
https://doi.org/10.1007/s10664-019-09792-9

On the impact of using trivial packages: an empirical
case study on npm and PyPI

Rabe Abdalkareem1 ·Vinicius Oda1 · Suhaib Mujahid1 · Emad Shihab1

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Abstract
Code reuse has traditionally been encouraged since it enables one to avoid re-inventing the
wheel. Due to the npm left-pad package incident where a trivial package led to the breakdown
of some of the most popular web applications such as Facebook and Netflix, some ques-
tioned such reuse. Reuse of trivial packages is particularly prevalent in platforms such as
npm. To date, there is no study that examines the reason why developers reuse trivial pack-
ages other than in npm. Therefore, in this paper, we study two large platforms npm and PyPI.
We mine more than 500,000 npm packages and 38,000 JavaScript applications and more
than 63,000 PyPI packages and 14,000 Python applications to study the prevalence of trivial
packages. We found that trivial packages are common, making up between 16.0% to 10.5%
of the studied platforms. We performed surveys with 125 developers who use trivial pack-
ages to understand the reasons and drawbacks of their use. Our surveys revealed that trivial
packages are used because they are perceived to be well implemented and tested pieces
of code. However, developers are concerned about maintaining and the risks of breakages
due to the extra dependencies trivial packages introduce. To objectively verify the survey
results, we validate the most cited reason and drawback. We find that contrary to developers’
beliefs only around 28% of npm and 49% PyPI trivial packages have tests. However, trivial
packages appear to be ‘deployment tested’ and to have similar test, usage and community
interest as non-trivial packages. On the other hand, we found that 18.4% and 2.9% of the
studied trivial packages have more than 20 dependencies in npm and PyPI, respectively.

Keywords Trivial packages · JavaScript · Node.js · Python · npm · PyPI · Code reuse ·
Empirical studies

1 Introduction

Code reuse, in the form of combining related functionalities in packages, has been encour-
aged due to the fact that it can reduce the time-to-market, improve software quality and

Communicated by: Arie van Deursen

� Rabe Abdalkareem
rab abdu@encs.concordia.ca

Extended author information available on the last page of the article.

Empirical Software Engineering (2020) 25:1168–1204

Published online: 9 January 2020

http://crossmark.crossref.org/dialog/?doi=10.1007/s10664-019-09792-9&domain=pdf
http://orcid.org/0000-0001-9914-5434
mailto: rab_abdu@encs.concordia.ca


boost overall productivity (Basili et al. 1996; Lim 1994; Mohagheghi et al. 2004). There-
fore, it is no surprise that platforms such as Node.js encourage reuse and attempt to facilitate
code sharing, often delivered as packages or modules1 that are available on package man-
agement platforms, such as the Node Package Manager (npm) and Python Package Index
(PyPI) (npm 2016; Bogart et al. 2016).

However, it is not all good news. There are many cases where code reuse has had nega-
tive effects, leading to an increase in maintenance costs and even legal action (McCamant
and Ernst 2003; Orsila et al. 2008; Inoue et al. 2012; Abdalkareem et al. 2017a). For exam-
ple, an incident of code reuse of a JavaScript package called left-pad, which was used by
Babel, caused interruptions to some of the largest Internet sites, e.g., Facebook, Netflix, and
Airbnb. Many referred to the incident as the case that ‘almost broke the Internet’ (Mac-
donald 2016; Williams 2016). That incident lead to many heated discussions about code
reuse, sparked by David Haney’s blog post: “Have We Forgotten How to Program?” (Haney
2016).

While the real reason for the left-pad incident was that npm allowed authors to unpub-
lish packages (a problem which has been resolved (npm Blog 2016)), it raised awareness
of the broader issue of taking on dependencies for trivial tasks that can be easily imple-
mented (Haney 2016). In our previous work (Abdalkareem et al. 2017), we defined and
examined trivial packages in npm, and discovered a number of relevant findings:

– Trivial JavaScript packages tend to be small in size and less complex.
– Trivial packages are prevalent, making up approximately 16.8% of all the packages on

npm.
– JavaScript developers generally use trivial packages since they believe that trivial pack-

ages provide them with well tested and implemented code, however, they are concerned
about the management of extra dependencies.

In addition, we found that in some cases, these trivial JavaScript packages can have their
own dependencies, imposing significant overhead.

However, one major limitation of the original work was its deep focus on JavaScript and
npm in particular (Abdalkareem et al. 2017). For example, questions about the existence
of trivial packages (and how they are defined) in other package management platforms
remain. Also, whether the perceived advantages (e.g., that trivial packages are well tested)
and disadvantages (e.g., management of additional dependencies) of using trivial packages
generalized beyond JavaScript developers remain unanswered.

Hence, this paper has extended our previous work (Abdalkareem et al. 2017) to
strengthen the empirical evidence on the use of trivial packages by replicating and extend-
ing our study on the Python Package Index (PyPI). We chose to examine the PyPI package
management platform since 1) Python is one of the most popular general purpose program-
ming languages, 2) Python has only one main well-established package platform, PyPI, and
3) PyPI is a mature package management platform that has been in existence for more than
twelve years. Our extended study provides the following key additions:

– We extended our study of the npm package management platform and increased the
npm dataset from 231,092 to 501,001 packages.

– We provide a definition of PyPI trivial packages and examine the prevalence of trivial
packages in the Python ecosystem.

1In this paper, we use the term package to refer to a software library that is published on the studied package
management platforms.

Empirical Software Engineering (2020) 25:1168–1204 1169



– We surveyed 37 Python developers to investigate the reasons for and drawback of using
trivial packages in the PyPI package management platform.

– We examine the top main reasons of and drawbacks of using PyPI trivial packages
based on the developers survey.

Altogether, our study involves more than 500,000 npm packages and 38,000 JavaScript
applications and 63,000 PyPI packages and 14,000 Python applications. The study also
contains survey results from 125 JavaScript and Python developers. Our findings indicate
that:

The definition of trivial packages is the same in JavaScript and Python The developers
from the two different package management platforms tended to have the same definition of
trivial packages. While we found in the original paper (Abdalkareem et al. 2017) that npm
trivial packages are packages that have ≤ 35 LOC and a McCabe’s cyclomatic complexity
≤ 10, we also found that PyPI trivial packages have the same definition.

Trivial packages are common and popular in both, npm and PyPI management plat-
forms Of the 501,001 npm and 63,912 PyPI packages in our dataset, 16.0% and 10.6%
of them are trivial packages. Moreover, of the 38,807 JavaScript and 14,717 Python appli-
cations on GitHub, 26.1% and 6.9% of them directly depend on one or more trivial
packages.

JavaScript and Python developers differ in their perception of trivial packages Only
23.9% of JavaScript developers considered the use of trivial packages as bad, whereas,
70.3% of Python developers consider the use of trivial package as a bad practice.

Developers believe that trivial packages provide them with well implemented/tested
code and increase productivity At the same time, the increase in dependency overhead
and the risk of breakage of their applications are the two most cited drawbacks.

Developers need to be careful which trivial packages they use Our empirical findings
show that many trivial packages have their own dependencies. In npm, 43.2% of trivial
packages have at least one dependency and 18.4% of trivial packages have more than 20
dependencies. In PyPI, 36.8% of trivial packages have at least one dependency, and 2.9%
have more than 20 dependencies.

To facilitate the replicability of our work, we make our dataset and the anonymized
developer responses publicly available (Abdalkareem et al. 2019).

1.1 Paper Organization

The paper is organized as follows: Section 2 provides the background and introduces our
datasets. Section 3 presents how we determine what a trivial package is. Section 4 exam-
ines the prevalence of trivial packages and their use in JavaScript and Python applications.
Section 5 presents the results of our developer surveys, presenting the reasons and perceived
drawbacks for developers who use trivial packages. Section 6 presents our quantitative val-
idation of the most commonly cited reason for and drawback of using trivial packages.
The implications of our findings are noted in Section 7. We discuss the related works
in Section 8, the limitations of our study in Section 9, and present our conclusions in
Section 10.

Empirical Software Engineering (2020) 25:1168–12041170



2 Background and Case Studies

In this section, we provide background on the two studied package management platforms,
npm and PyPI. We also provide an overview of the dataset collected and used in the rest of
our study.

2.1 Node PackageManager (npm)

JavaScript is used to write client and server side applications. The popularity of JavaScript
has steadily grown, thanks to popular frameworks such as Node.js and an active developer
community (Bogart et al. 2016; Wittern et al. 2016). JavaScript projects can be classi-
fied into two main categories: JavaScript packages that are used in other applications or
JavaScript applications that are used as standalone software. The Node Package Manager
(npm) provides tools to manage JavaScript packages.

To perform our study, we gather two datasets from two sources. We obtain JavaScript
packages from the npm registry and applications that use npm packages from GitHub.

npm Packages: Since we are interested in examining the impact of ‘trivial packages’, we
mined the latest version of all the JavaScript packages from npm as of September 30,
2017. For each package we obtained its source code from the npm registry. In total, we
mined 549,629 packages.

GitHub JavaScript Applications: We also want to examine the use of the npm pack-
ages in JavaScript applications. Therefore, we mined all of the JavaScript applications on
GitHub. To obtain a list of JavaScript applications, we extracted all the applications iden-
tified as JavaScript application from the GHTorrent dataset (Gousios et al. 2014). Then,
to ensure that we are indeed only obtaining the JavaScript applications from GitHub, and
not npm packages, we compare the URL of the GitHub repositories from GHTorrent to
all of the URLs we obtained from npm for the packages. If a URL from GitHub was also
in npm, we flagged it as being an npm package and removed it from the application list.
To determine that an application uses npm packages, we looked for the ‘package.json’
file, which specifies (amongst others) the npm package dependencies used by the
application.

Finally, to eliminate dummy applications that may exist in GitHub, we choose non-forked
applications with more than 100 commits and more than 2 developers. Similar filtering
criteria were used in prior work by Kalliamvakou et al. (2014). In total, we obtained 115,621
JavaScript applications and after removing applications that did not use the npm platform,
we were left with 38,807 JavaScript applications.

2.2 Python Package Index (PyPI )

PyPI is the official package management platform for the Python programming language.
Python is one of the most popular programming language today, mainly due to its strong
community support and versatility, i.e., Python is used in many different domains from
game development to server side applications (Vasilescu et al. 2015; Ray et al. 2014). Once
again, we distinguish between Python packages, which are used in Python applications and
standalone Python applications, which typically use Python packages. Similar to the case
of JavaScript, we gather two datasets from two sources to perform our study. We obtain
Python packages from the PyPI registry and applications that use PyPI packages from
GitHub.

Empirical Software Engineering (2020) 25:1168–1204 1171



PyPI Packages: We collected the latest versions of the Python packages from PyPI in
order to determine which packages are ‘trivial packages’. PyPI contains around 118,324
packages (Libraries.io 2017), as of September 30, 2017. In total, we were able to obtain
116,905 packages from the PyPI registry since some packages did not exist anynmore.

GitHub Python Applications: To examine the usage of ‘trivial packages’ in Python
applications, we mined all of the Python applications hosted on GitHub provided by the
GHTorrent dataset (Gousios et al. 2014). We followed the same aforementioned process
used to gather JavaScript applications, to ensure that we are indeed only obtaining the
Python applications from GitHub, and not PyPI package repositories. In a nutshell, we
compare the URL of the GitHub repositories to the URLs we obtained from PyPI for
the packages. If a URL from GitHub was also in PyPI, we flagged it as being an PyPI
package and removed it from the application list. In total, we obtained 14,717 Python
applications that are hosted on GitHub. In addition, to eliminate dummy or immature
Python applications that may exist in GitHub, we performed the filtering steps as we did
for the JavaScript application. We choose non-forked Python applications with more than
100 commits and more than 2 developers.

3 Defining Trivial Packages

Although what a trivial package is has been loosely defined in the past (e.g., in
blogs (Hemanth 2015; Harris 2015)), we want a more precise and objective way to deter-
mine trivial packages. To determine what constitutes a trivial package, we conducted two
separate surveys, one for each of the studied package management platforms (npm and
PyPI). We mainly asked participants what they considered to be a trivial package and what
indicators they used to determine if a package is trivial or not. We conducted two different
surveys since: 1) the two studied package management platforms serve different program-
ming languages, 2) developers from the two package management platforms may have
different perspective of what they consider to be ‘trivial packages’.

For each package management platform (npm and PyPI), we devised an online survey
that presented the source code of 16 randomly selected packages that range in size between
4 - 250 JavaScript/Python lines of code (LOC). Participants were asked to 1) indicate if they
thought the package was trivial or not and 2) specify what indicators they use to determine a
trivial package. We opted to limit the size of the selected packages in the surveys to a max-
imum of 250 JavaScript/Python LOC since we did not want to overwhelm the participants
with the review of excessive amounts of code.

We asked the survey participants to indicate trivial packages from the list of packages
provided. We provided the survey participants with a loose definition of what a trivial pack-
age is, i.e., a package that contains code that they can easily code themselves and hence,
is not worth taking on an extra dependency for. Figure 1 shows an example of a trivial
JavaScript package, called is-Positive, which simply checks if a number is positive. The sur-
vey questions were divided into three parts: 1) questions about the participant’s development

Fig. 1 Package is-Positive on npm

Empirical Software Engineering (2020) 25:1168–12041172



background, 2) questions about the classification of the provided packages, and 3) ques-
tions about what indicators the participant would use to determine a trivial package. For
the npm survey, we sent the survey to 22 developers and colleagues that were familiar with
JavaScript development and received a total of 12 responses. We also sent the PyPI survey
to 18 developers and colleagues that were familiar with Python development and received a
total of 13 responses. It is important to note that we sent the two surveys to different groups
of developers, to make sure that the participants in one survey are not biased through their
experience of participating in the other (i.e., first) survey.

Participants’ Background and Experience: The first four columns of Table 1 show the
background of participants in the npm survey. Of the 12 respondents, 2 are undergrad-
uate students, 8 are graduate students, and 2 are professional developers. Ten of the 12
respondents have at least 2 years of JavaScript experience and half of the participants
have been developing with JavaScript for more than five years.

The last four columns of Table 1 show the background of participants in the PyPI sur-
vey. Of the 13 participants in this survey, 9 identified themselves as graduate students and
4 as professional developers working in industry; 7 participants had more than 5 years of
Python development experience, 2 respondents had between 3 to 5 years, 3 others had 2
to 3 years of experience, and finally one person had less than 1 year of Python practice.
We were happy to have the majority of our respondents be well-experienced with Python.

Result: We asked participants of the two surveys to list what indicators they use to deter-
mine if a package is trivial or not and to indicate all the packages that they considered to
be trivial. Of the 12 participants in the JavaScript survey, 11 (92%) state that the com-
plexity of the code and 9 (75%) state that size of the code are indicators they use to
determine a trivial package. Also, 3 (20%) mentioned that they used code comments and
other indicators (e.g., functionality) to indicate if a package is trivial or not. The results of
the Python survey reveal that 9 (69%) of the developers use size of the code and 9 (69%)
of them use complexity of the code as the main indicators to determine trivial packages.
Also, 7 (54%) of the participants stated that they use source code comments to determine
trivial Python packages and 3 (23%) of the participants mentioned some other indica-
tors that they can use to identify a trivial package. For example one participant related a
trivial Python package as “If it’s only one function”.

Table 1 Background of participants in the two surveys to determine trivial packages

npm PyPI

Experience # Developers’ # Experience # Developers’ #

in JavaScript position in python position

<1 2 Undergrad 2 <1 1 Undergrad 0

Student Student

2 – 3 3 Graduate 8 2 – 3 3 Graduate 9

Student Student

3 – 5 1 Professional 2 3 – 5 2 Professional 4

Developer Developer

>5 6 – – >5 7 – –

Total 12 Total 12 Total 13 Total 13

Empirical Software Engineering (2020) 25:1168–1204 1173



Since it is clear that size and complexity are the most common indicators of trivial pack-
ages and they are a universal measure that can be measured for both, JavaScript and Python,
we use these two measures to determine trivial packages. It should be mentioned that par-
ticipants could provide more than one indicator, hence the percentages above sum to more
than 100%.

Next, we analyze all of the packages that were marked as trivial from the two surveys.
Our main goal of this analysis is to find which values of the size and complexity metrics are
indicative of trivial packages.

npm Survey Responses: In total, we received 69 votes for the 16 packages. We ranked
the packages in ascending order, based on their size, and tallied the votes for the most
voted packages. We find that 79% of the votes consider packages with less than 35 lines
of code to be trivial. We also examine the complexity of the packages using McCabe’s
cyclomatic complexity, and find that 84% of the votes marked packages that have a total
complexity value of 10 or lower to be trivial. It is important to note that although we
provide the source code of the packages to the participants, we do not explicitly provide
the size or the complexity of the packages to the participants to not bias them towards
any specific metrics.

PyPI Survey Responses: we received 89 votes for the 16 packages. Similar to the case
of npm, we ranked the packages in ascending order, based on their size, and tallied the
votes for the most voted packages. We find that 76.4% of the votes consider packages
that are equal or less than 35 lines of code to be trivial. We also examine the complexity
of the packages using McCabe’s cyclomatic complexity, and find that 79.8% of the votes
marked packages that have a total complexity value of 10 or lower to be trivial Python
package. Similar to npm, we also did not provide any metric values for the packages to
avoid bias.

Based on the aforementioned findings, we used the two indicators JavaScript/Python
LOC ≤ 35 and complexity ≤ 10 to determine trivial packages in our dataset. Hence,
we define trivial JavaScript/Python packages as

{
XLOC ≤ 35 ∩ XComplexity ≤ 10

}
,

where XLOC represents the JavaScript/Python LOC and XComplexity represents McCabe’s
cyclomatic complexity of package X. Although we use the aforementioned measures to
determine trivial packages, we do not consider this to be the only possible way to determine
trivial packages.

4 How Prevalent are Trivial Packages?

In this section, we want to know how prevalent trivial packages are. We examine prevalence
from two aspects: the first aspect is from package management platforms (npm and PyPI)
perspective, where we are interested in knowing how many of the packages on these two

Empirical Software Engineering (2020) 25:1168–12041174



package management platforms are trivial. The second aspect considers the use of trivial
packages in JavaScript and Python applications.

To identify trivial packages in our two datasets, we calculate the LOC and complexity of
all the npm and PyPI packages. For the LOC, we calculate the number of lines of source
code after removing white space and source code comments. As for the complexity, we
use McCabe’s complexity since it is widely used in industry and academia (Ebert and Cain
2016). Then, for each package, we removed test code since we are mostly interested in the
actual source code of the packages. To identify and remove the test code, similar to prior
work (Gousios et al. 2014; Tsay et al. 2014; Zhu et al. 2014), we look for the term “test” (and
its variants such as ’tests’ and/or ’TEST code’) in the file names and file paths. To calculate
the LOC and the complexity of every package in our datasets, we use the Understand tool
by SciTools (https://scitools.com/). Understand is a source code analysis tool that provides
various code metrics and has been extensively used in other work (e.g., Rahman et al. 2019;
Castelluccio et al. 2019).

4.1 HowMany of npm’s & PyPI ’s Packages are Trivial?

npm: We use the two measures, LOC and complexity, to determine trivial packages,
which we now use to quantify the number of trivial packages in our dataset. Our dataset
contained a total of 549,629 npm packages. For each package, we calculated the num-
ber of JavaScript code lines and removed packages that had zero LOC, which removed
48,628 packages. We eliminated npm packages that have zero LOC since they present
dummy or empty packages that developers publish for different reasons such as reserve
a unique package name. This left us with a final number of 501,001 packages.

Out of the 501,001 npm packages we mined, 80,232 (16.0%) packages are trivial pack-
ages. In addition, we examined the growth of trivial packages in npm. Figure 2 shows the
percentage of trivial to all packages published on npm per month. We see an increasing trend
in the number of trivial packages published over time before the growth of trivial packages
became stable around the beginning of 2015. Overall, approximately 14.0% of the pack-
ages added every month are trivial packages. We investigated the spike around March 2016
and found that this spike corresponds to the time when npm disallowed the un-publishing of
packages (npm Blog 2016).

Before the

left−pad incident

After the

left−pad incident

0

5

10

15

20

25

2011 2012 2013 2014 2015 2016 2017

%
 o

f 
T
r
iv

ia
l 
to

 A
ll
 P

a
c
k
a

g
e

s
 P

u
b
li
s
h

e
d

 o
n
 
n

p
m

Fig. 2 Percentage of published trivial packages on npm. The dashed vertical line represents the date when
the left-pad incident happened in npm package management platform

Empirical Software Engineering (2020) 25:1168–1204 1175

https://scitools.com/


In addition, to see the effect of the left-pad incident on the number of published trivial
packages, we investigate the number of published trivial npm packages before and after the
left-pad incident. Out of 216,309 npm packages that published before the left-pad incident,
we found 34,750 (16.1%) are trivial packages. As after the left-pad incident, out of the
284,692 that are published, we found 45,482 (16.0%) are trivial packages.

PyPI: For the PyPI dataset, we are also interested in discerning the trivial packages from
the others in terms of LOC and complexity. For such, we mined the 116,905 available
packages on the PyPI platform. We got all the 116,905 packages from PyPI register.
However, a package on PyPI could be released/distributed in different formats and we
were not able to process them. We found that 42,242 of PyPI packages are platform
exclusive (e.g., windows .exe or mac .dmg) or are corrupted compressed .gz files that
we could not analyzed. This process left us with 74,663 PyPI packages for which we
measure their LOC and complexity. We then remove packages that had zero LOC, which
removed another 10,751 packages. We remove packages that had zero LOC since we do
not want to count empty packages that exist on PyPI for various reasons such as learning
to publish packages on PyPI.

Our analysis reveals that out of the 63,912 PyPI packages we analyzed, 6,759 (10.6%)
packages are trivial packages in the PyPI package management platform. We again exam-
ined the growth of trivial packages in PyPI. Figure 3 shows the percentage of trivial to all
packages published on PyPI per month for the time period between 2011 and 2017. We see
there is a slight increase in the trend of publishing trivial packages on the PyPI platform
and that trend starts to decrease in late 2013. We also found that approximately 11% of the
packages added every month are trivial packages.

We also looked at the percentage of trivial to all packages publish before and after the
left-pad incident. We found that out of 33,335 PyPI package published prior to the left-pad
incident, 3,717 (11.2%) of them are trivial packages while 3,042 (10.0%) of all packages
published after the left-pad incident are trivial.

Before the
left−pad incident

After the
left−pad incident

5

10

15

2011 2012 2013 2014 2015 2016 2017

%
 o

f T
riv

ia
l t

o 
Al

l P
ac

ka
ge

s 
Pu

bl
is

he
d 

on
 P

yP
I

Fig. 3 Percentage of Published Trivial Packages on PyPI. The dashed vertical line represents the date when
the left-pad incident happened in npm package management platform

Empirical Software Engineering (2020) 25:1168–12041176



4.2 HowMany Applications Depend on Trivial Packages?

JavaScript Applications: Just because trivial packages exist on npm, it does not mean
that they are actually being used. We also examine the number of applications that use
trivial packages. To do so, we examine the package.json file, which contains all the
dependencies that an application installs from npm. However, in some cases, an applica-
tion may install a package but not use it. To avoid counting such instances, we parse the
JavaScript code of all the examined applications and use regular expressions to detect
the required dependency statements, which indicates that the application actually uses
the package in its code2. Finally, we measured the number of packages that are triv-
ial in the set of packages used by the applications. Note that we only consider npm
packages since it is the most popular package manager for JavaScript packages and
other package managers only manage a subset of packages (e.g., Bower (2012) only
manages front-end/client-side frameworks, libraries and modules). We find that of the
38,807 applications in our dataset, 10,139 (26.1%) directly depend on at least one trivial
package.

Python Applications: Similar to the case of JavaScript, we also analyzed the Python
applications that depend on trivial packages. In contrast to JavaScript’s availability
of a ‘packages.json’ file, analyzing Python applications presents some challenges to
fully identify a given script’s dependency set for the reasons described previously on
Section 4.1. We statically parse the source code after relevant “import” like clauses, along
with other statements that allow for verifying that the packages are effectively being put
in use (i.e., the package is both supposed to be installed and its functions/definitions
are indeed being called, rather than merely being just imported and not used). To facil-
itate this analysis, we use the popular snakefood (http://furius.ca/snakefood/) tool.
The tool generates dependency graphs from Python code through parsing the Abstract
Syntax Tree of the Python files. Our analysis showed that out of the 14,717 examined
Python applications, 1,024 (6.9%) were found to depend on one or more trivial PyPI
package.

5 Survey Results

We surveyed developers to understand the reasons for and the drawbacks of using trivial
packages. We used a survey because it allows us to obtain first-hand information from the
developers who use these trivial packages. In order to select the most relevant participants,
we sent out the survey to developers who use trivial packages. We used Git’s pickaxe
command on the lines that contain the required dependency statements in the JavaScript and
Python applications. Doing so helped us identify the name and email of the developer who
introduced the trivial package dependency.

2Note that if a package is required in the application, but does not exist, it will break the application.

Empirical Software Engineering (2020) 25:1168–1204 1177

http://furius.ca/snakefood/


Survey Participants: To mitigate the possibility of introducing misunderstood or mis-
leading questions, we initially sent the survey to two developers and incorporated their
minor suggestions to improve the survey. For npm participants, we sent the survey to
1,055 JavaScript developers from 1,696 applications. To select the developers, we ranked
them based on the number of trivial packages they use. We then took a sample of 600
developers that use trivial packages the most, and another 600 of those that indicated
the least use of trivial packages. The survey was emailed to the 1,200 selected develop-
ers, however, since some of the emails were returned for various reasons (e.g., the email
account does not exist anymore, etc.), we could only reach 1,055 developers. We also sent
the survey to all Python developers after filtering out the invalid and duplicated devel-
opers’ emails. We successfully sent the survey to 460 Python developers that introduce
trivial Python packages from PyPI in 1,024 Python applications in our dataset.

We designed the survey using Google Forms. The survey listed the trivial package and
the application that we detected the trivial package in. In total, we received 125 developer
responses. First, we received 88 responses to our survey from the JavaScript developers,
which translates to a response rate of 8.3%. Our survey response rate is higher than the typ-
ical 5% response rate reported in questionnaire-based software engineering surveys (Singer
et al. 2008). The left part of Table 2 show the JavaScript experience and the position of the
developers. The majority (67) of the respondents have more than 5 years of experience, 14
have between 3-5 years and 7 have 1-3 years of experience. As for the position of the sur-
vey respondents, of the 88 respondents, 83 of them identified as developers working either
in industry (68) or as full time independent developers (15). The remaining 5 identified as
being casual developers (2) or other (3), including one student and two developers working
in executive positions at npm.

Second, we received 37 survey responses from the Python developers, yielding a
response rate of 8.04%, which is again in accordance with what is supposedly been observed
on other studies in the software engineering domain (Singer et al. 2008). The right part of
Table 2 shows the Python experience and position of the developers. The vast majority of the
respondents (92%) identified themselves to have more than five years of Python develop-
ment experiences. 3 respondents only identified themselves to have development experience
in Pythons range between more than 3 to five years. Regarding the current position of the
survey respondents, 27 of the respondents refer themselves as developers working in indus-
try and 4 developers identified themselves as full time independent developers. The reset
of the respondents are identified as being a casual developers (1) or other (5) including
researchers and students.

Table 2 Development experience and position of survey respondents

npm PyPI

Experience # Developers’ # Experience # Developers’ #

in JavaScript Position in Python Position

1 - 3 years 7 Industrials 68 1 - 3 years 0 Industrials 27

> 3 - 5 years 14 Independent 15 > 3 - 5 years 3 Independent 4

> 5 years 67 Casual 2 > 5 years 34 Casual 1

– – Other 3 – – Other 5

Total 88 Total 88 Total 37 Total 37

Empirical Software Engineering (2020) 25:1168–12041178



The fact that most of the respondents are experienced JavaScript and Python developers
gives us confidence in our survey responses.

5.1 Do Developers Consider Trivial Packages Harmful?

The first question of our survey to the participants is: “Do you consider the use of triv-
ial packages as bad practice?” Thereason to ask this question so bluntly is that it allows
us to gauge, in a very deterministic way, how the developers felt about the issue of using
trivial packages. We provided three possible replies, Yes, No or Other in which case they
were provided with a text box to elaborate. Figure 4 shows the distribution of responses
from both JavaScript and Python developers. Of the 88 JavaScript participants, 51 (57.9%)
stated that they do NOT consider the use of trivial packages as bad practice. Another 21
(23.9%) stated that they indeed think that using trivial package is a bad practice. The
remaining 16 (18.2%) stated that it really depends on the circumstances, such as the time
available, how critical a piece of code is, and if the package used has been thoroughly
tested.

Contrary to the case of JavaScript, 26 (70.3%) of the Python developers who responded
to our survey generally consider the use of trivial packages as bad practice. Only 3 (8.1%)
of survey participants stated that they do not think that using trivial package is a bad prac-
tice. The remaining 8 (21.6%) indicate that it really depends on the circumstances. For
example, P-PyPI 3 states: “If the language doesn’t provide such common, inherently useful
functionality then fixing this oversight by the use of a third-party library is only reason-
able. Moreover, little functionality is actually ‘trivial’. It may be short to implement but
most likely a mistake in it will introduce a bug into the program as surely as a mistake in
something ‘non-trivial’.”

23.9%

57.9%

18.2%

70.3%

8.1%

21.6%

0%

20%

40%

60%

80%

Yes No Other

JavaScript Python

Fig. 4 Developer responses to the question “is using a trivial package bad?” Most JavaScript developers
answered no, whereas most Python developers answered yes

Empirical Software Engineering (2020) 25:1168–1204 1179



5.2 Why Do Developers Use Trivial Packages?

While we have answered the question as to whether developers say using trivial packages
is a bad practice, what we are most interested in is why do developers resort to using trivial
packages and what do they view as the drawbacks of using trivial packages. Therefore, the
second part of the survey asks participants to list the reasons why they resort to using trivial
packages. To ensure that we do not bias the responses of the developers, the answer fields
for these questions were in free-form text, i.e., no predetermined suggestions were provided.
We then analyze separately the responses from the two surveys (JavaScript and Python).
After gathering all of the responses, we grouped and categorized the responses in a two-
phase iterative process. In the first phase, two of the authors carefully read the participant’s
answers and independently came up with a number of categories that the responses fell
under. Next, they discussed their groupings and agreed on the extracted categories. When-
ever they failed to agree on a category, the third author was asked to help break the tie. Once
all of the categories were decided, the same two authors went through all the answers again
and independently classified them into their respective categories. For the majority of the
cases, the two authors agreed on most categories and the classifications of the responses. To
measure the agreement between the two authors, we used Cohen’s Kappa coefficient (Cohen
1960). The Cohen’s Kappa coefficient has been used to evaluate inter-rater agreement lev-
els for categorical scales, and provides the proportion of agreement corrected for chance.
The resulting coefficient is scaled to range between -1 and 1, where a negative value means
less than chance agreement, zero indicates exactly chance agreement, and a positive value
indicates better than chance agreement (Fleiss and Cohen 1973). In our categorization, the
level of agreement measured between the authors was of 0.90 and 0.83 for the npm survey
and PyPI survey, respectively, which is considered to be excellent inter-rater agreement.

Table 3 shows the reasons for using trivial packages, as reported by respondents from
both JavaScript and Python surveys. As we can see from the table, the twomost cited reasons

Table 3 Reasons for using trivial packages in npm and PyPI

Reason Description npm PyPI

#Resp. % #Resp. %

Well-implemented & tested Participants state that trivial pack-
ages are effectively implemented
and tested.

48 54.6% 20 54.1%

Increased productivity Trivial packages reduce the time
needed to implement existing
source code.

42 47.7% 12 32.4%

Well-maintained code It eases source code maintenance,
since other developers maintain the
trivial package.

8 9.1% 2 5.4%

Improved readability
& reduced complexity

Using trivial packages improve the
source code quality in terms of
readability and reduce complexity.

8 9.1% 5 13.5%

Better performance Trivial packages improve the per-
formance of web applications com-
pared to the use of large frame-
works.

3 3.4% 0 0.0%

No reason – 7 8.0% 7 18.9%

Empirical Software Engineering (2020) 25:1168–12041180



(i.e., well-implemented & tests and increased productivity) are the same for both npm and
PyPI package management platforms. However, when it comes to the 3 less common rea-
sons, there is a slight difference between npm and PyPI, most notably, the reason of trivial
packages provide better performance was not evident in our survey.

Next, we discuss each of the reasons presented in Table 3 in more detail:

R1. Well-implemented & tested: The most cited reason for using trivial packages is
that they provide well implemented and tested code. More than half of the responses
mentioned this reason with 54.6% and 54.1% of the responses from JavaScript and
Python, respectively. In particular, although it may be easy for developers to code
these trivial packages themselves, it is more difficult to make sure that all the details
are addressed, e.g., one needs to carefully consider all edge cases. Some example
responses that mention these issues are stated by participants P-npm 68, P-npm 4,
and P-PyPI 5, who cite their reasons for using trivial packages as follows: P-npm 68:
“Tests already written, a lot of edge cases captured [...].”, P-npm 4: “There may be
a more elegant/efficient/correct/cross-environment-complatible solution to a trivial
problem than yours”, and P-PyPI 5: “They have covered extra cases that I would not
do or thought initially.”

R2. Increased productivity: The second most cited reason is the improved productivity
that using trivial packages enables with 47.7% and 32.4% for JavaScript and Python,
respectively. Trivial tasks or not, writing code on your own requires time and effort,
hence, many developers view the use of trivial packages as a way to boost their pro-
ductivity. In particular, early on in a project, a developer does not want to worry about
small details, they would rather focus their efforts on implementing the more difficult
tasks. For example, participants P-npm 13 and P-npm 27 from the JavaScript survey
state: P-npm 13: “[...] and it does save time to not have to think about how best to
implement even the simple things.” & P-npm 27: “Don’t reinvent the wheel! if the
task has been done before.”. Another example from the Python survey, participant P-
PyPI 17 states: “Often I do write the code myself. And then package it into a re-usable
module so that I don’t have to write it again later. And again. And again... At this
point, whether the module is authored by myself or someone else is mostly irrelevant.
What’s relevant is that I get to avoid repeatedly implementing the same functionality
for each new project.”

The aforementioned are clear examples of how developers would rather not code
something, even if it is trivial. Of course, this comes at a cost, which we discuss
later.

R3. Well-maintained code: A less common (9.1% and 5.4% of the responses from
JavaScript and Python), but cited reason for using trivial packages is the fact that the
maintenance of the code need not to be performed by the developers themselves; in
essence, it is outsourced to the community or the contributors of the trivial packages.
For example, participants P-npm 45 and P-PyPI 1 states, P-npm 45: “Also, a highly
used trivial package is probable to be well maintained.” and P-PyPI 1: “The sim-
ple advantages are that they may be trivial AND used by many people and therefore
potentially maintained by developers.” Even tasks such as bug fixes are dealt with by
the contributors of the trivial packages, which is very attractive to the users of the triv-
ial packages, as reported by participant P-npm 80: “[...], leveraging feedback from a
larger community to fix bugs, etc.”

R4. Improved readability & reduced complexity: Participants also reported that using
trivial packages improves the readability and reduces the complexity of their code

Empirical Software Engineering (2020) 25:1168–1204 1181



with 9.1% and 13% responses for the two package management platforms. For
example, P-npm 34 states: “immediate clarity of use and readability for other devel-
opers for commonly used packages[...]” & P-npm 47 states: “Simple abstract brings
less complexity.” Python developers report the same advantage of using trivial pack-
ages. For example, P-PyPI 5 states that “Code clarity. When many two liners become
one liners it saves space. Its the whole point of batteries included mentally...”

R5. Better performance: A few of the JavaScript participants (3.4%) stated that using
trivial packages improves performance since it alleviates the need for their appli-
cation to depend on large frameworks. Notably, the load time of trivial packages
compared to larger JavaScript packages is small, which speeds up the overall load
time of the applications. For example, P-npm 35 states: “[...] you do not depend on
some huge utility library of which you do not need the most part.” While JavaScript
developers reported that trivial packages improve the performance, the Python devel-
opers do not report such a claim. One explanation for this is that JavaScript is used
to develop front-end applications, which is often sensitive to performance i.e., load
time, whereas the Python is used to implement applications in a wide variety of
domains.

Overall the developer responses show that there is a different perception of using trivial
package among developers from the two package management platforms. Only a small
percentage (8.0%) of the respondents from JavaScript stated that they do not see a reason
to use trivial packages. However, for Python developers 18.9% of the respondents believe
that there are no advantages of using trivial packages.

5.3 Drawbacks of Using Trivial Packages

In addition to knowing the reasons why developers resort to trivial packages, we wanted
to understand the other side of the coin - what they perceive to be the drawbacks of their
decision to use these packages. The drawbacks question was part of our survey and we
followed the same aforementioned process to analyze the survey responses. In the case of
the drawbacks the Cohen’s Kappa agreement measure was 0.86 and 0.91 for npm and PyPI,
respectively, which is considered to be an excellent agreement.

Table 4 lists the drawback mentioned by the survey respondents along with a brief
description and the frequency of each drawback. As we can see from the table, the top
two most cited drawbacks (i.e., dependency overhead and breakage of applications) are the
same for both, npm and PyPI. However, for the less cited drawbacks, npm developers cited
performance, development slow down and missed learning opportunities as the next set of
drawbacks, whereas in PyPI, the developers consider security, development slow down and
decreased performance as the next set of drawbacks. It is worth noting however that there
is very little difference between the individual drawbacks (e.g., security vs. development

Empirical Software Engineering (2020) 25:1168–12041182



Table 4 Drawback of using trivial packages in npm and PyPI

Drawback Description npm Python

#Resp. % #Resp. %

Dependency overhead Using trivial packages results in a
dependency mess that is hard to
update and maintain.

49 55.7% 25 67.6%

Breakage of applications Depending on a trivial package
could cause the application to break
if the package becomes unavailable
or has a breaking update.

16 18.2% 12 32.4%

Decreased performance Trivial packages decrease the per-
formance of applications, which
includes the time to install and
build the application.

14 15.9% 3 8.1%

Slows development Finding a relevant and high quality
trivial package is a challenging and
time consuming task.

11 12.5% 4 10.8%

Missed learning
opportunities

The practice of using trivial pack-
ages leads to developers not learn-
ing and experiencing writing code
for trivial tasks.

8 9.1% 0 0%

Security Using trivial packages can open a
door for security vulnerability.

7 8.0% 5 13.5%

Licensing issues Using trivial packages could cause
licensing conflicts.

3 3.4% 2 5.4%

No drawbacks – 7 8.0% 3 8.1%

slow down) within the two package management platforms (i.e., npm and PyPI). Next, we
discuss each of the drawbacks in more detail:

D1. Dependency overhead: The most cited drawback of using trivial packages is the
increased dependency overhead, e.g., keeping all dependencies up to date and dealing
with complex dependency chains, that developers need to bear (Bogart et al. 2016;
Mirhosseini and Parnin 2017). This situation is often referred to as ‘dependency hell’,
especially when the trivial packages themselves have additional dependencies. This
drawback came through clearly in many comments, which account for 55.7% of the
responses form JavaScript developers. For example, P-npm 41 states: “[...] people
who don’t actively manage their dependency versions could [be] exposed to seri-
ous problems [...]” & P-npm 40: “Hard to maintain a lot of tiny packages”. For
Python developers, the percentage of responses related to dependency overhead is
high (67.6%) as well. Some example responses from Python developers that mention
these issues are stated by participants P-PyPI 2, P-PyPI 4 & P-PyPI 13 who state
that: P-PyPI 2: “...it’s more difficult to distribute something with a dependency that
doesn’t come with Python.”, P-PyPI 4: “Lots of brittle dependencies.” & P-PyPI 13:
“When your projects consist of a lot trivial modules, it becomes almost impossible to
track their update and some time you might forget what even they do.” Hence, while
trivial packages may provide well-implemented/tested code and improve productiv-
ity, developers are clearly aware that the management of the additional dependencies
is something they need to deal with.

Empirical Software Engineering (2020) 25:1168–1204 1183



D2. Breakage of applications: Developers also worry about the potential breakage
of their application due to a specific package or version becoming unavailable.
JavaScript developers stated this issue in 18.2% of the responses while the percentage
is 32.4% for Python developers. For example, in the left-pad issue, the main reason
for the breakage was the removal of left-pad, P-npm 4 states: “Obviously the whole
’left-pad crash’ exposed an issue”& P-PyPI 22 states: “potential for breaking (NPM
leftpad situation)”. However, since that incident, npm has disabled the possibility of
a package being removed (npm Blog 2016). Although disallowing the removal solves
part of the problem, packages can still be updated, which may break an application.
This issue was clear from one of the responses, P-PyPI 7, who stated “Potential for
breaking changes from version to version.” For a non-trivial package, it may be worth
it to take the risk, however, for trivial packages, it may not be worth taking such a risk.

D3. Decreased performance: This issue is related to the dependency overhead drawback.
Developers mentioned that incurring the additional dependencies slowed down the
build and run time and increased application installation times (15.9% and 8.1%). For
example, P-npm 64 states: “Too many metadata to download and store than a real
code.”& P-npm 34 states: “[...], slow installs; can make project noisy and unintuitive
by attempting to cobble together too many disparate pieces instead of more targeted
code.” Another Python developer ,P-PyPI 1, states: “If the modules are not so ubiq-
uitous, then needing the dependency is a real drag as one will have to install it. Also,
the same job done with your own may run much faster and be easier to understand.
As mentioned earlier, in some cases it is not just the fact that the trivial package
adds a dependency, but in some cases the trivial package itself depends on additional
packages, which negatively impacts performance even further.

D4. Slows development: In some cases, the use of trivial packages may actually have a
reverse effect and slow down development with 12.5% & 10.8% of responses from
JavaScript and Python developers. For example, as P-npm 23 and P-npm 15 state: P-
npm 23: “Can actually slow the team down as, no matter how trivial a package, if
a developer hasn’t required it themselves they will have to read the docs in order to
double check what it does, rather than just reading a few lines of your own source.”&
P-npm 15: “[...], we have the problem of locating packages that are both useful and
“trustworthy” [...]”. It can be difficult to find a relevant and trustworthy package.
Even if others try to build on your code, it is much more difficult to go fetch a package
and learn it, rather than read a few lines of your code. Python developers also agree on
this issue, for example P-PyPI 15 states “If finding, reading, and understanding the
documentation of a module takes longer than reading its implementation, the hiding
of functionality in third-part trivial modules obscures the source base.”

D5. Missed learning opportunities: In certain cases reported by only JavaScript devel-
opers (9.1%), the use of these trivial packages is seen as a missed learning opportunity
for developers. For example, P-npm 24 states: “Sometimes people forget how to
do things and that could lead to a lack of control and knowledge of the lan-
guage/technology you are using”. This is a clear example of where just using a
package, rather than coding the solution yourself, will lead to less knowledge about
the code base. In contrast to JavaScript developers, Python developers seem to not to
be worried about this issue since the use of trivial packages is not as common within
the Python developer community as JavaScript developers.

D6. Security: In some cases the trivial packages may have security flaws that make
the application more vulnerable. This is an issue pointed out by a few developers
(8.0% and 13.5%), for example, as P-npm 15 mentioned earlier, it is difficult to find

Empirical Software Engineering (2020) 25:1168–12041184



packages that are trustworthy. Also, P-npm 57 mentions: “If you depend on public
trivial packages then you should be very careful when selecting packages for security
reasons” & P-PyPI 3 states “more dependencies, greater likelihood of not knowing
of how code actually works at lower level, security issues.” As in the case of any
dependency one takes on, there is always a chance that a security vulnerability could
be exposed in one of these packages.

D7. Licensing issues (3.4%): In some cases from both responses (3.4% and 5.4% for
JavaScript and Python), developers are concerned about potential licensing conflicts
that trivial packages may cause. For example, P-npm 73 states: “[...], possibly license-
issues”, P-npm 62: “[...], there is a risk that the ‘trivial’ package might be licensed
under the GPL must be replaced anyway prior to shipping.” P-PyPI 23 also mentions
“Can be licensing hell.”

In general, we observe similar concerns regarding the use of trivial packages in the
two software managements platforms studied. There were also approximately 8% of the
responses in both package management platforms that stated they do not see any drawbacks
with using trivial packages.

6 Putting Developer Perceptions Under theMicroscope

The developer surveys provided us with valuable insights on why developers use trivial
packages and what they perceive to be their drawbacks. Whether there is empirical evidence
to support their perceptions remains unexplored. Thus, we examine the most commonly
cited reason for using trivial packages, i.e., the developers’ belief that trivial packages are
well tested, and drawback, i.e., the impact of additional dependencies, based on our findings
in Section 5.

6.1 Examining the ‘Well Tested’ Perception

As shown in Table 3, more than half of the responses from the studied package management
platforms indicate that they use trivial packages because developers believe that they are
well implemented and tested. However, is this really the case - are trivial packages really
well tested? In this section, we want to examine whether this belief has any grounds or not.

6.1.1 Node Package Manager (npm)

npm requires that developers provide a test script name with the submission of their pack-
ages (listed in the package.json file). In fact, 73.7% (59,110 out of 80,232) of the trivial
packages in our dataset have some test script name listed. However, since developers can
provide any script name under this field, it is difficult to know if a package is actually tested.

We examine whether a npm package is really well tested and implemented from two
aspects; first, we check if a package has tests written for it. Second, since in many cases,
developers consider packages to be ‘deployment tested’, which means that the trivial

Empirical Software Engineering (2020) 25:1168–1204 1185



packages are used by many developers, we also consider the usage of a package as an
indicator of it being well tested and implemented (Zambonini 2011). To carefully examine
whether a package is really well tested and implemented, we use the npm online search tool
(known as npms (Cruz and Duarte 2017)) to measure various metrics related to how well the
packages are tested, used and valued. To provide its ranking of the packages, npms mines
and calculates a number of metrics based on development (e.g., tests) and usage (e.g., no.
of downloads) data. We use three metrics measured by npms to validate the ‘well tested and
implemented’ perception of developers, which are3:

1) Tests: considers the tests’ size, coverage percentage and build status for a project. We
looked into the npms source code and found that the Tests metric is calculated as:
testsSize ∗ 0.6 + buildStatus ∗ 0.25 + coverageP ercentage ∗ 0.15. We use the
Tests metric to determine if a package is tested and how trivial packages compare to
non-trivial packages in terms of how well tested they are. One example that motivates
us to investigate how well tested a trivial package is the response by P-npm 68, who
says: “Tests already written, a lot edge cases captured [...]”.

2) Community interest: evaluates the community interest in the packages, using the num-
ber of stars on GitHub & npm, forks, subscribers and contributors. Once again, we find
through the source code of npms that Community interest is simply the sum of the afore-
mentioned metrics, measured as: starsCount + f orksCount + subscribersCount

+ contributorsCount . We use this metric to compare how interested the community
is in trivial and non-trivial packages. We measure the community interest since devel-
opers view the importance of the trivial packages as evidence of its quality as stated by
P-npm 56, who says: “[...] Using an isolated module that is well-tested and vetted by
a large community helps to mitigate the chance of small bugs creeping in.”

3) Download count: measures the mean downloads for the last three months. Again, the
number of downloads of a package is often viewed as an indicator of the package’s
quality; as P-npm 61 mentions: “this code is tested and used by many, which makes it
more trustful and reliable”.

As an initial step, we calculate the number of trivial packages that have a T ests value
greater than zero, which means trivial packages that have some tests. We find that only
28.4% of the trivial packages have tests, i.e., a T ests value > 0. In addition, we compare
the values of the Tests, Community interest and Download count for Trivial and non-Trivial
packages. Our focus is on the values of the aforementioned metric values for trivial pack-
ages, however, we also present the results for non-trivial packages to put our results in
context.

Figure 5 shows the bean-plots for the Tests, Community interest and Download count.
In all cases trivial packages have, on median, a smaller Community interest value and
Download count compared to non-trivial packages except for the Tests value. The Fig. 5a
shows that for the Tests metric, trivial packages have, on median, a similar value as non-
trivial packages. That said, we observe from Fig. 5a that the distribution of the Tests
metric is similar for both, trivial and non-trivial packages. Most packages have a Tests
value of zero, then there are small pockets of packages that have values of aprox. 0.30,

3It is important to note that the motivation and full derivation (e.g., why they put a weight of 0.15 on the
test coverage, etc.) of the metrics is beyond the scope of this paper. We refer interested readers to the npms
documentation for more details (Cruz and Duarte 2017). To make our paper self-sufficient, we include how
the metrics are calculated here.

Empirical Software Engineering (2020) 25:1168–12041186



Fig. 5 Distribution of Tests, Community Interest and Download Count Metrics for npm package management
platform

0.6, 0.9 and 1.0. In the case of the Community interest and Download count metrics, once
again, we see similar distributions, although clearly the median values are lower for trivial
packages.

To examine whether the difference in metric values between trivial and non-trivial pack-
ages is statistically significant, we performed a Mann-Whitney test to compare the two
distributions and determine if the difference is statistically significant, with a p-value
< 0.05. We also use Cliff’s Delta (d), which is a non-parametric effect size measure to
interpret the effect size between trivial and non-trivial packages. As suggested in Grissom
and Kim (2005), we interpret the effect size value to be small for d < 0.33 (positive as well
as negative values), medium for 0.33 ≤ d < 0.474 and large for d ≥ 0.474.

Table 5 shows the p-values and effect size values. We observe that in all cases the
differences are statistically significant, however, the effect size is small. The results show
that although the majority of trivial packages do not have tests written for them, and have
statistically lower Community interest and Download count values, their effect size is
smaller than non-trivial packages.

6.1.2 Python Package Index (PyPI )

Since PyPI does not collect any metadata to show if the Python package is tested or not,
we use other data sources to examine the well tested perception. To do so, we use two ways
to examine whether Python packages are tested or not: 1) we use the source code of the
packages that are hosted on GitHub. 2) we relied on information about Python packages

Table 5 Mann-Whitney Test
(p-value) and Cliff’s Delta (d)
for trivial vs. non trivial packages
in npm

Metrics p-value d

Tests 2.2e-16 −0.222 (small)

Community interest 2.2e-16 −0.225 (small)

Downloads count 2.2e-16 −0.261 (small)

Empirical Software Engineering (2020) 25:1168–1204 1187



collected by the open source service libraries.io (https://libraries.io/). libraries.io monitors
and collects the metadata of open source packages across 36 different package management
platforms. It falls under the CC-BY-SA 4.0 licenses and has been used in other research
work (e.g,. Decan et al. 2018a, b). We obtain the extracted metadata information related
to PyPI package management. Once again, we examine the testing perception in three
complementary ways.

1) Tests: we examine if the package has any test code written. Since there is no standard
way to determine that a Python application has tests (e.g,. there exist more than 100
Python testing tools (https://wiki.python.org/moin/PythonTestingToolsTaxonomy)),
we manually investigate whether the PyPI package contains test code written or not.
The idea is that if the developers writes tests, then they will put these tests in the pack-
age repository. One example that motivated us to look for the test code of a package is
the developer response: P-PyPI 11 who stated “Shorter code overall, well-tested code
for fundamental tasks helps smooth over language nits”.

Since this is a heavily manual process, we decide to examine a representative sample
of the packages. Therefore, we take a statistically significant sample from the 6,759
Python packages that we identify as trivial Python packages (Section 4.1). The sample
size is selected randomly to attain 5% confidence interval and a 95% confidence level.
This sampling process result in 364 PyPI trivial packages. Then, two of the authors
manually examine the code bases of sampled packages looking for test code to identify
the packages that has test. After that, we measure Cohen’s Kappa coefficient to evaluate
the level of agreement between the two annotators (Cohen 1960). As a result of this
process, we find that the level of agreement between the two authors to be 0.97, which
is consider to be excellent agreement. Finally, the two authors discuss the cases that
they do not agree on and come to an agreement.

2) Community interest: evaluates the community interest in the packages, using the num-
ber of stars on GitHub, forks, subscribers and contributors. We adopted the same for-
mula defined by npms, which is basically the sum of the aforementioned metrics, mea-
sured as: starsCount + f orksCount + subscribersCount + contributorsCount .
We use this metric to compare how interested the community is in trivial and non-trivial
packages. We measure the community interest since developers view the importance of
the trivial packages as evidence of its quality.

3) Usage count: represents the number of applications that use a package. The more
applications using a Python package, the more popular that package is. This may also
indicate that the package is of high quality. For example, P-PyPI 11 indicated “The
simple advantages are that they may be trivial AND used by many people and there-
fore potentially maintained by developers.”Hence, we use the usage count metric since
it indicates the package quality; thus, many developers use it in their applications. To
calculate the number of Python applications that use PyPI trivial packages, we use the
libraries.io dataset that provides a list of Python applications and the packages they
depend on. Also, for each PyPI package in our dataset, we count the number of Python
applications that use that package.

We found that out of the 364 sampled trivial Python packages that we manually exam-
ined, 185 (50.82%) packages do not have test code in them, while 179 (49.18%) of the
examined packages have test code written in them. It is important to note that our analysis
only examines whether a trivial package has tests or not, whether these tests are actually
effective is a completely different issue and is one of the reasons for examining the other
two metrics Community interest and Usage count.

Empirical Software Engineering (2020) 25:1168–12041188

https://libraries.io/
https://wiki.python.org/moin/PythonTestingToolsTaxonomy


Figure 6 shows the bean-plots for the Community interest and Usage count values for
trivial and non-trivial Python packages in our dataset. The figures show that in the two
cases trivial Python packages have, on median, a smaller Community interest value and
Usage count compared to non-trivial packages. That said, we observe from Fig. 6a that
in the case of the Community interest metric, we see clearly the median values are lower
for trivial packages. Figure 6b shows that the distribution of the Usage count metric is
similar for both, trivial and non-trivial packages. Once again, we examine whether the
difference in metric values between trivial and non-trivial packages is statistically signifi-
cant. We performed a Mann-Whitney test to compare the two distributions and determine
if the difference is statistically significant. We also use Cliff’s Delta (d) to measure the
effect size between PyPI trivial and non-trivial packages. Table 6 shows the p-values and
effect size values. We observe that in the cases of community interest and usage count,
the differences are statistically significant, and the effect size is small and negligible,
respectively.

6.2 Examining the ‘Dependency Overhead’ Perception

As discussed in Section 5, the top cited drawback of using trivial packages is that developers
need to take on and maintain extra dependencies, i.e, dependency overhead. Examining the
impact of dependencies is a complex and well-studied issue (e.g,. de Souza and Redmiles
2008; Decan et al. 2016; Abate et al. 2009) that can be examined in a multitude of ways.
We choose to examine the issue from both, the application and the package perspectives.

6.2.1 Application-level Analysis

When compared to coding trivial tasks themselves, using a trivial package imposes
extra dependencies. One of the most problematic aspects of managing dependencies for

Fig. 6 Distribution of Community Interest and Usage Count Metrics for PyPI package management platform

Empirical Software Engineering (2020) 25:1168–1204 1189



Table 6 Mann-Whitney Test
(p-value) and Cliff’s Delta (d)
for trivial vs. non trivial packages
in PyPI

Metrics p-value d

Community interest 2.2e-16 −0.251 (small)

Usage count 0.004557 −0.039 (negligible)

applications is when these dependencies are updated, causing a potential to break their
application. Therefore, as a first step, we examined the number of releases for trivial and
non-trivial packages. The intuition here is that developers need to put in extra effort to
ensure the proper integration of new releases. The bean-plots in Figs. 7 & 8 show the distri-
bution of the number of releases for our studied package management platforms. Figure 7a
shows that trivial packages on npm have less releases than non-trivial packages (median
is 1 for trivial and 2 for non-trivial packages). However, when we examine the number
of different release types, we found that trivial and non-trivial npm packages have simi-
lar numbers of minor and major releases (Fig. 7c & b). As for the patch releases, trivial
npm packages have less patch releases. In Fig. 8a, we also observe that trivial packages
on PyPI have less releases than non-trivial packages. We again examine the number of
releases of PyPI packages based on the release type. Figures 8b, c, and d show the distri-
bution of minor, major, and patch releases for trivial and non-trivial PyPI packages. From
Fig. 8b and c, we do not see any difference between trivial and non-trivial packages for
the minor and major releases. As for the patch releases, we observe that trivial PyPI pack-
ages have a smaller number of patch releases. The fact that the trivial packages are updated
less frequently may be attributed to the fact that trivial packages ‘perform less function-
ality’, hence they need to be updated less frequently. In addition, to examine whether the
differences in the distribution of the type of releases between trivial and non-trivial pack-
ages are statistically significant, we performed a Wilcox test. We also use Cliff’s Delta
(d) to examine the effect size. Table 7 shows the p-values and the effect size for all the
releases types for npm and PyPI. It shows that for all the releases types the differences are
statistically significant, having p-values < 0.05. Also, the effect size values are small or
negligible.

Next, we examined how developers choose to deal with the updates of trivial packages.
One way that application developers reduce the risk of a package impacting their appli-
cation is to ‘version lock’ the package. For example in the JavaScript application that use
npm packages, version locking a dependency/package means that it is not updated auto-
matically, and that only the specific version mentioned in the packages.json file is used. As
stated in a few responses from our survey, e.g., P-npm 8: “[...] Also, people who don’t lock

Fig. 7 Distribution of different types of releases for trivial and non-trivial npm packages

Empirical Software Engineering (2020) 25:1168–12041190



Fig. 8 Distribution of different types of releases for trivial and non-trivial PyPI packages

down their versions are in for some pain”. In general, there are different types of version
locks, i.e., only updating major releases, updating patches only, updating minor releases or
no lock at all, which means the package automatically updates. The version locks are spec-
ified in a configuration file next to every package name for example npm defines it in the
packages.json file. We examined the frequency at which trivial and non-trivial packages are
locked. For npm, we find that on average, trivial packages are locked 26.3% of the time,
whereas non-trivial packages are locked 28.2% of the time. The Wilcox test also shows
that the difference is statistically significant p-value < 0.05 (p-value = 9.116e-07). On the
other hand, in PyPI, we find that on average, trivial packages are locked 31.7% of the time,
whereas non-trivial packages are locked 36.2% of the time. Also, the Wilcox test shows that
the difference is statistically significant with p-value = 9.707e-08.

Our findings show that trivial packages are locked less in npm and the same is true
in PyPI where trivial packages are locked less than non-trivial packages. In both cases
however, we find that there is not a large difference between the percentage of packages
(trivial vs. non-trivial) being locked.

6.2.2 Package-level Analysis

At the package level, we investigate the direct and indirect dependencies of trivial packages.
In particular, we would like to determine if the trivial packages have their own dependencies,
which makes the dependency chain even more complex. For each trivial and non-trivial
package on npm, we install it and then count the actual number of (direct and indirect)
dependencies that the package requires. Doing so, allows us to know the true (direct and
indirect) dependencies that each package requires. Note that simply looking into the .json

Table 7 Mann-Whitney Test (p-value) and Cliff’s Delta (d) of the release type for trivial vs. non trivial
packages for npm and PyPI

Release type npm PyPI

p-value d p-value d

All 2.2e-16 −0.2016 (small) 2.2e-16 −0.2995 (small)

Minor 2.2e-16 −0.0823 (negligible) 2.2e-16 −0.2447 (small)

Major 2.2e-16 −0.1185 (negligible) 2.2e-16 −0.1276 (negligible)

Patch 2.2e-16 −0.1985 (negligible) 2.2e-16 −0.2729 (small)

Empirical Software Engineering (2020) 25:1168–1204 1191



Fig. 9 Distribution of direct & indirect dependencies for trivial and non-trivial packages (log scale). For npm
(p-value < 2.2e-16 & Cliff’s Delta (d) -0.238 (small)) while PyPI (p-value < 2.2e-16) & Cliff’s Delta (d)
-0.246 (small)

file and the require statements will provide the direct dependencies, but not the indirect
dependencies. Hence, we downloaded all the packages in our npm dataset, mock installed4

them and build the dependency graph for the npm platform.
Similarly, for PyPI, we count the actual number of (direct and indirect) dependencies

that the package requires. To do so, we leveraged the metadata provided by Valiev et al.
(2018). In their study, Valiev et al. extracted the list of direct and indirect dependencies
of each package on PyPI. We resort to use the data provided in Valiev et al. (2018) since
it is recently extracted data and covers the history of PyPI for more than six years. We
then read the dependencies of each package and build a dependency graph for the PyPI
platform.

Figure 9 shows the distribution of dependencies for trivial and non-trivial packages for
the npm and PyPI. Since most trivial packages have no dependencies, the median is zero.
Therefore, we bin the trivial packages based on the number of their dependencies and
calculate the percentage of packages in each bin.

Table 8 shows the percentage of packages and their respective number of dependen-
cies for both npm and PyPI. We observe that the majority of npm trivial packages (56.9%)
have zero dependencies, 21% have between 1-10 dependencies, 3.8% have between 11-
20 dependencies, and 18.4% have more than 20 dependencies. The table also shows
that PyPI trivial packages do not have as much dependencies as the npm packages. In
fact 63.2% of PyPI packages have zero dependencies and approx. 34% of trivial pack-
ages have between 1-20 dependencies. Only approx. 3% of the PyPI trivial packages
have more than 20 dependencies. Interestingly, the table shows that some of the trivial
packages in npm have many dependencies, which indicates that indeed, trivial packages
can introduce significant dependency overhead. It also shows that PyPI trivial pack-
ages have small number of dependencies. One explanation of such a difference is that
Python language has a more mature standard API that provides most of the needed utility
functionalities.

4we modified the npm code to intercept the install call and counted the installations needed for every package.

Empirical Software Engineering (2020) 25:1168–12041192



Table 8 Percentage of packages vs. the number of dependencies used in the npm and PyPI package
management platforms

Packages npm # Dependencies PyPI # Dependencies

(Direct & Indirect) (Direct & Indirect)

0 1-10 11-20 >20 0 1-10 11-20 >20

Trivial 56.9% 21% 3.8% 18.4% 63.2% 29.6% 4.3% 2.9%

Non Trivial 37.1% 24.1% 6.8% 32.1% 42.5% 39.4% 10.7% 7.4%

7 Relevance and Implications

A common question that is asked in empirical studies is - so what? what are the implications
of your findings? why would practitioners care about your findings? We discuss the issue
of relevance of our study to the developer community, based on the responses of our survey
and highlight some of the implications of our study.

7.1 Relevance: Do Practitioners care?

At the start of the study, we were not sure how practically relevant our study of trivial
packages is. However, we were surprised by the interest of developers in our study. In fact,
one of the developers (P-npm 39) explicitly mentioned the lack of research on this topic,
stating “There has not been enough research on this, but I’ve been taking note of peo-
ple’s proposed “quick and simple” code to handle the functionality of trivial packages,
and it’s surprised me to see the high percentage of times the proposed code is buggy or
incomplete.”

Moreover, when we conducted our studies, we asked respondents if they would like
to know the outcome of our study and if so, they provide us with an email address.
Of the 125 JavaScript and Python respondents, 81 (aprox. 65%) of them provided their
email for us to provide them with the outcomes of our study. Some of these respon-
dents hold very high level leadership roles in npm. To us this is an indicator that our
study and its outcomes are of high relevance to the JavaScript and Python development
communities.

7.2 Implications of Our Study

Our study has a number of implications on both software engineering practice and research.

Empirical Software Engineering (2020) 25:1168–1204 1193



7.2.1 Practical Implications

A direct implication of our findings is that trivial packages are commonly used by oth-
ers, perhaps indicating that developers do not view their use as a bad practice, especially
JavaScript developers. Moreover, developers should not assume that all trivial packages are
well implemented and tested, since our findings show otherwise. npm developers need to
expect more trivial packages to be submitted, making the task of finding the most relevant
package even harder. Hence, the issue of how to manage and help developers find the best
packages needs to be addressed. For example P-npm 15 indicated that “... we have the prob-
lem of locating packages that are both useful and ‘trustworthy’ in an ever growing sea of
packages.” To some extent, npms has been recently adopted by npm to specifically address
the aforementioned issue. Developers highlighted that the lack of a decent core or standard
JavaScript library causes them to resort to trivial packages. Often, they do not want to install
large frameworks just to leverage small parts of the framework, hence they resort to using
trivial packages. For example, P-npm 35 “especially in JavaScript relieves you from thinking
about cross browser compatibility for special cases/coming up with polyfills and testing all
edge cases yourself. Basically it’s a substitute for the missing standard library. And you do
not depend on some huge utility library of which you do not need the most part” & P-PyPI
23 “Usually an indication of the inadequacy of the standard library. This seems particu-
larly so of JavaScript where you might find yourself using many such modules.” Therefore,
there is a need by the JavaScript community to create a standard JavaScript API or library
in order to reduce the dependence on trivial packages. This issue of creating such a standard
JavaScript library is under much debate (Fuchs 2016).

7.2.2 Implications for Future Research

Our study mostly focused on determining the prevalence, reasons for and drawbacks of
using trivial packages in two large package management platforms npm and PyPI. Based on
our findings, we find a number of implications and motivations for future work. First, our
survey respondents indicated that the choice to use trivial packages is not black or white. In
many cases, it depends on the team and the application. For example, one survey respondent
stated that on his team, less experienced developers are more likely to use trivial packages,
whereas the more experienced developers would rather write their own code for trivial tasks.
The issue here is that the experienced developers are more likely to trust their own code,
while the less experienced are more likely to trust an external package. Another aspect is
the maturity of the application. As some of the survey respondents pointed out, they are
much more likely to use trivial packages early on in the development life cycle, so they do
not waste time on trivial tasks and focus on the more fundamental tasks of their application.
Once their application matures, they start to look for ways to reduce dependencies since
they pose potential points of failure for their application. Our study motivates future work
to examine the relationship between team experience and application maturity and the use
of trivial packages.

Second, survey respondents also pointed out that using trivial packages is seen favourably
compared to using code from Questions & Answers (Q&A) sites such as StackOverflow
or Reddit. For example, P-npm 84 stated that “I’d have to do research on how to solve a
particular problem, peruse questions and answers on StackOverflow, Reddit, or Coderanch,
and find the most recent and readable solution among everything I’ve found, then write it
myself. Why go through all of this work when you can simply ‘require()‘ someone else’s
solution and continue working towards your goal in a matter of seconds?”When compared

Empirical Software Engineering (2020) 25:1168–12041194



to using code on StackOverflow, where the developer does not know who posted the code,
who else uses it or whether the code may have tests or not, using a trivial package that is
on npm and/or PyPI is seen as much better option. In this case, using trivial packages is not
seen as the best choice, but it is certainly a better choice. Although there have been many
studies that examined how developers use Q&A sites such as StackOverflow (Abdalkareem
et al. 2017a, b; Wu et al. 2018; Baltes and Diehl 2018), we are not aware of any studies that
compare code reuse from Q&A sites and trivial packages. Our findings indicate the need
for such a study.

8 RelatedWork

In this section, we discus the work that is related to our study. We divided the related work
to work related to code reuse in general and work studied software ecosystems.

8.1 Studies of Code Reuse

Prior research on code reuse has shown its many benefits, which include improving qual-
ity, development speed, and reducing development and maintenance costs (Mockus 2007;
Lim 1994; Mohagheghi et al. 2004; Basili et al. 1996). For example, Sojer and Henkel
(2010) surveyed 686 open source developers to investigate how they reuse code. Their
findings show that more experienced developers reuse source code and 30% of the func-
tionality of open source software (OSS) projects reuse existing components. Developers
also reveal that they see code reuse as a quick way to start new projects. Similarly,
Haefliger et al. (2008) conducted a study to empirically investigate the reuse in open
source software, and the development practices of developers in OSS. They triangulated
three sources of data (developer interviews, code inspections and mailing list data) of
six OSS projects. Their results showed that developers used tools and relied on stan-
dards when reusing components. Mockus (2007) conducted an empirical study to identify
large-scale reuse of open source libraries. Their study shows that more than 50% of
source files include code from other OSS libraries. On the other hand, the practice of
reusing source code has some challenging drawbacks including the effort and resource
required to integrate reused code (Di Cosmo et al. 2011). Furthermore, a bug in the reused
component could propagate to the target system (Dogguy et al. 2011). While our study
corroborates some of these findings, the main goal is to define and empirically investi-
gate the phenomenon of reusing trivial packages, in particular in JavaScript and Python
applications.

8.2 Studies of Software Ecosystems

In recent years, analyzing the characteristics of ecosystems in software engineering has
gained momentum (Bavota et al. 2013; Bloemen et al. 2014; Manikas 2016; Decan et al.
2016). For example, in a recent study, Bogart et al. (2015) and Bogart et al. (2016) empir-
ically studied three ecosystems, including npm, and found that developers struggle with
changing versions as they might break dependent code. Wittern et al. (2016) investigated the
evolution of the npm ecosystem in an extensive study that covers the dependence between
npm packages, download metrics and the usage of npm packages in real applications. One of
their main findings is that npm packages and updates of these packages are steadily growing.
More than 80% of packages have at least one direct dependency.

Empirical Software Engineering (2020) 25:1168–1204 1195



Other studies examined the size characteristics of packages in an ecosystem. German
et al. (2013) studied the evolution of the statistical computing project GNU R, with the
aim of analyzing the differences between code characteristics of core and user-contributed
packages. They found that user-contributed packages are growing faster than core packages.
Additionally, they reported that user-contributed packages are typically smaller than core
packages in the R ecosystem. Kabbedijk and Jansen (2011) analyzed the Ruby ecosystem
and found that many small and large projects are interconnected. Decan et al. (2018b) inves-
tigated the evolution of package dependency networks for seven packaging ecosystems.
Their findings reveal that the studied packaging ecosystems grow over time in term of
number of published and updated packages. They also observed that there is an increasing
number of transitive dependencies for some packages.

Other works investigate the challenges of using external packages of a software ecosys-
tem including; identify conflicts between JavaScript package (Patra et al. 2018), examine
how pull requests help developers to upgrade out-of-date dependencies in their applica-
tions (Mirhosseini and Parnin 2017), study the usage of repository badges in the npm
ecosystem (Trockman et al. 2018), and the usage of dependency graph to discover hidden
trend in an ecosystem (Kula et al. 2018).

In many ways, our study complements the previous work since, instead of focusing on
all packages in an ecosystem, we specifically focus on trivial packages and we studied them
in two different package management platforms npm and PyPI. Moreover, we examine the
reasons developers use trivial package and what they view as their drawbacks. We study the
reuse of trivial packages, which is a subset of general code reuse. Hence, we do expect there
to be some overlap with prior work. Like many empirical studies, we confirm some of the
prior findings, which is a contribution on its own (Hunter 2001; Seaman 1999). Moreover,
our paper adds to the prior findings through, for example, our validation of the developers’
assumptions. Lastly, we do believe our study fills a real gap since 65% of the participants
said they wanted to know our study outcomes.

9 Threats to Validity

In this section, we discuss the threats to the validity of our case study.

9.1 Internal Validity

Internal validity concerns factors that may have influenced our results such as our datasets
collection process. To study the reasons for and drawback of using trivial packages, we
surveyed developers. There is potential that our survey questions may have influenced the
replies from the respondents. However, to minimize such influence, we made sure to ask
for free-form responses and we publicly share our survey and all of our anonymized survey
responses (Abdalkareem et al. 2019). Moreover, the way we asked the survey questions
might have affected the response from our respondents, causing their responses to advocate
or not advocate the use of trivial packages. To reduce this bias, we ensure participants’
anonymity. Also, our study may be impacted by the fact that an overlap does not exist
between the developer groups who participated in the two user studies (i.e., defining trivial
packages and understanding developers’ perception about the use of trivial packages). We
find that the second survey served as a confirmation of the observations made by the first
survey participants, however, given that these are two different populations, they may have
reported on different observations.

Empirical Software Engineering (2020) 25:1168–12041196



We removed test code from our dataset to ensure that our analysis only considers pro-
duction source code. We identified test code by searching for the term ‘test’ (and its variants
e.g., ‘TEST code’) in the file names and file paths. Even though this technique is widely
accepted in the literature (Gousios et al. 2014; Tsay et al. 2014; Zhu et al. 2014), to con-
firm whether our technique is correct, i.e., files that have the term ‘test’ in their names and
paths actually contain test code, we took a statistically significant sample of the packages to
achieve a 95% confidence level and a 5% confidence interval and examined them manually.
We found that in all the examined cases contain test code.

In addition, to examine the well-tested perception for the PyPI trivial packages, the
first two authors manually examined the source code of the trivial packages to classify
whether they have test code written or not. To ensure the validity of our classification,
we measure the classification agreement between the two authors. We found that the
classification agreement between the two authors to be excellent (Cohen’s Kappa value
of 0.97).

9.2 Construct Validity

Construct validity considers the relationship between theory and observation, in case the
measured variables do not measure the actual factors. To define trivial packages, we sur-
veyed 12 JavaScript and 13 Python developers. However, we find that there was consensus
for what is considered a trivial package. Although our analysis shows that packages with
≤ 35 LOC and a complexity ≤ 10 are trivial packages, we believe that other definitions
are possible for trivial packages. That said, of the 125 survey participants that we emailed
about using trivial packages, only 2 mentioned that a flagged package is not a trivial pack-
age (even though it fit our criteria). To us, this is a confirmation that our definition applies
in the vast majority of cases, although clearly it is not perfect.

In addition, to determine what is considered to be a trivial package, we conducted an
experiment with JavaScript and Python developers who are mostly students (undergraduate
and graduate students) with some professional experience. While this may not present pro-
fessional developers per se (Sjoberg et al. 2002), prior work has shown that experiment with
students will provide the same results as professional developers in software engineering
domain (Salman et al. 2015; Höst et al. 2000).

To identify the JavaScript and Python applications that we examine in our study, we
rely on the metadata provided by the GHTorrent dataset (Gousios et al. 2014). Thus, our
selection of JavaScript and Python applications heavily depends on the correctness of the
applications’ programming language listed in GHTorrent.

We use the LOC and cyclomatic complexity of the code to determine trivial packages.
In some cases, these may not be the only measures that need to be considered to determine
a trivial packages. For example, some of the trivial packages have their own dependencies,
which may need to be taken into consideration. Our experience tells us that most developers
only look at the package itself and not at its dependencies when determining if it is trivial or
not. That said, when we replicated this questionnaire with another set of participants from
the Python language community, we found that developers seem to confirm our definition
of trivial JavaScript/Python packages (Abdalkareem et al. 2019).

Based on our user study, we defined trivial npm packages as a package that have <= 35
LOC and Cyclomatic Complexity <= 10. However, one threat to this definition is that 10
cyclomatic complexity is high for a package to be trivial. To examine this concern, we cal-
culate the cyclomatic complexity of all the non-trivial packages in our dataset and found that
on average non-trivial npm packages have a cyclomatic complexity of 803, which indicates

Empirical Software Engineering (2020) 25:1168–1204 1197



that 10 Cyclomatic complexity value in our definition is still significantly smaller compared
to the one for non-trivial packages.

To study trivial packages in the PyPI package management platform, we were able to
extract 63,912 packages. Collecting more packages may provide more details about triv-
ial packages on the PyPI package management platform. Also, to identify the Python
applications that use PyPI trivial packages, we use the snakefood tool (http://furius.ca/
snakefood/) to extract the applications dependencies. Hence, we are limited by the accuracy
of snakefood in extracting the used packages in Python applications.

In our study, to understand why developers use trivial packages, we conducted two user
surveys with JavaScript and Python developers. These two surveys were performed on dif-
ferent dates, and as a consequence, may affect the outcome of the survey results. However,
given that these two package management platforms are independent, we envision that the
impact of this date shift is not significant.

In our study, to identify developers who used trivial packages in their applications, we
use regular expressions to identify these packages. This process may flag the wrong package
by the developers. To mitigate this threat, during our analysis, we make sure that we extract
the right packages through several rounds of manual checking of the results. In addition,
none of the developers that we contacted indicated that she/he does not use the identified
packages, which serves as a slight confirmation that our methodology is not incorrect.

In our study on npm, we used npms to measure various quantitative metrics related to
testing, community interest and download counts. Our measurements are only as accurate
as npms, however, given that it is the main search tool for npm, we are confident in the
npms metrics. We also use libraries.io to calculate the community interested and the usage
count metrics for PyPI packages, and our measurements are as accurate as libraries.io. We
resort to use the libraries.io data since it has been used on other prior work (e.g,. Decan
et al. 2018a, b). In addition, we use the dataset provided by Valiev et al. (2018) to measure
the direct and indirect dependencies of the packages on PyPI.

In our analysis, we also use different R packages to perform our analysis, our analysis
may be impacted by the accuracy of these used R packages. To mitigate this threat we make
our dataset and used tools available online (Abdalkareem et al. 2019).

9.3 External Validity

External validity considers the generalization of our findings. All of our findings were
derived from open source JavaScript applications and npm packages and its replication on
Python and PyPI packages. Even though we believe that the two studied package manage-
ment platforms are amongst the most commonly used ones, our findings may not generalize
to other platforms or ecosystems. That said, historical evidence shows that examples of indi-
vidual cases contributed significantly in areas such as physics, economics, social sciences
and even software engineering (Flyvbjerg 2006). We believe that strong empirical evidence
is built from both studies on individual cases and studies on large samples.

Our list of reasons for and drawbacks of using trivial packages are based on a survey
of 88 JavaScript and 37 Python developers. Although this is a large number of developers,
our results may not hold for all developers. A different sample of developers may result in
a different list or ranking of advantages and disadvantages. To mitigate the risk due to this
sampling, we contacted developers from different applications and as our responses show,
most of them are experienced developers.

We do not distinguish between the domain of studied packages, which may impact the
findings. However, to help mitigate any bias we analyzed more than 500,000 npm and

Empirical Software Engineering (2020) 25:1168–12041198

http://furius.ca/snakefood/
http://furius.ca/snakefood/


74,663 PyPI packages that cover a wide range of package domains. Lastly, our study is
based on open source applications that are hosted on GitHub, therefore, our study may not
generalize to other open source or commercial applications.

10 Conclusion

The use of trivial packages is an increasingly popular trend in software develop-
ment (Abdalkareem et al. 2017; Abdalkareem 2017). Like any development practice, it has
its proponents and opponents. The goal of our study is to extend our understanding of the
use of trivial packages. We examine the prevalence, reasons, and drawbacks of using trivial
packages in different package management platforms. Thus, we consider trivial packages in
PyPI in addition to the previous studied npm (Abdalkareem et al. 2017).

Our results indicate that trivial packages are commonly and widely used in JavaScript
and Python applications. We also find that while the majority of JavaScript developers in
our study do not oppose the use of trivial packages, the majority of Python developers
believe that using trivial packages could be harmful. Additionally, based on the developers’
responses, developers from the two package management platforms stated that the main
reasons for developers to use trivial packages is due to the fact that they are considered
to be well implemented and tested. They do cite the additional dependencies’ overhead as
a drawback of using these trivial packages. Our empirical study showed that considering
trivial packages to be well tested is a misconception since more than half of the studied
trivial package do not even have tests. However, these trivial packages seem to be ‘deploy-
ment tested’ and have similar Community interest and Download/Usage count values as
non-trivial packages. In addition, we find that some of the trivial packages have their own
dependencies. In our studied dataset, 18.4% of the npm and 2.9% of the PyPI trivial pack-
ages have more than 20 dependencies. Hence, developers should be careful about which
trivial packages they use.

Based on our findings, we provide the following practical suggestions for software
developers:

– Developers should not assume that trivial packages are well-tested and implemented
since we found only 28.4% and 49.2% of npm and PyPI trivial packages have test code.

– Due to the fact that trivial packages have their own dependencies, developers should
be aware that using these trivial packages would increase the dependency overhead of
their applications.

Acknowledgments The authors are grateful to the many survey respondents who dedicated their valuable
time to respond to our surveys. Also, the authors would like to thank the anonymous reviewers and the editor
for their thoughtful feedback and suggestions that help us improve our study.

References

Abate P, Di Cosmo R, Boender J, Zacchiroli S (2009) Strong dependencies between software compo-
nents. In: Proceedings of the 2009 3rd International Symposium on Empirical Software Engineering and
Measurement, ESEM ’09, IEEE Computer Society, pp 89–99

Abdalkareem R (2017) Reasons and drawbacks of using trivial npm packages: The developers’ perspective.
In: Proceedings of the 2017 11th Joint Meeting on Foundations of Software Engineering, ESEC/FSE
2017, ACM, pp 1062–1064

Empirical Software Engineering (2020) 25:1168–1204 1199



Abdalkareem R, Nourry O, Wehaibi S, Mujahid S, Shihab E (2017) Why do developers use trivial packages?
an empirical case study on npm. In: Proceedings of the 11th Joint Meeting on Foundations of Software
Engineering, ESEC/FSE ’17, ACM, pp 385–395

Abdalkareem R, Oda V, Mujahid S, Shihab E (2019) On the impact of using trivial packages: An empirical
case study on npm and pypi. https://doi.org/10.5281/zenodo.3095009

Abdalkareem R, Shihab E, Rilling J (2017) On code reuse from Stack Overflow : An exploratory study on
Android apps. Inf Softw Technol 88(C):148–158

Abdalkareem R, Shihab E, Rilling J (2017) What do developers use the crowd for? a study using Stack
Overflow. IEEE Softw 34(2):53–60

Baltes S, Diehl S (2018) Usage and attribution of Stack Overflow code snippets in gitHub projects. Empirical
Software Engineering

Basili VR, Briand LC, Melo WL (1996) How reuse influences productivity in object-oriented systems.
Commun ACM 39(10):104–116

Bavota G, Canfora G, Penta MD, Oliveto R, Panichella S (2013) The evolution of project inter-dependencies
in a software ecosystem: The case of Apache. In: Proceedings of the 2013 IEEE International Conference
on Software Maintenance, ICSM ’13, IEEE Computer Society, pp 280–289

Blais M snakefood: Python Dependency Graphs. http://furius.ca/snakefood/. (accessed on 09/23/2018)
Bloemen R, Amrit C, Kuhlmann S, Ordóñez Matamoros G (2014) Gentoo package dependencies over time.

In: Proceedings of the 11th Working Conference on Mining Software Repositories, MSR ’14, ACM,
pp 404–407

Bogart C, Kastner C, Herbsleb J (2015) When it breaks, it breaks: How ecosystem developers reason about
the stability of dependencies. In: Proceedings of the 2015 30th IEEE/ACM International Conference on
Automated Software Engineering Workshop, ASEW ’15, IEEE Computer Society, pp 86–89

Bogart C, Kästner C, Herbsleb J, Thung F (2016) How to break an API: Cost negotiation and community
values in three software ecosystems. In: Proceedings of the 2016 24th ACM SIGSOFT International
Symposium on Foundations of Software Engineering, FSE ’16, ACM, pp 109–120

Bower (2012) Bower a package manager for the web. https://bower.io/. (accessed on 08/23/2016)
Castelluccio M, An L, Khomh F (2019) An empirical study of patch uplift in rapid release development

pipelines. Empir Softw Eng 24(5):3008–3044
Cohen J (1960) A coefficient of agreement for nominal scales. Educ Psychol Meas 20:37–46
Cruz A, Duarte A (2017) npms. https://npms.io/. (accessed on 02/20/2017)
de Souza CRB, Redmiles DF (2008) An empirical study of software developers’ management of dependen-

cies and changes. In: Proceedings of the 30th International Conference on Software Engineering, ICSE
’08, ACM, pp 241–250

Decan A, Mens T, Constantinou E (2018a) On the impact of security vulnerabilities in the npm package
dependency network. In: International Conference on Mining Software Repositories

Decan A, Mens T, Grosjean P (2018b) An empirical comparison of dependency network evolution in seven
software packaging ecosystems. Empirical Software Engineering

Decan A, Mens T, Grosjean P et al (2016) When github meets CRAN: an analysis of inter-repository package
dependency problems. In: Proceedings of the 23rd IEEE International Conference on Software Analysis,
Evolution, and Reengineering, volume 1 of SANER ’16, IEEE, pp 493–504

Di Cosmo R, Di Ruscio D, Pelliccione P, Pierantonio A, Zacchiroli S (2011) Supporting software evolution
in component-based FOSS systems. Sci Comput Program 76(12):1144–1160

Dogguy M, Glondu S, Le Gall S, Zacchiroli S (2011) Enforcing type-Safe linking using inter-package
relationships. Studia Informatica Universalis 9(1):129–157

Ebert C, Cain J (2016) Cyclomatic complexity. IEEE Softw 33(6):27–29
Fleiss JL, Cohen J (1973) The equivalence of weighted kappa and the intraclass correlation coefficient as

measures of reliability. Educ Psychol Meas 33:613–619
Flyvbjerg B (2006) Five misunderstandings about case-study research. Qual Inq 12(2):219–245
Fuchs T (2016) What if we had a great standard library in JavaScript? – medium. https://medium.com/

@thomasfuchs/what-if-we-had-a-great-standard-library-in-javascript-52692342ee3f.pw7d4cq8j. (accessed
on 02/24/2017)

German D, Adams B, Hassan A (2013) Programming language ecosystems: the evolution of R. In: Proceed-
ings of the 17th European Conference on Software Maintenance and Reengineering, CSMR ’13, IEEE,
pp 243–252

Gousios G, Vasilescu B, Serebrenik A, Zaidman A (2014) Lean ghtorrent: Github data on demand. In:
Proceedings of the 11th Working Conference on Mining Software Repositories, MSR ’14, ACM,
pp 384–387

Grissom RJ, Kim JJ (2005) Effect sizes for research: A broad practical approach. Lawrence Erlbaum
Associates Publishers

Empirical Software Engineering (2020) 25:1168–12041200

https://doi.org/10.5281/zenodo.3095009
http://furius.ca/snakefood/
https://bower.io/
https://npms.io/
https://medium.com/@thomasfuchs/what-if-we-had-a-great-standard-library-in-javascript-52692342ee3f.pw7d4cq8j
https://medium.com/@thomasfuchs/what-if-we-had-a-great-standard-library-in-javascript-52692342ee3f.pw7d4cq8j


Haefliger S, Von Krogh G, Spaeth S (2008) Code reuse in open source software. Manag Sci 54(1):180–193
Haney D (2016) Npm & left-pad: Have we forgotten how to program? http://www.haneycodes.net/

npm-left-pad-have-we-forgotten-how-to-program/. (accessed on 08/10/2016)
Harris R (2015) Small modules: it’s not quite that simple. https://medium.com/@Rich Harris/

small-modules-it-s-not-quite-that-simple-3ca532d65de4. (accessed on 08/24/2016)
Hemanth HM (2015) One-line node modules -issue#10- sindresorhus/ama. https://github.com/sindresorhus/

ama/issues/10. (accessed on 08/10/2016)
Höst M, Regnell B, Wohlin C (2000) Using students as subjects—a comparative study of students and

professionals in lead-time impact assessment. Empir Softw Eng 5(3):201–214
Hunter JE (2001) The desperate need for replications. J Consum Res 28(1):149–158
Inoue K, Sasaki Y, Xia P, Manabe Y (2012) Where does this code come from and where does it go? -

integrated code history tracker for open source systems -. In: Proceedings of the 34th International
Conference on Software Engineering, ICSE ’12, IEEE Press, pp 331–341

Kabbedijk J, Jansen S (2011) Steering insight: An exploration of the Ruby software ecosystem. In:
Proceedings of the Second International Conference of Software Business, ICSOB ’11, Springer,
pp 44–55

Kalliamvakou E, Gousios G, Blincoe K, Singer L, German DM, Damian D (2014) The promises and perils
of mining gitHub. In: Proceedings of the 11th Working Conference on Mining Software Repositories,
MSR ’14, ACM, pp 92–101

Kula RG, Roover CD, German DM, Ishio T, Inoue K (2018) A generalized model for visualizing
library popularity, adoption, and diffusion within a software ecosystem. In: 2018 IEEE 25th Interna-
tional Conference on Software Analysis, Evolution and Reengineering, volume 00 of SANER ’18,
pp 288–299

Libraries.io. Libraries.io - the open source discovery service. https://libraries.io/. (accessed on 05/20/2018)
Libraries.io (2017) Pypi. https://libraries.io/pypi. (accessed on 03/08/2017)
Lim WC (1994) Effects of reuse on quality, productivity, and economics. IEEE Softw 11(5):23–30
Macdonald F (2016) A programmer almost broke the Internet last week by deleting 11 lines of code.

http://www.sciencealert.com/how-a-programmer-almost-broke-the-internet-by-deleting-11-lines-of-code.
(accessed on 08/24/2016)

Manikas K (2016) Revisiting software ecosystems research: a longitudinal literature study. J Syst Softw
117:84–103

McCamant S, Ernst MD (2003) Predicting problems caused by component upgrades. In: Proceedings of the
9th European Software Engineering Conference Held Jointly with 11th ACM SIGSOFT International
Symposium on Foundations of Software Engineering, ESEC/FSE ’03, ACM, pp 287–296

Mirhosseini S, Parnin C (2017) Can automated pull requests encourage software developers to upgrade out-
of-date dependencies? In: Proceedings of the 32Nd IEEE/ACM International Conference on Automated
Software Engineering, ASE ’17, IEEE Press, pp 84–94

Mockus A (2007) Large-scale code reuse in open source software. In: Proceedings of the First International
Workshop on Emerging Trends in FLOSS Research and Development, FLOSS ’07, IEEE Computer
Society, p 7–

Mohagheghi P, Conradi R, Killi OM, Schwarz H (2004) An empirical study of software reuse vs. defect-
density and stability. In: Proceedings of the 26th International Conference on Software Engineering,
ICSE ’04, IEEE Computer Society, pp 282–292

npm (2016) What is npm? — node package managment documentation. https://docs.npmjs.com/
getting-started/what-is-npm. (accessed on 08/14/2016)

npm Blog T (2016) The npm blog changes to npm’s unpublish policy. http://blog.npmjs.org/post/
141905368000/changes-to--unpublish-policy. (accessed on 08/11/2016)

Orsila H, Geldenhuys J, Ruokonen A, Hammouda I (2008) Update propagation practices in highly reusable
open source components. In: Proceedings of the 4th IFIP WG 2.13 International Conference on Open
Source Systems, OSS ’08, pp 159–170

Patra J, Dixit PN, M. Pradel (2018) Conflictjs: Finding and understanding conflicts between javaScript
libraries. In: Proceedings of the 40th International Conference on Software Engineering, ICSE ’18,
ACM, pp 741–751

Python Python testing tools taxonomy - pythonwiki. https://wiki.python.org/moin/PythonTestingToolsTaxonomy.
(accessed on 05/16/2018)

Rahman MT, Rigby PC, Shihab E (2019) The modular and feature toggle architectures of google chrome.
Empir Softw Eng 24(2):826–853

Ray B, Posnett D, Filkov V, Devanbu P (2014) A large scale study of programming languages and code
quality in gitHub. In: Proceedings of the 22Nd ACMSIGSOFT International Symposium on Foundations
of Software Engineering, FSE ’14, ACM, pp 155–165

Empirical Software Engineering (2020) 25:1168–1204 1201

http://www.haneycodes.net/npm-left-pad-have-we-forgotten-how-to-program/
http://www.haneycodes.net/npm-left-pad-have-we-forgotten-how-to-program/
https://medium.com/@Rich_Harris/small-modules-it-s-not-quite-that-simple-3ca532d65de4
https://medium.com/@Rich_Harris/small-modules-it-s-not-quite-that-simple-3ca532d65de4
https://github.com/sindresorhus/ama/issues/10
https://github.com/sindresorhus/ama/issues/10
https://libraries.io/
https://libraries.io/pypi
http://www.sciencealert.com/how-a-programmer-almost-broke-the-internet-by-deleting-11-lines-of-code
https://docs.npmjs.com/getting-started/what-is-npm
https://docs.npmjs.com/getting-started/what-is-npm
http://blog.npmjs.org/post/141905368000/changes-to--unpublish-policy
http://blog.npmjs.org/post/141905368000/changes-to--unpublish-policy
https://wiki.python.org/moin/PythonTestingToolsTaxonomy


Salman I, Misirli AT, Juristo N (2015) Are students representatives of professionals in software engineer-
ing experiments? In: 2015 IEEE/ACM 37th IEEE International Conference on Software Engineering,
volume 1 of ICSE ’15, . IEEE, pp 666–676

SciTools Understand tool. https://scitools.com/. (accessed on 04/16/2019)
Seaman CB (1999) Qualitative methods in empirical studies of software engineering. IEEE Trans Softw Eng

25(4):557–572
Singer J, Sim SE, Lethbridge TC (2008) Software engineering data collection for field studies. In: Guide to

Advanced Empirical Software Engineering. Springer, london, pp 9–34
Sjoberg DIK, Anda B, Arisholm E, Dyba T, Jorgensen M, Karahasanovic A, Koren EF, Vokac M (2002)

Conducting realistic experiments in software engineering. In: Proceedings International Symposium on
Empirical Software Engineering, IEEE, pp 17–26

Sojer M, Henkel J (2010) Code reuse in open source software development Quantitative evidence, drivers,
and impediments. J Assoc Inf Syst 11(12):868–901

Trockman A, Zhou S, Kästner C, Vasilescu B (2018) Adding sparkle to social coding: an empirical study of
repository badges in the npm ecosystem. In: Proceedings of the International Conference on Software
Engineering, ICSE ’18, ACM

Tsay J, Dabbish L, Herbsleb J (2014) Influence of social and technical factors for evaluating contribution in
gitHub. In: Proceedings of the 36th International Conference on Software Engineering, ICSE ’14, ACM,
pp 356–366

Valiev M, Vasilescu B, Herbsleb J (2018) Ecosystem-level determinants of sustained activity in open-source
projects A case study of the pyPi ecosystem. In: Joint European Software Engineering Conference and
Symposium on the Foundations of Software Engineering, ESEC/FSE ’18. ACM

Vasilescu B, Yu Y, Wang H, Devanbu P, Filkov V (2015) Quality and productivity outcomes relating to
continuous integration in gitHub. In: Proceedings of the 2015 10th Joint Meeting on Foundations of
Software Engineering, ESEC/FSE ’15, ACM, pp 805–816

Williams C (2016) How one developer just broke Node, Babel and thousands of projects in 11
lines of JavaScript. http://www.theregister.co.uk/2016/03/23/npm left pad chaos. (accessed on 08/24/
2016)

Wittern E, Suter P, Rajagopalan S (2016) A look at the dynamics of the javaScript package ecosystem. In:
Proceedings of the 13th International Conference on Mining Software Repositories, MSR ’16, ACM,
pp 351–361

Wu Y, Wang S, Bezemer C-P, Inoue K (2018) How do developers utilize source code from Stack Overflow?
Empirical Software Engineering

Zambonini D (2011) A Practical Guide to Web App Success, chapter 20. Five Simple Steps. (accessed on
02/23/2017). In: Gregory O (ed)

Zhu J, Zhou M, Mockus A (2014) Patterns of folder use and project popularity: A case study of gitHub
repositories. In: Proceedings of the 8th ACM/IEEE International Symposium on Empirical Software
Engineering and Measurement, ESEM ’14, ACM, pp 30:1–30:4

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Rabe Abdalkareem is a postdoctoral fellow in the Software Analy-
sis and Intelligence Lab (SAIL) at Queen’s University, Canada. He
received his Ph.D. in Computer Science and Software Engineering
from Concordia University, Montreal, Canada. His research investi-
gates how the adoption of crowdsourced knowledge affects software
development and maintenance. Abdalkareem received his masters in
applied Computer Science from Concordia University. His work has
been published at premier venues such as FSE, ICSME and Mobile-
Soft, as well as in major journals such as TSE, IEEE Software, EMSE
and IST. Contact him at rab abdu@encs.concordia.ca; http://users.
encs.concordia.ca/rababdu.

Empirical Software Engineering (2020) 25:1168–12041202

https://scitools.com/
http://www.theregister.co.uk/2016/03/23/npm_left_pad_chaos
http://users.encs.concordia.ca/rababdu
http://users.encs.concordia.ca/rababdu


Vinicius Oda is a MASc. student in the Department of Computer
Science and Software Engineering at Concordia University, Mon-
treal. His research interests includes Software Engineering, Software
Ecosystems, and Mining Software Repositories, among others.

Suhaib Mujahid is a Ph.D. student in the Department of Com-
puter Science and Software Engineering at Concordia University. He
received his masters in Software Engineering from Concordia Uni-
versity (Canada) in 2017. He obtained his Bachelors in Information
Systems at Palestine Polytechnic University. His research interests
include wearable applications, software quality assurance, mining
software repositories and empirical software engineering. You can
find more about him at http://users.encs.concordia.ca/smujahi.

Emad Shihab is an Associate Professor and Concordia University
Research Chair in the Department of Computer Science and Soft-
ware Engineering at Concordia University. His research interests are
in Software Engineering, Mining Software Repositories, and Soft-
ware Analytics. His work has been published in some of the most
prestigious SE venues, including ICSE, ESEC/FSE, MSR, ICSME,
EMSE, and TSE. He serves on the steering committees of PROMISE,
SANER and MSR, three of the leading conferences in the soft-
ware analytics areas. His work has been done in collaboration with
and adopted by some of the biggest software companies, such as
Microsoft, Avaya, BlackBerry, Ericsson and National Bank. He is
a senior member of the IEEE. His homepage is: http://das.encs.
concordia.ca.

Empirical Software Engineering (2020) 25:1168–1204 1203

http://users.encs.concordia.ca/smujahi
http://das.encs.concordia.ca
http://das.encs.concordia.ca


Affiliations

Rabe Abdalkareem1 ·Vinicius Oda1 · Suhaib Mujahid1 · Emad Shihab1

Vinicius Oda
v oda@encs.concordia.ca

Suhaib Mujahid
s mujahi@encs.concordia.ca

Emad Shihab
eshihab@encs.concordia.ca

1 Data-Driven Analysis of Software (DAS) Lab, Department of Computer Science and Software
Engineering, Concordia University, Montréal, Canada

Empirical Software Engineering (2020) 25:1168–12041204

http://orcid.org/0000-0001-9914-5434
mailto: v_oda@encs.concordia.ca
mailto: s_mujahi@encs.concordia.ca
mailto: eshihab@encs.concordia.ca

	On the impact of using trivial packages: an empirical case study on npm and PyPI
	Abstract
	Introduction
	The definition of trivial packages is the same in JavaScript and Python
	Trivial packages are common and popular in both, npm and PyPI management platforms
	JavaScript and Python developers differ in their perception of trivial packages
	Developers believe that trivial packages provide them with well implemented/tested code and increase productivity
	Developers need to be careful which trivial packages they use


	Paper Organization

	Background and Case Studies
	Node Package Manager (npm)
	Python Package Index (PyPI)

	Defining Trivial Packages
	How Prevalent are Trivial Packages?
	How Many of npm's & PyPI's Packages are Trivial?
	How Many Applications Depend on Trivial Packages?

	Survey Results
	Do Developers Consider Trivial Packages Harmful?
	Why Do Developers Use Trivial Packages?
	Drawbacks of Using Trivial Packages

	Putting Developer Perceptions Under the Microscope
	Examining the `Well Tested' Perception
	Node Package Manager (npm)
	Python Package Index (PyPI)

	Examining the `Dependency Overhead' Perception
	Application-level Analysis
	Package-level Analysis


	Relevance and Implications
	Relevance: Do Practitioners care?
	Implications of Our Study
	Practical Implications
	Implications for Future Research


	Related Work
	Studies of Code Reuse
	Studies of Software Ecosystems

	Threats to Validity
	Internal Validity
	Construct Validity
	External Validity

	Conclusion
	References
	Affiliations


