C, C++, C#, Java, Javascript, Python, and Ruby).

The quantitative analysis on the Java projects aimed at (i) providing an overview of
the kinds of licenses being used over time by different projects, (ii) analyzing licensing
changes, and (iii) identifying traceability links between licensing changes and licensing-
related discussions. Results indicated that:

– New license versions were quickly adopted by developers. Additionally, new license
versions of restrictive licenses (e.g., GPL-3.0 vs GPL-2.0) favored longer survival of
earlier versions, unlike the earlier version of permissive licenses that seem to disappear;

– Licensing changes are predominantly toward or between permissive licenses, which
ease some kind of derivative work and redistribution, e.g., within commercial products;

– There is a clear lack of traceability between discussions and related license changes.

The qualitative analysis was based on an open coding procedure inspired by grounded
theory (Corbin and Strauss 1990), and aimed at categorizing licensing-related discussions
and commits. The results indicate that:

– Developers post questions to the issue tracker to ascertain the project’s license and/or
the implications of the license suggesting that licensing is difficult;

– There is a lack of standardization or consistency in how licensing is attributed to a
system (both within the same programming language and across different program-
ming languages), which causes misunderstandings or confusion for external developers
looking to reuse a system;

– Developers, in general, do not supply detailed rationale nor document changes in the
commit messages or issue tracker discussions;

– License compatibility can impact both the adoption and removal of a third-party library
due to issues of license compliance.

This work is mainly exploratory in nature as it is aimed at empirically investigating
license usage and licensing changes from both quantitative and qualitative points of view.
Nevertheless, there are different possible uses one can make of the results of this paper.
Our results indicate that developers frequently deal with licensing-related issues, highlight-
ing the need for developing (semi)automatic recommendation systems aimed at supporting

1572 Empir Software Eng (2017) 22:1537–1577

license compliance verification and management. Additionally, tools compatible or inte-
grated within the forge to support licensing documentation, change notification, education
(i.e., picking the appropriate license), and compatibility would benefit developers attempt-
ing to reuse code. While working in this direction, one should be aware of possible factors
that could influence the usage of specific licenses and the factors motivating licensing
changes. This paper provides solid empirical results and analysis of such factors from real
developers.

Future work in this area should aim at (i) extending the study by performing a larger
quantitative and qualitative analysis on more projects, and (ii) performing a deeper inves-
tigation into the rationale for licensing changes, for example, by performing an analysis of
dependencies in software projects and relating such analysis with the changes being per-
formed. Last, but not least, as discussed in Section 5, it would be useful to incorporate
licensing analysis into existing software recommender systems. Such recommenders could
not only rely on the local project’s context, but also exploit rationale from previous licensing
changes to produce recommendations.

Acknowledgments This work is supported in part by NSF CAREER CCF-1253837 grant. Massimiliano
Di Penta is partially supported by the Markos project, funded by the European Commission under Contract
Number FP7-317743. Any opinions, findings, and conclusions expressed herein are the authors’ and do not
necessarily reflect those of the sponsors.

References

123done issue 139 https://github.com/mozilla/123done/issues/139
android-sensorium issue 11 https://github.com/fmetzger/android-sensorium/issues/11
Bavota G, Canfora G, Di Penta M, Oliveto R, Panichella S (2013) The evolution of project inter-dependencies

in a software ecosystem: The case of apache:280–289
Bavota G, Ciemniewska A, Chulani I, De Nigro A, Di PentaM, Galletti D, Galoppini R, Gordon TF, Kedziora

P, Lener I, Torelli F, Pratola R, Pukacki J, Rebahi Y, Villalonga SG (2014) The market for open source:
an intelligent virtual open source marketplace. In: 2014 software evolution week - IEEE conference on
software maintenance, reengineering, and reverse engineering, CSMR-WCRE 2014, Antwerp, Belgium
February 3-6, 2014, pp 399–402

brackets issue 8337. http://github.com/adobe/brackets/issues/8337
Brock A (2010) Project harmony: inbound transfer of rights in FOSS projects. Intl. Free and Open Source

Software Law Review 2(2):139–150
Cass S. The 2015 top ten programming languages. http://spectrum.ieee.org/computing/software/

the-2015-top-ten-programming-languages
Corbin J, Strauss A (1990) Grounded theory research: procedures, canons, and evaluative criteria. Qual Sociol

13(1):3–21
Cortés-Coy LF, Linares-Vásquez M, Aponte J, Poshyvanyk D (2014) On automatically generating com-

mit messages via summarization of source code changes. In: 2014 IEEE 14th international working
conference on source code analysis and manipulation (SCAM), IEEE, pp 275–284

Cuanto commit. https://github.com/ttop/cuanto/commit/a1e58f2c93de40ab304c494e05853957c549fd44
Cubranic D, Murphy GC, Singer J, Booth K. S. (2005) Hipikat: a project memory for software development.

IEEE Trans Softw Eng 31(6):446–465
Czmq commit. https://github.com/zeromq/czmq/commit/eabe063c2588cde0af90e5ae951a2798b7c5f7e4
d3-armory issue 5. https://github.com/kovmarci86/d3-armory/issues/5
Di Penta M, Germán DM, Antoniol G (2010) Identifying licensing of jar archives using a code-search

approach. In: Proceedings of the 7th international working conference on mining software repositories,
MSR 2010 (Co-located with ICSE), Cape Town, South Africa May 2–3, 2010, Proceedings, pp 151–160

Di Penta M, Germán DM, Guéhéneuc Y, Antoniol G (2010) An exploratory study of the evolution of software
licensing. In: Proceedings of the 32nd ACM/IEEE international conference on software engineering -
Volume 1, ICSE 2010 Cape Town, South Africa, 1–8 May 2010, pp 145–154

https://github.com/mozilla/123done/issues/139
https://github.com/fmetzger/android-sensorium/issues/11
http://github.com/adobe/brackets/issues/8337
http://spectrum.ieee.org/computing/software/the-2015-top-ten- programming-languages
http://spectrum.ieee.org/computing/software/the-2015-top-ten- programming-languages
https://github.com/ttop/cuanto/commit/a1e58f2c93de40ab304c494e05853957c 549fd44
https://github.com/zeromq/czmq/commit/eabe063c2588cde0af90e5ae951a2798b 7c5f7e4
https://github.com/kovmarci86/d3-armory/issues/5

Empir Software Eng (2017) 22:1537–1577 1573

Dickey DA, Fuller WA (1979) Distributions of the estimators for autoregressive time series with a unit root.
J Am Stat Assoc 74:427–431

Dickey DA, Fuller WA (1981) Likelihood ratio statistics for autoregressive time series with a unit root.
Econometrica 49(4):1057–1072

Doll B The octoverse in 2012. http://tinyurl.com/muyxkru. Last accessed: 2015/01/15
Dyer R, Nguyen HA, Rajan H, Nguyen TN (2013) Boa: a language and infrastructure for analyzing ultra-

large-scale software repositories. In: 35th international conference on software engineering, ICSE ’13,
San Francisco, CA USA, May 18–26, 2013, pp 422–431

enigma2 commit. https://github.com/openatv/enigma2/commit/b4dfdf09842b3dcacb2a6215fc040 f7ebbbb3
c03

Free Software Foundation (2015) Categories of free and nonfree software. https://www.gnu.org/philosophy/
categories.html. Last accessed: 2015/01/15

F-Droid. https://f-droid.org/. Last accessed: 2015/01/15
Germán DM, Hassan AE (2009) License integration patterns: addressing license mismatches in component-

based development. In: 31st international conference on software engineering, ICSE 2009, May 16-24,
2009, Vancouver, Canada, Proceedings, pp 188–198

Germán DM, Di Penta M, Guéhéneuc Y, siblings G. Antoniol. (2009) Code technical and legal implications
of copying code between applications. In: Proceedings of the 6th international working conference on
mining software repositories, MSR 2009 (Co-located with ICSE), Vancouver, BC Canada May 16-17,
2009 Proceedings, pp 81–90

Germán DM, Di Penta M, Davies J (2010a) Understanding and auditing the licensing of open source software
distributions. In: The 18th IEEE international conference on program comprehension, ICPC 2010, Braga,
Minho, Portugal, June 30-July 2 2010, pp 84–93

Germán DM, Manabe Y, Inoue K (2010b) A sentence-matching method for automatic license identification
of source code files. In: ASE 2010, 25th IEEE/ACM international conference on automated software
engineering, Antwerp Belgium, September 20–24 2010, pp 437–446

GitHub API. https://developer.github.com/v3/. Last accessed: 2015/01/15
GNU General Public License (2015). http://www.gnu.org/licenses/gpl.html. Last accessed: 2015/01/15
gtksourcecompletion issue 1. https://github.com/chuchiperriman/gtksourcecompletion/issues/1
Gobeille R (2008) The FOSSology project. In: Proceedings of the 2008 international working conference on

mining software repositories, MSR 2008 (Co-located with ICSE), Leipzig, Germany May 10–11, 2008
Proceedings, pp 47–50

Grechanik M, Fu C, Xie Q, McMillan C, Poshyvanyk D, Cumby C (2010) A search engine for finding highly
relevant applications. In: Proceedings of the 32Nd ACM/IEEE international conference on software
engineering - Volume 1, ICSE ’10, New York, NY, USA ACM, pp 475–484

gubg commit https://github.com/gfannes/gubg.deprecated/commit/4d291ef433f0596dbd09d 5733b25d27b3
a921cf4

Holmes R, Murphy GC (2005) Using structural context to recommend source code examples. In: 27th inter-
national conference on software engineering (ICSE 2005), 15–21 May 2005 St. Louis, Missouri USA,
pp 117–125

Howison J, Conklin M, Crowston K FLOSSmole: a collaborative repository for FLOSS research data and
analyses. IJITWE’06 1:17–26

Haml commit https://github.com/haml/haml/commit/537497464612f1f5126a526e13e661698c86fd91
Intex issue 1 https://github.com/mtr/intex/issues/1
jackson-module-jsonschema issue 35 https://github.com/FasterXML/jackson-module-jsonSchema/issues/35
jquery-browserify issue 20 https://github.com/jmars/jquery-browserify/issues/20
Linares-Vásquez M, Cortés-Coy LF, Aponte J, Poshyvanyk D (2015) ChangeScribe: A tool for automatically

generating commit messages. In: 37th IEEE/ACM international conference on software engineering
(ICSE’15), formal research tool demonstration, page to appear

Manabe Y, Hayase Y, Inoue K (2010) Evolutional analysis of licenses in FOSS. In: Proceedings of the joint
ERCIM workshop on software evolution (EVOL) and international workshop on principles of software
evolution (IWPSE), Antwerp, Belgium, September 20–21, 2010, pp 83–87 ACM

McMillan C, Grechanik M, Poshyvanyk D, Xie Q, Fu C (2011) Portfolio: finding relevant functions and their
usage. In: Proceedings of the 33rd international conference on software engineering, ICSE ’11, New
York, NY, USA, ACM

McMillan C, Grechanik M, Poshyvanyk D (2012a) Detecting similar software applications, pp 364–
374

McMillan C, Grechanik M, Poshyvanyk D, Fu C, Xie Q (2012b) Exemplar: A source code search engine for
finding highly relevant applications. IEEE Trans Softw Eng 38(5):1069–1087

http://tinyurl.com/muyxkru
https://github.com/openatv/enigma2/commit/b4dfdf09842b3dcacb2a6215fc040 f7ebbbb3c03
https://github.com/openatv/enigma2/commit/b4dfdf09842b3dcacb2a6215fc040 f7ebbbb3c03
https://www.gnu.org/philosophy/categories.html
https://www.gnu.org/philosophy/categories.html
https://f-droid.org/
https://developer.github.com/v3/
http://www.gnu.org/licenses/gpl.html
https://github.com/chuchiperriman/gtksourcecompletion/issues/1
https://github.com/gfannes/gubg.deprecated/commit/4d291ef433f0596dbd09d 5733b25d27b3a921cf4
https://github.com/gfannes/gubg.deprecated/commit/4d291ef433f0596dbd09d 5733b25d27b3a921cf4
https://github.com/haml/haml/commit/537497464612f1f5126a526e13e661698c8 6fd91
https://github.com/mtr/intex/issues/1
https://github.com/FasterXML/jackson-module-jsonSchema/issues/35
https://github.com/jmars/jquery-browserify/issues/20

1574 Empir Software Eng (2017) 22:1537–1577

McMillan C, Hariri N, Poshyvanyk D, Cleland-Huang J, Mobasher B (2012c) Recommending source code
for use in rapid software prototypes. In: Proceedings of the 34th international conference on software
engineering, ICSE ’12, Piscataway, NJ, USA, IEEE Press, pp 848–858

Mcmillan C, Poshyvanyk D, Grechanik M, Xie Q, Fu C. (2013) Portfolio: searching for relevant functions
and their usages in millions of lines of code. ACM Trans Softw Eng Methodol 22(4):37:1–37:30

minixwall commit https://github.com/booster23/minixwall/commit/342171fa9e9d769ce4aa48525142a569b
34962f7

Moreno L, Bavota G, Di Penta M, Oliveto R, Marcus A, Canfora G (2014) Automatic generation of release
notes. In: Proceedings of the 22nd ACM SIGSOFT international symposium on foundations of software
engineering, (FSE-22), Hong Kong, China November 16–22 2014, pp 484–495

Nagappan M, Zimmermann T, Bird C (2013) Diversity in software engineering research. In: Joint meeting of
the European software engineering conference and the ACMSIGSOFT symposium on the foundations of
software engineering, ESEC/FSE’13, Saint Petersburg, Russian Federation, August 18–26 2013, pp 466–476

neunode issue 5 https://github.com/snakajima/neunode/issues/5
Nimble commit https://github.com/bradleybeddoes/nimble/commit/e1e273ff18730d2f8e0d7c2 af1951970

e676c8d1
Oracle MySQL - FOSS License Exception. http://www.mysql.com/about/legal/licensing/foss-exception/.

Last accessed: 2015/01/15
Passenger issue 1482 http://github.com/phusion/passenger/issues/1482
patchelf issue 37 https://github.com/NixOS/patchelf/issues/37
Penta MD, Germán DM (2009) Who are source code contributors and how do they change? In: 16th working

conference on reverse engineering, WCRE 2009, 13–16 October 2009, Lille France, pp 11–20
PF: The OpenBSD Packet Filter http://www.openbsd.org/faq/pf Last accessed: 2015/01/15
Ponzanelli L, Bacchelli A, Lanza M (2013) Leveraging crowd knowledge for software comprehension and

development. In: 17th european conference on software maintenance and reengineering, CSMR 2013,
Genova, Italy, March 5–8 2013, pp 57–66

Ponzanelli L, Bavota G, Di Penta M, Oliveto R, Lanza M (2014) Mining stackoverflow to turn the IDE into
a self-confident programming prompter. In: 11th working conference on mining software repositories,
MSR 2014, Proceedings, May 31 - June 1 Hyderabad, India, pp 102–111

Postgis commit https://github.com/postgis/postgis/commit/4eb4127299382c971ea579c8596cc41cb1c089bc
pyelection issue 1 https://github.com/alex/pyelection/issues/1
python-hpilo issue 85 https://github.com/seveas/python-hpilo/issues/85
rcswitch-pi issue 17 https://github.com/r10r/rcswitch-pi/issues/17
Ros-comm commit https://github.com/ros/ros comm/commit/e451639226e9fe4eebc997962435cc4546875

67c
schevorecipe.db commit https://github.com/Schevo/schevorecipe.db/commit/b73bef14adeb7c87c002a90838

4253c8f686c625
Singh P, Phelps C (2009) Networks, social influence, and the choice among competing innovations: Insights

from open source software licenses. Inf Syst Res 24(3):539–560
Sojer M, Henkel J (2010) Code reuse in open source software development: Quantitative evidence, drivers,

and impediments. J Assoc Inf Syst 11(12):868–901
Software Package Data Exchange (SPDX) http://spdx.org Llast accessed: 2015/01/15
State of the Octoverse in 2012 https://octoverse.github.com/ Last accessed: 2015/01/15
Steampp issue 1 https://github.com/seishun/SteamPP/issues/1
svgeezy issue 20 https://github.com/benhowdle89/svgeezy/issues/20
tablib issue 114 https://github.com/kennethreitz/tablib/issues/114
Tardis commit https://github.com/tardis-sn/tardis/commit/07b2a072d89d45c386d5f988f04435d76464750e
The BSD 2-Clause License. http://opensource.org/licenses/BSD-2-Clause. Last accessed: 2015/01/15
Tuunanen T, Koskinen J, Kärkkäinen T (2009) Automated software license analysis. Softw Autom Eng

16(3-4):455–490
Vendome C, Linares-Vásquez M, Bavota G, Di Penta M, Germán DM, Poshyvanyk D (2015a) License usage

and changes: A large-scale study of Java projects on GitHub. In: The 23rd IEEE international conference
on program comprehension, ICPC 2015, Florence, Italy, May 18–19, 2015. IEEE

Vendome C, Linares-VásquezM, Bavota G, Di Penta M, German DM, Poshyvanyk D (2015b)When and why
developers adopt and change software licenses. In: The 31st IEEE international conference on software
maintenance and evolution, ICSME 2015 Bremen, Germany, September 29 - October 1, 2015, pages
31–40 IEEE

https://github.com/booster23/minixwall/commit/342171fa9e9d769ce4aa48525 142a569b34962f7
https://github.com/booster23/minixwall/commit/342171fa9e9d769ce4aa48525 142a569b34962f7
https://github.com/snakajima/neunode/issues/5
https://github.com/bradleybeddoes/nimble/commit/e1e273ff18730d2f8e0d7c2 af1951970e676c8d1
https://github.com/bradleybeddoes/nimble/commit/e1e273ff18730d2f8e0d7c2 af1951970e676c8d1
http://www.mysql.com/about/legal/licensing/foss-exception/
http://github.com/phusion/passenger/issues/1482
https://github.com/NixOS/patchelf/issues/37
http://www.openbsd.org/faq/pf
https://github.com/postgis/postgis/commit/4eb4127299382c971ea579c8596cc 41cb1c089bc
https://github.com/alex/pyelection/issues/1
https://github.com/seveas/python-hpilo/issues/85
https://github.com/r10r/rcswitch-pi/issues/17
https://github.com/ros/ros_comm/commit/e451639226e9fe4eebc997962435cc45 4687567c
https://github.com/ros/ros_comm/commit/e451639226e9fe4eebc997962435cc45 4687567c
https://github.com/Schevo/schevorecipe.db/commit/b73bef14adeb7c87c002a9 08384253c8f686c625
https://github.com/Schevo/schevorecipe.db/commit/b73bef14adeb7c87c002a9 08384253c8f686c625
http://spdx.org
https://octoverse.github.com/
https://github.com/seishun/SteamPP/issues/1
https://github.com/benhowdle89/svgeezy/issues/20
https://github.com/kennethreitz/tablib/issues/114
https://github.com/tardis-sn/tardis/commit/07b2a072d89d45c386d5f988f044 35d76464750e
http://opensource.org/licenses/BSD-2-Clause

Empir Software Eng (2017) 22:1537–1577 1575

Wu Y, Manabe Y, Kanda T, Germán DM, Inoue K (2015) A method to detect license inconsistencies in
large-scale open source projects

web-workshops issue 1 https://github.com/rosedu/web-workshops/issues/1
wkhtmltopdf-qt-batch commit https://github.com/alexkoltun/wkhtmltopdf-qt-batch/commit/9b142a07a7576

afa15ba458e97935aac5921ef8d
Zapponi C Githut. http://githut.info

Christopher Vendome is a fourth year Ph.D. student at the College of William & Mary. He is a member
of the SEMERU Research Group and is advised by Dr. Denys Poshyvanyk. He received a B.S. in Computer
Science from Emory University in 2012 and he received his M.S. in Computer Science from The College of
William & Mary in 2014. His main research areas are software maintenance and evolution, mining software
repositories, software provenance, and software licensing. He is member of the IEEE and ACM.

Gabriele Bavota is an assistant professor at the Free University of Bolzano-Bozen. received (cum laude)
the Laurea in Computer Science from the University of Salerno (Italy) in 2009 defending a thesis on Trace-
ability Management, advised by Prof. Andrea De Lucia. He received the PhD in Computer Science from
the University of Salerno in 2013. Form January 2013 to October 2014 he has been a research fellow at the
Department of Engineering of the University of Sannio. His research interests include software maintenance
and evolution, refactoring of software systems, mining software repositories, empirical software engineering,
and information retrieval.

https://github.com/rosedu/web-workshops/issues/1
https://github.com/alexkoltun/wkhtmltopdf-qt-batch/commit/9b142a07a7576 afa15ba458e97935aac5921ef8d
https://github.com/alexkoltun/wkhtmltopdf-qt-batch/commit/9b142a07a7576 afa15ba458e97935aac5921ef8d
http://githut.info

1576 Empir Software Eng (2017) 22:1537–1577

Massimiliano Di Penta is an associate professor at the University of Sannio, Italy since December 2011.
Before that, he was assistant professor in the same University since December 2004. His research interests
include software maintenance and evolution, mining software repositories, empirical software engineering,
search-based software engineering, and service-centric software engineering. He is currently involved as
principal investigator for the University of Sannio in a European Project about code search and licensing
issues (MARKOS - www.markosproject.eu).

Mario Linares-Vásquez is a Ph.D. candidate at the College of William and Mary advised by Dr. Denys
Poshyvanyk, and co-founder of liminal ltda. He received his B.S. in Systems Engineering from Universidad
Nacional de Colombia in 2005, and his M.S. in Systems Engineering and Computing from Universidad
Nacional de Colombia in 2009. His research interests include software evolution and maintenance, software
architecture, mining software repositories, application of data mining and machine learning techniques to
support software engineering tasks, and mobile development. He is member of the IEEE and ACM.

www.markosproject.eu

Empir Software Eng (2017) 22:1537–1577 1577

Daniel M. German is an Associate Professor at the University of Victoria in Victoria, Canada. He received
his Ph.D. degree in Computer Science from University of Waterloo in Canada. His research interests are in
software engineering. In particular, software evolution, open source and intellectual property.

Denys Poshyvanyk is an Associate Professor at the College of William andMary in Virginia. He received his
Ph.D. degree in Computer Science fromWayne State University in 2008. He also obtained his M.S. and M.A.
degrees in Computer Science from the National University of Kyiv-Mohyla Academy, Ukraine and Wayne
State University in 2003 and 2006, respectively. His research interests are in software engineering, software
maintenance and evolution, program comprehension, reverse engineering, software repository mining, source
code analysis and metrics. He is a member of the IEEE and ACM.

	License usage and changes: a large-scale study on gitHub
	Abstract
	Introduction
	Paper Contributions
	Paper Structure

	Related Work
	Identifying and Classifying Software Licenses
	Empirical Studies on Licenses Adoption and Evolution

	Design of the Empirical Study
	Research Questions
	Quantitative Analysis
	Qualitative Analysis
	Dataset Diversity Analysis
	Quantitative Analysis
	Qualitative Analysis

	Replication Package

	Study Results
	RQ1: What is the Usage of Different Licenses in gitHub?
	Summary for RQ1

	RQ2: What are the Most Common Licensing Change Patterns?
	Summary for RQ2

	RQ3: to What Extent are Licensing Changes Documented in Commit Notes or Issue Tracker Discussions?
	Summary for RQ3

	RQ4: What Rationale do These Sources Contain for the Licensing Changes?
	Analyzing Commit Messages and Issue Discussions
	Generic License Additions
	License Change
	Changes to Copyright
	License Fixes
	License Compliance
	Clarifications/Discussions
	Request for a License
	License Output for the End User

	Analysing Commits Implementing Atomic License Changes in Java Systems
	Summary for RQ4

	Lessons and Implications
	Threats to Validity
	Conclusions
	Acknowledgments
	References

