
https://doi.org/10.1007/s10664-021-10078-2

Reuse andmaintenance practices among divergent
forks in three software ecosystems

John Businge1,2 ·Moses Openja3 · Sarah Nadi4 · Thorsten Berger5,6

Accepted: 25 October 2021
© The Author(s) 2022

Abstract
With the rise of social coding platforms that rely on distributed version control systems,
software reuse is also on the rise. Many software developers leverage this reuse by creating
variants through forking, to account for different customer needs, markets, or environments.
Forked variants then form a so-called software family; they share a common code base and
are maintained in parallel by same or different developers. As such, software families can
easily arise within software ecosystems, which are large collections of interdependent soft-
ware components maintained by communities of collaborating contributors. However, little
is known about the existence and characteristics of such families within ecosystems, espe-
cially about their maintenance practices. Improving our empirical understanding of such
families will help build better tools for maintaining and evolving such families. We empiri-
cally explore maintenance practices in such fork-based software families within ecosystems
of open-source software. Our focus is on three of the largest software ecosystems existence
today: Android, .NET, and JavaScript. We identify and analyze software families that are
maintained together and that exist both on the official distribution platform (Google play,
nuget, and npm) as well as on GitHub , allowing us to analyze reuse practices in depth.
We mine and identify 38 software families, 526 software families, and 8,837 software fam-
ilies from the ecosystems of Android, .NET, and JavaScript, to study their characteristics
and code-propagation practices. We provide scripts for analyzing code integration within
our families. Interestingly, our results show that there is little code integration across the
studied software families from the three ecosystems. Our studied families also show that
techniques of direct integration using git outside of GitHub is more commonly used than
GitHub pull requests. Overall, we hope to raise awareness about the existence of software
families within larger ecosystems of software, calling for further research and better tools
support to effectively maintain and evolve them.

Keywords Clone-and-own · Change propagation · Variant synchronisation · Empirical
study · Variant developers · Version control systems · Pull requests · Cherry-picking
changes · Rebasing changes · Squashing changes · Software product lines · Variants

Communicated by: Federica Sarro

� John Businge
johnxu21@gmail.com

Extended author information available on the last page of the article.

Published online: 4 March 2022

Empirical Software Engineering (2022) 27: 54

/

http://crossmark.crossref.org/dialog/?doi=10.1007/s10664-021-10078-2&domain=pdf
http://orcid.org/0000-0003-3206-7085
mailto: johnxu21@gmail.com

1 Introduction

The increased popularity of social-coding platforms such as GitHub made forking a power-
ful mechanism to easily clone software repositories for creating new software. A developer
may fork a mainline repository into a new forked repository, often transforming governance
over the latter to a new developer, while preserving the full revision history and establishing
traceability information. While forking allows isolated development and independent evo-
lution of repositories, the traceability allows comparing the revision histories, for instance,
to determine whether one repository is ahead of the other (i.e., contains changes not yet
integrated in the other). It also allows easier commit propagation across the repositories.

Many studies on forking exist, often focusing on the reasons and outcomes (Nyman
et al. 2012; Robles and González-Barahona 2012; Viseur 2012; Nyman and Lindman 2013;
Nyman and Mikkonen 2011; Zhou et al. 2018; Zhou et al. 2019; 2020) or on the commu-
nity dynamics as influenced by forking (Gamalielsson and Lundell 2014). The community
typically distinguishes between two kinds of forks (Zhou et al. 2020): social forks that are
created for isolated development with the goal of contributing back to the mainline and
divergent forks that are created for splitting off a new development branch, often to steer the
development into another direction without intending to contribute back, while leveraging
the mainline project that defines or adheres to some standards (Sung et al. 2020). Divergent
forks are more relevant for supporting large-scale software reuse—the focus of this paper.

Studies on divergent forks usually rely on general heuristics to identify as many forks
as possible, without systematically verifying that these are indeed divergent forks. Addi-
tionally, when studying code propagation techniques, existing studies do not consider the
intricacies of git to identify the possible types of code propagation (e.g., offline git rebasing
without using GitHub at all), but focus only on pull requests. To address the first chal-
lenge of identifying divergent forks, we use the insight that there are particular ecosystems
that have a systematic way of publishing “members” of the ecosystem. For example, most
Android apps are published on the Google Play store. Similarly, most Eclipse plug-ins are
distributed on the Eclipse marketplace. The advantage of such ecosystems is that each mem-
ber has a unique ID that identifies it. Thus, given an open-source GitHub repository and its
fork, we can verify whether the fork is actually an independent version of the original main-
line (which is a core criteria of a divergent fork) by checking that both the mainline and the
fork are listed as separate entries in the corresponding distribution platform. To address the
second challenge of considering the git intricacies, we design a technique that identifies the
majority of code propagation techniques on Git and GitHub by leveraging all commit meta
data. Inspired by the notion of software families (a.k.a., program families (Parnas 1976;
Czarnecki 2005; Dubinsky et al. 2013; Apel et al. 2013; Krueger and Berger 2020b; Stanci-
ulescu et al. 2015; Berger et al. 2020)—portfolios of managed and similar software systems
in an application domain—we use the term software family, or family for short, to refer to a
mainline repository and its corresponding divergent forks. We refer to each family member
as a variant.

We present a large-scale empirical study on reuse and maintenance practices via code
propagation among software families in software ecosystems. We take the above considera-
tions into account and study three large-scale ecosystems in different technological spaces:
Android, JavaScript, and .NET. Android is one of the largest and most successful
software ecosystem with substantial software reuse (Mojica et al. 2014; Li et al. 2016; Sat-
tler et al. 2018; Berger et al. 2014). The JavaScript ecosystem distributes its packages

54 Page 2 of 47 Empir Software Eng (2022) 27: 54

through npm, which is by far the largest package manager with over 1.82M package distri-
butions.1 The .NET ecosystem has a package management system, nuget, that is moderately
large with over 261K packages.1 As such, our three selected ecosystems vary in their nature
(apps versus packages), their programming languages (Java, JavaScript, and C#), and their
sizes (in terms of their distribution platforms).

Our study addresses two main research questions:

RQ1 What are the characteristics of software families in our ecosystems?
We investigate general characteristics of the families and their variants, including the
number of variants per family and the divergence of application domains, developer
ownership, and variant popularities within the families. We also determine the fre-
quencies of variant maintenance, looking at releases numbers. This allows putting
the studied maintenance and co-evolution practices into context.

RQ2 How are software families maintained and co-evolved in our ecosystems?
To determine management practices, we investigate how code is propagated between
the mainline and its divergent forks in the family. For example, are pull requests
used as the main propagation technique? Is code propagated only from the mainline
to the forks, or is there propagation in the other direction, too? We study the code
propagation mechanisms used as well as the kinds of changes being propagated.

To the best of our knowledge, our work is the first to provide a large-scale in-depth study
of code-propagation practices in divergent forks. Understanding these code-propagation
strategies exercised by developers can help in building better tool support for software cus-
tomization and code reuse. We analyze pairs of mainline and fork open source projects
whose package releases are available in package distribution platforms of the three ecosys-
tems: Android comprising 38 software families, .NET comprising 526 software families, and
JavaScript comprising 8,837 software families.

Our results show that the majority (82 %) of forks we study are owned by developers
different than those of the within a family. Such distinction of ownership gives us confi-
dence that we are studying real divergent forks. Interestingly though, we find little code
propagation across all the mainline–fork pairs in the three ecosystems we studied. The most
used code propagation technique is git merge/rebase that is used in 33 % of Android
mainline-fork pairs, 11 % of JavaScript pairs, and 18 % of .NET pairs. We find that cherry
picking is less frequently used, with only 9 %, 0.9 %, and 2.5 % of Android, JavaScript, and
.NET pairs using it, respectively. Among the three pull request integration mechanisms we
studied (merge, rebase, and squash), the most used pull request integration mechanism is
the merge option in the direction of fork→ mainline, where 2.4 %, 7 %, and 11 % of the
pairs in Android, JavaScript, and .NET use this strategy. We find that integrating commits
using squashed or rebased pull requests is rare in all three ecosystems. Overall, we find
that when code propagation occurs, it seems that fork developers perform this propagation
directly through git and outside of GitHub’s built-in pull request mechanism. This observa-
tion implies that simply relying on pull requests to understand code propagation practices
in divergent forks is not enough.

In summary, this work makes the following contributions:

• We propose leveraging the main distribution platforms of three ecosystems to pre-
cisely identify divergent forks. We devise a technique to identifying families in

1As seen on Libraries.io by June 2021

Empir Software Eng (2022) 27: 54 Page 3 of 47 54

https://libraries.io/

these ecosystems by using data both from GitHub and the respective distribution
platform.

• In contrast to previous studies on code propagation strategies that either focused only
on pull requests or on directly comparing commit IDs, we are the first to study code
propagation while considering pull requests with the options of squash / rebase as well
as git rebased and cherry-picked commits.

• We analyze the prevalence of code propagation within software families as well as the
types of propagation strategies used.

• We synthesize implications of our results for code reuse tools.
• We provide an online appendix (2020) containing our datasets, intermediate results, and

the scripts to trace code propagation between any mainline-fork pair.

An earlier version of this work appeared as a conference paper (Businge et al. 2018).
It focused on analyzing code propagation at the commit level within only the Android
ecosystem. It also provided preliminary insights on the reasons why different app vari-
ants exist. This article extends the conference paper as follows. First, we extend our
analysis with two more ecosystems of moderate to large scale. Second, we substantially
improve our identification of code integration methods by not focusing solely on pull
requests or direct comparison of commit IDs. Instead, we are the first to consider most
types of code propagation techniques, including rebasing, squashing, and cherry-picking
commits. Third, we contribute a toolchain for analyzing code propagation between
any mainline–fork pair. (iv) We provide more discussion of the implications of our
results.

Parts of RQ1 for the JavaScript ecosystem have been previously presented as a workshop
paper (Businge et al. 2020). In this article, our additional contributions for RQ1 for the
JavaScript ecosystem are the following. First, we refine the JavaScript dataset by ensuring
that the mainline-fork pairs exist both on GitHub and the npm package manager. To this
end, we eliminate a total of 2,456 mainline-fork pairs where either the mainline or fork were
deleted from GitHub, but their package releases still existed on the npm package manager.
Second, we provide a more detailed description of how the dataset was collected and provide
the full refined dataset in the replication package. Third, we create an additional dataset
of new families from the .NET ecosystem. Fourth, in addition to the new characteristic
variant ownership as well as more illustrative graph comparisons, we discuss the
characteristics of the mainline–fork pairs across all three ecosystems.

2 Background on Code Propagation Strategies

We now discuss the mechanisms offered by GitHub and similar social-coding platforms to
propagate code among different repositories. We describe characteristics of these mecha-
nisms and the kind of metadata they generate, which an automated identification technique
can potentially rely on.

While a mainline and a forked repository are under no obligation to synchronize any
changes, developers commonly propagate their code changes (e.g., new features or bug
fixes) among repositories via commit integration (Jiang et al. 2017; Openja et al. 2020). For
tracing such propagation, however, the metadata provided by GitHub is not always reliable.
For instance, Kalliamvakou et al. (2014) and Kononenko et al. (2018) found a large number
of pull requests appearing as not merged while they were actually merged. The authors find
that it is not uncommon for destination repositories to resolve pull requests outside GitHub.

Empir Software Eng (2022) 27: 5454 Page 4 of 47

Table 1 Changes of commit metadata during code propagation for the different kinds of code propagation
with GitHub or Git facilities

Pull Requests Git Commands

Metadata changed Merge Squash Rebase Cherry-pick Merge Rebase

Commit ID No Yes Yes Yes No No

Author Name No Yes No No No No

Author Date No Yes No No No No

Committer Name No Yes/No Yes/No Yes/No No No

Committer Date No Yes Yes Yes No No

Commit Message No Yes No No No No

File details No No No No No No

Yesmetadata change
Nono change of metadata

This is why our work considers both commit integration through GitHub and commit
integration directly using git, but outside GitHub.

In the following, we describe code propagation using GitHub and git facilities. Table 1
provides details on the relationship between commits across forked repositories based on
the respective code propagation technique used. To collect the information in this table, we
read the official references (Vandehey 2019)2,3 and online resources4 as well as created toy
repositories to mimic the various integration scenarios in order to verify this information.
We use these insights for creating our code propagation traceability technique described in
Section 3.3.

2.1 Propagation with GitHub Facilities

A pull request has a head ref, which is the reference for the source repository and a branch
a developer wants to pull commits from; we refer to it as the source branch. A pull request
also has a base ref, which is the reference for the destination repository into which the pulled
commits are integrated into; we refer to it as the destination branch for clarity. The source
and destination branches may belong to the same repository or to different repositories.
When studying code propagation in a software family, we are mainly interested in pull
requests from one source repository in the family to another destination repository in the
same family.

Once a pull request is submitted on GitHub, a developer can use its user interface to
integrate the commits in the pull request into the destination branch using one of these three
options: (i) merge the pull request commits, (ii) rebase the pull request commits, and (iii)
squash the pull request commits.

• Merge pull request commits is the default. When the developer chooses this option, the
commit history in the destination branch will be retained exactly as it is. As can be seen
from Table 1, the metadata of the integrated commits from the source branch remain

2https://www.atlassian.com/git/tutorials/merging-vs-rebasing
3https://help.github.com/en/github/collaborating-with-issues-and-pull-requests/about-pull-request-merges
4https://cloudfour.com/thinks/squashing-your-pull-requests/

Empir Software Eng (2022) 27: 54 Page 5 of 47 54

https://www.atlassian.com/git/tutorials/merging-vs-rebasing
https://help.github.com/en/github/collaborating-with-issues-and-pull-requests/about-pull-request-merges
https://cloudfour.com/thinks/squashing-your-pull-requests/

unchanged in the destination branch. However, a new merge commit will be created in
the destination branch to “tie together” the histories of both branches (GitHub 2020).

• Rebase and merge pull request commits: When the integrator selects the Rebase and
merge option on a pull request on GitHub, all commits from the source branch are
replayed onto the destination branch and integrated without a merge commit. From
Table 1, we can see that using this integration technique, the commit metadata between
source and destination preserves the author name, author date, and commit message
but alters the commit ID, committer name, and committer date. The committer name
becomes the name of the developer from the destination repository who rebased and
merged the pull request. Note that if the developer who submitted the pull request is
coincidentally the same as the developer who integrates it (e.g., because the developer
works on both repositories), then the committer name will remain the same (GitHub
2020).

• Squash and merge pull request commits: When the integrator selects the Squash and
merge option on a pull request on GitHub, the pull request’s commits are squashed into
a single commit. Instead of seeing all of a contributor’s commits from the source branch,
the commits are squashed into one commit and included in the commit history of the
destination branch. Apart from the file details, all other commit meta data changes.
The committer name changes unless, similar to above, the original committer and the
developer merging the pull request are the same (GitHub 2020).

2.2 Propagation with Git Facilities (Cherry Pick, Merge, and Rebase Commits)

A developer may also not rely on the GitHub user interface and instead choose to inte-
grate commits from a source branch into a destination branch outside GitHub using one
of the git integration commands. The integrator has to first locally fetch commits from the
source branch (for example mainline) that contains the commits they wish to integrate into
their branch. They then perform the integration locally using one of four options outlined
below ((i) git merge, (ii) git rebase, (iii) git cherry-pick, and (iv) other Git commands that
rewrite commit history) and afterwards, push the changes to their corresponding GitHub
repository.5

• Git cherry-pick commits: Cherry picking is the act of picking a commit from one branch
and integrating it into another branch. Commit cherry picking can, for example, be use-
ful if a mainline developer creates a commit to patch a pre-existing bug. If the fork
developer cares only about this bug patch and not other changes in the mainline, then
they can cherry pick this single commit and integrate it into their fork. As shown in
Table 1, the author name, author date, commit message, and file details of the cherry
picked commit remain the same in the destination branch. The commit ID, commit-
ter name, and committer date however do change. Note that the committer name may
remain the same if the integrator is the same developer who performed the original
commit in the source branch.

• Git merge commits: Like in the pull request merge, git merge also preserves all the com-
mit metadata and creates an extraneous new merge commit in the destination branch
that ties together the histories of both branches.

• Git rebase commits: Rebasing is an act of moving commits from their current location
(following an older commit) to a new head (newest commit) of their branch (Chacon

5https://www.atlassian.com/git/tutorials/merging-vs-rebasing

Empir Software Eng (2022) 27: 5454 Page 6 of 47

https://www.atlassian.com/git/tutorials/merging-vs-rebasing

and Straub 2014b). Git rebase deviates slightly from rebasing pull requests on GitHub
as it does not change the committer information. To better understand git rebase, let
us explain it with an illustration based on the experiments we carried out. On the left-
hand side of Fig. 1, we have a mainline repository and a fork repository where each
repository made updates to the code through commits C3 and C4 in the mainline and
commits F1 and F2 in the fork. The fork developer observes that the new updates in the
mainline are interesting and decides to integrate them using rebasing. After rebasing,
the commit history will look the right side of Fig. 1. Notice that the IDs and the order
of the integrated commits C3 and C4 in the fork branch are unchanged. However, the
IDs of commits F1 and F2 change to F1’ and F2’. In this case, Git rebase is like the fork
developer saying “Hey, I know I started this branch last week, but other people made
changes in the meantime. I don’t want to deal with their changes coming after mine and
maybe conflicting, so can you pretend that I made [my changes] today?” (Vandehey
2019).

• Other Git commands that rewrite commit history: Git has a number of other tools that
rewrite commit history, including changing commit messages, commit order, or split-
ting commits (Chacon and Straub 2014a). These commands include: git commit
--amend, git rebase -i HEAD∼N, and git --squash, etc. Most of these
commands significantly change the history and the meta data of commits. If the integra-
tor uses any of these commands in the destination repository, then there is no straight-
forward way to match the integrated commits across the two repositories (Chacon and
Straub 2014a).

3 Methodology

Our goal is to improve the empirical understanding of maintenance practices, specifically
code propagation in software families. We identify and analyze software families by using
data from both GitHub and the distribution platforms of the three ecosystems.

3.1 Identifying Software Families

Given the different nature of our studied ecosystems in terms of what information each
distribution platform stores and how this information is accessed, we employ different
techniques to identify Android families versus JavaScript and .NET families. Figure 2
shows an overview of this process. We extract families in the Android ecosystem from

Fig. 1 Illustration of git rebase

Empir Software Eng (2022) 27: 54 Page 7 of 47 54

Fig. 2 Illustration of our data sources and our ecosystem analysis process

GitHub and Google Play while the families in .NET and JavaScript are extracted from
Libraries.io.6

3.1.1 Identifying Android Families

We are interested in identifying families of real Android apps that are evidently used
by end users. Taking all GitHub repositories with Android apps into account would also
include toy apps or course assignments. To this end, we identify source repositories of
apps that also exist on Google Play. We mainly match GitHub repositories and Google
Play apps via their unique identifier—the package name contained in the app manifest file
(AndroidManifest.xml). Such manifest files also declare the app’s components, nec-
essary permissions, and required hardware and Android version. As such, each Android app
in a software family must have a unique package name, which excludes any forked repos-
itories where the package name was not modified. More specifically, we identify Android
families using a relatively conservative filtering approach as follows.

1. Using GitHub’s REST API v3, we identify 79,338 mainline repositories matching the
following criteria: (1) is not a fork; (2) the repository contains the word “Android”
in the name/description/readme; (3) has been forked at least twice; (4) was created
before 01/07/2019 (we mined on 14/12/2019, so we used the date 01/07/2019 to obtain
repositories that have some history) (5) has an AndroidManifest.xml file; (6) has
a description or readme.md file; and (7) has a number of forks ≥ 2 to reduce the chance
of finding student assignments (Munaiah et al. 2017).

2. To ensure that we are collecting real-world apps, we check if the identified mainline
repositories exist on Google Play. From each repository’s AndroidManifest.xml
file, we extract the app’s package name and check its existence on Google Play. In total,

6https://libraries.io/

Empir Software Eng (2022) 27: 5454 Page 8 of 47

https://libraries.io/
https://libraries.io/

we find 7,423 mainline repositories representing an actual Google Play app (Businge
et al. 2017).

3. We filter out duplicate mainline repositories containing AndroidManifest.xml
files with the same package name. Such duplicates easily arise when an app’s source
code is copied without forking. Since package names are unique on Google Play, only
one of these duplicate repositories can actually correspond to the Google Play app. We
manually select one repository from these duplicates by considering repository popu-
larity (number of forks and stars on GitHub), repository and app descriptions on both
GitHub and Google Play, as well as the developer name on GitHub and Google Play. In
some cases, the Google Play app description conveniently linked to the GitHub repos-
itory. As a result of this step, we discard 1,232 repositories and are left with 6,191
mainline repositories.

4. To ensure that we study repositories with enough development history, we filter out
mainlines with fewer than six commits in their lifetime, according to the median number
of commits in GitHub projects found by prior work (Kalliamvakou et al. 2014). This
leaves us with 4,337 mainline repositories.

5. We filter out mainline repositories without any active forks, which have no commit
after the forking date and were probably abandoned. This leaves us with 1,166 mainline
repositories, which have a total of 12,025 active forks altogether.

6. We remove forks that have the same package name as their mainline. If no forks
remain for a given mainline, we also remove this mainline. For the forks with differ-
ent package names than their corresponding mainline, we check the existence of the
fork’s package name on Google Play in order to ensure that the fork is also a real
(and different) Android app. This leaves us with 69 app families comprising of 95
forks.

7. Finally, by manual inspection, we filter out forked repositories whose app pack-
age name points to a Google Play app that is not the correct app. This analysis is
based on the observation that, sometimes, fork developers copy code including the
AndroidManifest.xml from another app without changing the package name.
This practice results in the forked app’s package name pointing to an app that exists
on Google Play, but that is not the one hosted in the GitHub repository. We inspect the
Readme.md and unique commit messages in the GitHub repository and the respec-
tive Google Play description page. Eliminating all mismatched apps leaves a total of 38
app families comprising of 54 forked apps—our final dataset to answer the research
questions.

3.1.2 Identifying JavaScript and .NET Families

A family in the JavaScript and .NET ecosystems comprises packages of libraries of applica-
tions written in the respective language. Similar to the Android ecosystem, we only consider
packages that exist as source-code repositories on GitHub and on the ecosystem’s main
distribution channgels: npm and nuget. The metadata of a package release on the package
managers of npm or nuget is similar. On both package managers, a package’s meta-
data include: source repository of the package (GitHub, GitLab, BitBucket), number of
dependent projects/packages, number of dependencies, number of package releases, and the
package contributors. Fortunately, most of the data of 37 package managers for different
ecosystems can be found on one central location Libraries.io, which is a platform that
periodically collects all data from different package managers. In addition to the metadata

Empir Software Eng (2022) 27: 54 Page 9 of 47 54

https://libraries.io/

for a specific package on a given package manager, Libraries.io also extends the pack-
age metadata with more information from GitHub. For example, it stores a Forkboolean
field, which indicates whether the corresponding repository of a package is a fork. Such
a field Forkboolean can help us identify forked repositories that have published their
packages. Note that this is different from the Android ecosystem where such explicit trace-
ability does not exist, which is why we first mine repositories from GitHub and then filter
out those that are published on Google Play. In contrast, with .NET and JavaScript, we
mine the families directly from Libraries.io. We extract the families from the latest
Libraries.io data dump release 1.6.0 that was released on January 12, 2020. The meta-model
for the data on the Libraries.io data dump can be found online.7 We extract .NET and
JavaScript families from Libraries.io with the following steps:

1. Using the package’s field Platform, we filter out the packages that are distributed on
nuget and npm package managers.

2. Next, we use the field Forkboolean to identify repositories that are forks, and use
the field Fork Source Name with Owner to identify the fork repository name
as well as the parent repository (mainline). We extract all fork repositories that map to
published packages on nuget and npm.

3. Next, we merge the sets of packages from Step 1 and Step 2 to identify only packages
that make a mainline-fork pairs (i.e., where the fork repository and its corresponding
mainline in the set in Step 2 have their packages present in the set in Step 1. Using the
GitHub API, we then verify that indeed the mainline parent of the divergent fork and
they are still existing on GitHub so as to eliminate wrong pairs and (e.g., those that have
been deleted from GitHub). From the .NET ecosystem, we identify a total of 526 soft-
ware families having a total of 590 mainline–fork pairs. From the JavaScript ecosystem,
we identify a total of 8,837 software families having a total of 10,357 mainline–fork
pairs. Similar to Android families, a family in .NET and JavaScript contains at least one
mainline and one or more variant forks.

3.2 Identifying Family Characteristics (RQ1)

We now describe how we identify characteristics of the identified families and their variants
(i.e., mainlines and forks) for our three ecosystems.

We define and calculate various metrics as follows. Note that, given the different nature
of these ecosystems and the type of information available for each, some metrics are spe-
cific to only some of the ecosystems. For example, FamilySize is a metric we can calculate
for all variants in all the three ecosystems. On the other hand, given the difference in
nature of Android variants and JavaScript/.NET packages, we need to calculate variant pop-
ularity differently across the ecosystems (downloads and reviews versus dependents and
dependencies).

In the following, we discuss the goal of each metric and how we calculate it. Overall, we
look at metrics that fall into general characteristics of variants, variant maintenance activity,
variant ownership, and variant popularity. For repositories in the Android ecosystem, we
extract the metrics from GitHub and Google Play store. For repositories in the .NET and
JavaScript ecosystems, we extract the metrics from GitHub and Libraries.io.

Table 3 in Section 4 summarizes all metrics (and provides their values).

7https://libraries.io/data

Empir Software Eng (2022) 27: 5454 Page 10 of 47

https://libraries.io/
https://libraries.io/
https://libraries.io/
https://libraries.io/
https://libraries.io/
https://libraries.io/data

3.2.1 General Characteristics

Family Size We record the number of variants (metric FamilySize in Table 3) for all families
in the three ecosystems. Note that a family with FamilySize = 2 has one mainline and one
fork while a family with FamilySize = 3 has one mainline and two forks.

Variant Package Dependencies ecosystems provide a huge bazaar of software that can be
reused through explicit package dependencies (Decan et al. 2019). Since a divergent fork
inherits functionality from the mainline and may also continuously synchronize with the
mainline to acquire new changes, one would expect that the number of package dependen-
cies for a mainline and fork would be the same. However, it would be interesting to see cases
where they are not the same. In this context, for example, if the fork has more dependencies,
it could mean that fork is implementing new features that are not in the mainline. We extract
the number of dependencies from Libraries.io. For Android, we extracted the dependencies
from the apps Gradle files on GitHub.

Android variant categories Using the variant’s metadata available on Google Play, we also
determine its variant category (e.g., Business, Finance, Productivity) and extract its descrip-
tion. We also record whether the variants are listed under the same category on Google Play,
which helps us understand the nature of the variants in a family.

3.2.2 Identifying Maintenance Activities (JavaScript & .NET only)

A repository with many releases shows that it is being actively maintained since each release
indicates either bug fixes or / and new features being introduced. To this end, we are inter-
ested in seeing the relationship between the mainline and the fork in terms of the number of
package releases on the package distribution platforms. We collect the number of package
releases for variants in the .NET and JavaScript ecosystems from Libraries.io. The metrics
related to variant maintenance activity are PackageReleasesMLV for the mainline variants
and PackageReleasesFV for the fork variants. Unfortunately the package manager for vari-
ants in Android ecosystem (Google Play store) does not keep history for the applications,
and therefore we cannot extract variant releases from there. An alternative to collect the
variant releases in the Android ecosystem is to collect them from the repositories themselves
using the GitHub API. Unfortunately, we found that using the GitHub API to collect the list
of releases of a repository returns zeros for most of the repositories even when a repository
has releases. For example, we can see that the Android divergent fork imaeses/k-98 has
releases. However, when we access the fork using the GitHub API for a list of releases9, we
can see that it returns an empty list. To this end, we decided not to collect package releases
for the variants in the Android ecosystem.

3.2.3 Identifying Variant Ownership Characteristics

We would like to identify whether the mainline and fork variant have common owners. This
is interesting to study since we determine if whether variant fork are started by the owners
of the mainlines or if they are started different developers not in the mainline. We define

8https://github.com/imaeses/k-9/releases
9https://api.github.com/repos/imaeses/k-9/releases

Empir Software Eng (2022) 27: 54 Page 11 of 47 54

https://libraries.io/
https://libraries.io/
https://github.com/imaeses/k-9/releases
https://api.github.com/repos/imaeses/k-9/releases

the owner of a repository as a contributor who has access rights of integrating changes
into the repository (i.e., a repository committer). As we explained in Section 2, based on
the different kinds of commit integration techniques, it might be difficult to identify the
original repository of a given commit (especially in cases where a mainline has many forks).
To this end, we identify a repository committer (owner) as one who has merged at least
one pull request, since we are certain that only contributors who have access rights to a
repository can integrate changes. We consider that the mainline and a fork variant have
common owners if there exists at least one common owner between them. With this criteria,
both the mainline and fork variant should have at least one same developer (not a bot) who
merged a pull request in both repositories. This means that our ownership criteria relies on
each variant merging at least one pull request. Since we have very few variant pairs in the
Android ecosystem, this would reduce further the very small dataset of variant pairs. To this
end, we apply the described method only on the variants of .NET and JavaScript ecosystems,
which have moderately large to very large dataset of variant pairs and use a different criteria
to identify the owners of Android variants that we explain later. Since all the variants are
published in Google Play, then each variant has an owner. We identify only 89 of the 590
mainline–fork pairs in the .NET ecosystem where both the mainline and fork variant had
any merged PR by a real developer. For the JavaScript ecosystem we identify only 89 of the
10,357 mainline–fork pairs where both the mainline and fork variant had any merged PR
by a real developer.

For the variant pairs in the Android ecosystem, we employ another method to identify
ownership that covers all the dataset. We mine ownership from Google Play store. On
Google play store, each variant has an attribute developer id or dev id, which is
the name of the developer/company (owner) that uploads the variant on its updates on the
marketplace.

3.2.4 Identifying Variant Popularity

We want to understand the popularity of the variants we are studying in terms of whether
they are widely used in their respective ecosystems. We extract the popularity metrics from
the distribution platform of each of our studied ecosystems. We use a different popularity
measure for variants in the Android ecosystem than those from .NET and JavaScript.

• Android variants: For the variants in the Android ecosystem, we define two popularity
metrics for the number of downloads on Google play, DownloadsMLV and Down-
loadsFV for the mainline and divergent fork respectively. We also define two popularity
metrics for the number of reviews on Google play ReviewsMLV and ReviewsFV for the
mainline and divergent fork, respectively.

• JavaScript and .NET variants: For variants in these two ecosystems, we record the
number of other packages on the JavaScript and .NET that depend on the mainline and
the fork variants (DependentPackagesMLV and DepenedntPackagesFV respectively).
We also record the number of other projects on GitHub that depend on the mainline
and variant (DependentProjectsMLV and DependentProjectsFV respectively). All the
variant’s dependent packages / projects are extracted from Libraries.io. The package
and project dependents are a good way of measuring popularity since they give an
indication of what other packages / projects are interested in the functionality provided
by the variant.

Empir Software Eng (2022) 27: 5454 Page 12 of 47

https://libraries.io/

3.3 Identifying Code Propagation (RQ2)

Answering RQ2 requires determining whether and how any code was propagated among
the variants of a software family. To identify code propagation, we rely on categorizing
commits in the history of the mainline and the forks based on the possible types of code
propagation we discussed in Section 2.

Figure 3 illustrates the relationship between variants in the same family. Specifically,
we demonstrate the relationship between the commits in the mainline variant of a family
and any of its divergent forks. We identify two broad categories of commits: (1) common
commits are those that exist in both the mainline variant and the forked variant and repre-
sent either the starting commits that existed before the forking date or propagated commits
and (2) unique commits that exist only in one variant. For each (mainline variant,
fork variant) pair in a family, we first identify common commits and then identify
unique commits, as follows.

3.3.1 Identifying Common Commits

To ensure we correctly categorize commits, we perform the following steps in this exact
order. Once a commit is categorized in one step, we do not need to analyze it again in the
following steps. We consider only the default repository branch master/main branch for
both the mainline and forks.

� Inherited commits: The fork date is the point in time at which the fork variant is
created. At that point, all commits in the fork are the same as those in the mainline, and

Fig. 3 Illustration of the different types of commits present in a fork variant (FV) and its corresponding
mainline variant (MLV)

Empir Software Eng (2022) 27: 54 Page 13 of 47 54

we refer to them as InheritedCommits. In Fig. 3, the InheritedCommits are the purple
commits 1, 2, and 3. To extract these commits for either variants, we collect all the
commits since the first commit in the history until the fork date.

� Pull-Request commits: We first collect the merged pull requests in each repository
and identify the pull requests whose source and destination branches belong to the
analyzed repository pair. The GitHub API :owner/:repo/pulls/:pull num-
ber provides all the information of a given pull request. One can identify the source
and destination branches using the pull request objects [‘head’][‘repo’][‘-
full name’] and [‘base’][‘repo’][‘full name’] from the returned
json response, respectively. Based on the source and destination information, we can
always identify the direction of the pull request as fork→ mainline or mainline→
fork, as shown in Fig. 3. For each pull request, we collect the pull request com-
mits pr commits using the GitHub API :owner/:repo/pulls/:pull num-
ber/commits. Regardless of how a pull request gets integrated, the commit
information in the source repository is always identical to that in pr commits. Thus,
we can always identify the pull request commits in the source repository by comparing
the IDs of the commits in pr commits to those in the history of the source reposi-
tory. The tricky part is identifying the integrated commits in the destination repository.
Based on the information discussed in Section 2 and summarized in Table 1, we can
identify the pull request commits in the destination repository as follows:

– Merged pull request commits: Based on Table 1, the commit IDs of
pull request commits integrated using the default merge option do not
change. Thus, to identify these commits, we simply compare the IDs of the
pr commits to those in the commit history of the destination repository.

– Rebased pull request commits: Recall from Table 1 that integrated commits
from a rebased pull request have different commit IDs on the destination
branch. Thus, we identify the rebased commits in the destination branch by
comparing the remaining unchanged commit metadata, such as author name,
author date, commit message, and file details.

– Squashed pull request commits: As part of a squashed pull request’s meta
data, GitHub records the ID of the squashed commit on the destination branch
in the merge commit sha attribute.10 Using this ID, we can identify the
exact squashed commit in the destination repository. For extra verification,
we also compare the changed files of all commits in the pull request with the
changed files in the identified squashed commit.

� Git merged commits: After identifying all commits related to pull requests, we now
analyze any remaining unmatched commits to identify if they might have been propa-
gated directly through Git commands. Recall from Section 2 that this includes merged,
rebased, and cherry-picked commits.

– Git cherry-picked commits: We locate cherry-picked commits in the source
and destination commit histories by comparing the following commit meta-
data: commit ID, author name, author date, commit message
and filenames and file changes. We can also identify the source and
the destination branches of the cherry picked commits by looking at the com-

10https://developer.github.com/v3/pulls/

Empir Software Eng (2022) 27: 5454 Page 14 of 47

https://developer.github.com/v3/pulls/

mitter dates of the matched commits. We mark the commit with the earlier
committer date to be from the source branch and that with the later date to be
in the destination branch.

– Git merged and Git rebased commits: At this point, we have already iden-
tified all integrated pull request commits as well as cherry picked commits.
Thus, any remaining commits that have the same ID in the histories of both
variants must have been propagated through git merge or git rebase. As
shown in Table 1 and Fig. 1, any commits integrated through git rebase have
exactly the same ID and meta data in both the source and destination branch.
Similarly, commits integrated through git merge also have the same exact
information. While we can differentiate git-merged and git-rebased commits
by finding merge commits (those with two parents) and marking any com-
mits between the merge commit and the common ancestor as commits that
are integrated through git merge, this differentiation is not important for our
purposes. We are only interested in marking both types of commits as prop-
agated commits. Thus, for our purposes, we can identify commits integrated
via Git rebase or Git merge, but do not differentiate between them. Simi-
lar to pull requests, both types of commits may be pulled from any of the
branches to the other. However, unlike pull requests, it is not possible to iden-
tify which variant the propagated commit originated from. This is because
of the nature of distributed version-control systems where commits can be in
multiple repositories, but there is no central record identifying the commits’
origin. Since it is common for commits to be pulled from the mainline and
pushed into the fork repository as a result of the fork trying to keep in sync
with the new changes in the mainline, we make an assumption that all com-
mits that we identify as integrated through git merge or git rebase are pulled
from the mainline variant and pushed into the fork variant.

3.3.2 Identifying Unique Commits

To identify the unique commits between the mainline and fork we use the compare GitHub
API11. The compare GitHub API compares between the mainline branch and fork branch,
as one of the items, return the diverged commits that comprise the number of commits a
given branch (say mainline branch) is ahead of the other branch (fork branch) as well the
number of commits the branch is behind the other. The commits that the mainline branch
is ahead of the fork branch are the unique commits to the mainline, while the commits the
mainline is behind the fork are the unique commits to the fork.

3.3.3 Verifying our Commit Categorization Methods

We verify our methods of identifying common commits for the different commit propa-
gation techniques discussed in Section 3.3.1 in two phases: we first test our scripts on six
toy projects we created ourselves, where we intentionally include at least one example of
each commit propagation technique and verify that the commits are correctly categorized.
Second, we manually analyze some of the results of our scripts from a sample of six real
mainline–fork pairs that are part of our data collection from each ecosystem, and which we

11https://docs.github.com/en/rest/reference/repos#compare-two-commits

Empir Software Eng (2022) 27: 54 Page 15 of 47 54

https://docs.github.com/en/rest/reference/repos#compare-two-commits

provide all details for in our online appendix2. From earlier version of this work in the con-
ference paper (Businge et al. 2018), we noticed integrated pull requests between mainline
and the variant forks were very rare. To this end, when testing our scripts, in addition to the
variant forks which have very a limited number of integrated commits, we also use social
forks that have lots of integrated commits with their mainline counterparts. In this section,
we will discuss only the following 3 pairs, which we show in Table 2:

• (dashevo/dash-wallet, sambarboza/dash-wallet): The repository
sambarboza/dash-wallet is a social fork. The mainline dashevo/das-
h-wallet has a total 445 PRs. Our scripts identifies that 74 of these 445 pull requests
were integrated from the fork repository sambarboza/dash-wallet into the
mainline repository dashevo/dash-wallet. We show the details of these 74 PRs
in Table 2. Our technique identified that 3 of the 74 PRs were integrated using the PR
merge option (all together having a total of 13 commits). There were 43 of the 74 PRs
that were integrated using PR squash option (having a total of 194 commits), 2 of the 74

Table 2 Sample mainline–fork pairs showing numbers of integrated commits through different integration
techniques

Technique # PRs # Commits

Android

dashevo / dash-wallet (D), PR Merged 3 13

sambarboza / dash-wallet (S) Squashed 43 194

Rebased 2 6

Unclassified 26 167

Git Merge/rebase 405

Cherry-pick 0

Total 74 785

.NET

flagbug / YoutubeExtractor (D), PR Merged 2 2

Kimmax / SYMMExtractor (S) Squashed 0 0

Rebased 0 0

Unclassified 0 0

Git Merge/rebase 3

Cherry-pick 1

Total 2 6

JavaScript

TerriaJS / terriajs (S), PR Merged 9 101

bioretics / rer3d-terriajs (D) Squashed 0 0

Rebased 0 0

Unclassified 0 0

Git Merge/rebase 1,825

Cherry-pick 10

Total 9 1,936

The first two mainline–fork pairs in the table we have S = source (fork) and D = destination (mainline). The
last mainline–fork pair we have S = source (mainline) and D = destination (fork)

Empir Software Eng (2022) 27: 5454 Page 16 of 47

PRs used the PR rebase option having a total of 6 commits, and the integration option
of the 26 PRs was unclassified (having a total of 167). We identified a total of 405 com-
mits that were integrated using the git merge / rebase integration option and no commit
was integrated using git cherry-pick option.

• (flagbug/YoutubeExtractor, Kimmax/SYMMExtractor): The reposi-
tory Kimmax/SYMMExtractor is a variant fork. The mainline flagbug/-
YoutubeExtractor has a total of 32 pull requests. Our scripts identifies that 2 of
the 32 PRs were integrated from the fork repository Kimmax/SYMMExtractor into
the mainline repository (lagbug/YoutubeExtractor (see details in Table 2).
The two PRs were integrated using the merge PR option having a total of two commits
that were integrated. We also identified a total of three commits that were integrated
using the git merge / rebase integration option and 1 commit was integrated using git
cherry-pick option.

• (TerriaJS/terriajs, bioretics/rer3d-terriajs): The repository
bioretics/rer3d-terriajs is a variant fork. The fork bioretics/ re-
r3d-terriajs has a total of 10 pull requests. Our scripts identifies that 9 of the 10
pull requests were integrated from the mainline TerriaJS/terriajs into the fork
bioretics/ rer3d-terriajs. The 9 PRs had a total of 101 commits. There
were no commits integrated using the PR squash and PR rebase options. A total of
1,825 were integrated using the option git merge / rebase integration option and only 10
commits integrated using git cherry-pick option.

Given the above results of our scripts, we select some of the identified code propa-
gation techniques and manually verify them. For each analyzed mainline–fork pair, we
randomly sample a pull request from each identified pull request integration technique
that were returned by our scripts. We manually analyze those sampled pull requests and
their commits, including the commit metadata to verify the correctness of the identified
propagation technique. For each of these sampled pull requests, we also randomly select
two commits and manually analyze them to make sure they have been correctly classi-
fied. For example, in the pair [getodk/collect (D), lognaturel/collect
(S)] (lognaturel/collect is a social fork), our script reveals that the commits in
the pull requests numbered 3531, 3462 and 3434 were integrated using merging, squash-
ing and rebasing, respectively. We manually verify that these pull requests have been
in fact integrated using these techniques by looking at their commit metadata. Simi-
larly, for the pair [dashevo/dash-wallet (D), sambarboza/dash-wallet
(S)] (sambarboza/dash-wallet is a social fork), we verify that the commits in
the pull requests number 421, 333, and 114 were integrated using merging, squashing, and
rebasing, respectively. We also look at the results returned by integration outside GitHub
(git merge/rebase and git cherry-pick). For example, our results indicate
that the pair [FredJul/Flym (D), Etuldan/spaRSS (S)] (Etuldan/spaRSS
is a variant fork), has no commits integrated using pull requests but had 34 and
five commits integrated using git merge/rebase and git cherry-picking,
respectively. We manually verify these five latter commits and confirm their
correctness.

As the pair dashevo/dash-wallet, sambarboza/dash-wallet from
Table 2 shows, there were some pull requests that our scripts were not able to classify. As
part of our manual verification, we find that the GitHub API indicates that they are inte-
grated into the destination repository since their merge date is not null. On deeper
investigation, we discover that all the unclassified pull request commits were integrated

Empir Software Eng (2022) 27: 54 Page 17 of 47 54

into a different branch from the master branch. For example, pull requests 514 and
512 from the fork sambarboza/dash-wallet were both integrated in the branch
evonet-develop on the mainline repository. We also observed that both pull requests
had an integration build test failure (Travis CI). This explains why the commits are
missing in the history of the master branch and why our scripts could not classify those
integrated commits.

One would wonder if we have a threat to construct validity since we do not consider the
commit integration into other branches other than the default (main/master). For example,
the scenario we presented above of unclassified pull requests that were integrated in the
development branch (“staging”), but that were missing in the main branch since they failed
the integration build test. If any of the 167 are integrated from the staging branch into the
master branch using any of the integration techniques that do not completely rewrite the
commit history (i.e., PR merge /squash / rebase, git merge / rebase / cherry-pick), then our
script would always identify them as commits that were integrated between the mainline
and the fork using the git merge / rebase option. As such, our script minimizes the threat to
validity of the unclassified pull requests.

Our manually verified data for both the toy projects and the real projects gives us con-
fidence that our scripts can correctly identify the commits integrated through different
integration mechanisms in any mainline–fork pair of any repository.

3.3.4 Fork Variability Percentage

To quantify how much a fork differs from its mainline, we define a metric variability
percentage as follows:

VariabilityPercentage = uniqueFV
(uniqueFV + CommonCommits) × 100 (1)

where CommonCommits = Pull Request commits + Git commits + InheritedCommits as
shown in Fig. 3. VariabilityPercentage measures the percentage of unique commits in a fork,
when compared to all the commits in that fork. A lower percentage means that most of the
changes in the fork are either starting commits (i.e., the fork did not make many changes
after the fork date) or merged commits that are propagated from/to the mainline. Both these
cases indicate that the functionality in the fork is not much different/variable from that
in the mainline. On the other hand, a higher VariabilityPercentage indicates more specific
customizations in the fork.

4 Variant Family Characteristics (RQ1)

We now present the characteristics of our identified software families within the ecosystems.
Table 3 shows all the metrics we defined with values.

4.1 General Variant Characteristics

• Variant Family FamilySize. Figure 4 shows the number of variants (i.e., family size) in
each of the variant families of the three ecosystems we studied.

We can see that the distributions of family sizes for all three ecosystems are right-
skewed with most families having two members. Specifically, 28 (73%) of 38 software
families, 7,731 (87%) of 8,837 software families, and 475 (90%) of 526 software fam-
ilies have only two variants. The three distributions also show that larger families are

Empir Software Eng (2022) 27: 5454 Page 18 of 47

Table 3 Metrics characterizing our families

Metric Mean Min Median Max Description

FamilySize

Android apps 2.4 2 2 7 Number of variants in an Android family

.NET apps 2.1 2 2 7 Number of variants in a .NET family

JavaScript apps 2.2 2 2 16 Number of variants in a JavaScript family

App Dependencies (.NET & JavaScript)

PackageDependenciesMLV 40.4 0 26 140 Number of mainline variant pack-
ages dependencies on Android

2.3 0 1 49 Number of mainline variant pack-
ages dependencies on .NET

11.8 0 7 267 Number of mainline variant pack-
ages dependencies on JavaScript

PackageDependenciesFV 22 0 22 81 Number of of fork variant packages
dependencies on Android

2.0 0 1 25 Number of of fork variant packages
dependencies on .NET

9.8 0 6 605 Number of fork variant packages
dependencies on JavaScript

App Popularity (Android)

DownloadsMLV 2,211K 1 50K 100M Number of downloads of the main-
line variant from Google Play

DownloadsFV 5,479K 5 1K 100K Number of downloads of the fork
variant from Google Play

ReviewsMLV 27K 0 547 631K Number of reviews of the mainline
variant on Google Play

ReviewsFV 2.8K 0 45 161K Number of reviews of the fork vari-
ant on Google Play

App Popularity (.NET & JavaScript)

DependentPackagesMLV 106 0 0 27K Number of packages that depend on
the mainline app on .NET

80 0 2 26K Number of packages that depend on
the mainline app on JavaScript

DepenedntPackagesFV 0.4 0 0 19 Number of .NET packages that
depend on the fork app on .NET

1.7 0 0 2K Number of JavaScript packages
that depend on the fork app on
JavaScript

DependentProjectsMLV 133 0 0 33K Number of .NET projects that
depend on the mainline app on
GitHub

140 0 0 83K Number of JavaScript projects that
depend on the mainline app on
GitHub

DependentProjectsFV 0.5 0 0 82 Number of .NET projects that
depend on the fork app on GitHub

2 0 0 5K Number of JavaScript projects that
depend on the fork app on GitHub

Empir Software Eng (2022) 27: 54 Page 19 of 47 54

Table 3 (continued)

Metric Mean Min Median Max Description

App Maintenance (.NET & JavaScript)

PackageReleasesMLV 14.6 1 2 188 Number of mainline variant pack-
ages dependencies on .NET

15 1 8 1117 Number of mainline variant pack-
ages dependencies on JavaScript

PackageReleasesFV 3.6 1 2 54 Number of of fork variant packages
dependencies on .NET

4 1 2 341 Number of fork variant packages
dependencies on JavaScript

MLVmainline variant
FVforked variant

Fig. 4 Distribution of family sizes (number of variants in a family) of the three ecosystems. A variant family
contains one mainline variant and at least one or more fork variants. The presented data corresponds to 38
software families, 8,837 software families, and 526 software families. Note that y-axes of Figs. 4b and c
are presented on logarithmic scales. The axes of figures are also presented on different scales for visibility
purposes

Empir Software Eng (2022) 27: 5454 Page 20 of 47

rather seldom in all three ecosystems, but that the largest family sizes we observe are
part of the JavaScript ecosystem. When identifying variant families from the different
ecosystems, we observe that although Android is considered one of the largest known
ecosystems (Mojica et al. 2014; Li et al. 2016; Sattler et al. 2018), identifying its variant
families is rather difficult compared to the software packaging ecosystems (JavaScript
and .NET) we studied. In the Android ecosystem is not compulsory to record any source
repository of an Android variant on Google Play. To this end, we went through the
lengthy process described in Section 3.1.1, applying a number of heuristics on GitHub
repositories to identify families.

• Variant Package Dependencies: In Fig. 5, we present two scatter plots showing the
graph of mainline dependencies versus the fork dependencies. Figures 5a to c show the
scatter plots of the number fork variant package dependencies (y-axis) versus the num-
ber of mainline variant package dependencies (x-axis) for Android, .NET and JavaScript
variants, respectively. A point in any of the scatter plots represents the number of
package dependencies of a given fork variant (y-axis) and the number of package
dependencies of the counterpart mainline variant (x-axis). In all scatter plots, its not
surprising that the number of package dependencies for a fork and its corresponding

Fig. 5 Scatter plots of mainline and fork variant dependencies of other packages on the ecosystems. The
datasets mainline–fork variants of 54 mainline–fork pairs for Android, 590 mainline–fork pairs for .NET and
10,357 mainline–fork pairs for JavaScript. Note: The graphs are presented on different scales for visibility
purposes

Empir Software Eng (2022) 27: 54 Page 21 of 47 54

mainline are correlated. This confirms that fork variants inherit the original dependen-
cies of the mainline. However, we also observe points in all the scatter plots where one
variant has more dependencies than the other. This means that the variant with more
packages dependencies has functionality that is not included in the counterpart variant.
Although the observation is more prominent for the mainline variant since we see many
points below the diagonal lines for the two graphs (the forks do not keep in sync with
the mainline), it is interesting that we also have some fork variants with more depen-
dencies. Follow-up studies could investigate what and why new functionalities related
to the used dependencies are being introduced in the variants.

• Android variant categories:
Figure 6 shows the distribution of variants in the different categories on Google

Play. We can see that 12 of the 54 forks (22%) are listed in a different category from
the mainline, which suggests that these variants serve different purposes. However, the
majority of pairs include variants in the same category.

4.2 Variant Maintenance Activity (JavaScript & .NET)

Figure 7 shows the release distributions for both the mainline and the fork variants in the
JavaScript and .NET ecosystems. Each point on the x-axis represents a pair, and we sort
the pairs by the number of mainline package releases. Figure 7a shows that the majority
of mainline variants has multiple releases. Specifically, 5,888 of the 8,835 (67 %) mainline
variants have ≥ 5 package releases on the JavaScript package manager. The fork variants
have fewer, but still multiple releases. Specifically, 2,389 of the 10,357 mainline variants
(23 %) have ≥ 5 package releases on the JavaScript package manager. Interestingly, from
the plot we also observe a number of forks having more releases than their mainlines. Look-
ing at Fig. 7b, for .NET variants, we observe a similar distribution like that of JavaScript

Fig. 6 Relationship between the variant categories listed on Google Play for each variant in the Android
Mainline–Fork Pairs. Same = mainline–fork pairs share the same category and Different = mainline–fork
pairs share different category

Empir Software Eng (2022) 27: 5454 Page 22 of 47

Fig. 7 Distributions of mainline and fork variant package releases for the ecosystems of JavaScript and .NET.
The datasets of 10,357 fork variants, and 590 fork variants from the ecosystems of JavaScript and .NET,
respectively

variants in Fig. 7a. These results are interesting, since they indicates that developers of
forked variants usually do not make a one off package distribution. They are continuously
distributing new releases of their packages, further emphasizing that these are indeed variant
forks.

Observation 1–RQ1: Families in fact exist in our three software ecosystems. We
collected 38, 526, and 8,837 different families. While both themainlines and forks have
multiple releases, the number of releases is significantly higher than those of the forks.
Still it indicates that the latter are usually not one-shot releases;with some having even
more than their mainlines.

4.3 Variant Ownership Characteristics

Figure 8 shows the percentage of common owners in the mainline–fork variant pairs of our
three studied ecosystems. For the Android variants the analysis is based on all the data we
collected (54 mainline–fork variant pairs). However, for the .NET and JavaScript variants we
only analysed a subset of the .NET and JavaScript mainline–variant pairs, respectively, due
to the criteria we set out to identify variant ownership in Section 3.2. From Fig. 8, we can
see relatively the same percentages of the common (Yes) and not common (No) developers
across the three ecosystems. Overall, our results imply that the majority of forked variants
are started and maintained by developers different from those maintaining the mainline
counterparts.

Observation 2–RQ1: The majority of the mainline–fork variant pairs for the three
ecosystems we investigated are owned by different developers (91% for Android vari-
ants, 95% of JavaScript variants and 92% of .NET variants). This implies that the
majority of forked variants in our datasets are started and maintained by developers
different from those maintaining the mainline counterparts.

Empir Software Eng (2022) 27: 54 Page 23 of 47 54

Fig. 8 Variant owners for the mainline–fork variant pair for the three ecosystem. Yes = mainline–fork vari-
ant pair has common developers and No = mainline–fork variant pair do not have common developers.
The datasets of mainline–fork variant pairs of 54 from Android, 985 from JavaScript, and 89 from .NET
ecosystems. Note: The graphs are presented on different scales for visibility purposes

4.4 Variant Popularity Characteristics

Figure 9 shows the variant popularity for the variants in the three software packaging
ecosystems of Android, JavaScript, .NET.

• Android variants: Figure 9a shows the variant downloads distribution for both the main-
line and fork variants where each point on the x-axis represents a pair and we sort
the pairs by the number of mainline downloads. We observe that the majority of the
mainline variants are quite popular, 27 of the 38 mainline variants (71%) have ≥10K
downloads. For fork variant popularity in terms of downloads, we observe that 10 of
the 54 fork variants (19%) having ≥ 10K downloads. We believe it is natural that the
mainline variants are more popular than their fork counterparts, since we assume they

Empir Software Eng (2022) 27: 5454 Page 24 of 47

Fig. 9 Distributions of mainline and fork variant variants’ popularity metrics for the variants in the three
ecosystems of Android, JavaScript and .NET. The datasets of 54 mainline–fork pairs for Android, 10,357
mainline–fork pairs for JavaScript, and 590 mainline–fork pairs for .NET ecosystems

have been released first on Google Play12. Figure 9b shows the variant reviews distri-
bution for both the mainline and fork variants where each point on the x-axis represents

12Note that Google Play does not keep release history of its variants so it is not possible to obtain the first
listing date of each variant

Empir Software Eng (2022) 27: 54 Page 25 of 47 54

a pair and we sort the pairs by the number of mainline reviews. We observe a simi-
lar distribution for number of reviews like those observed in the number of downloads.
This is not surprising since previous studies have found downloads and reviews to be
correlated (Businge et al. 2019). Overall, the variant popularity we observe gives us
confidence that our data set consists of real variants.

• JavaScript and .NET variants: In Figs. 9c–f we present the popularity graphs for the
variants in the two ecosystems of .NET and JavaScript. Figure 9c shows the dependent
packages distributions for both the mainline and fork variants where each point on the
x-axis represents a pair and we sort the pairs by the number of mainline dependent
packages. We observe that the majority of mainline variants are quite popular, 6,157 of
the 10,357 mainline variants (59 %) having at least two dependent packages. For fork
variants, we observe that 1,624 of the 10,357 mainline variants (16 %) having at least
two dependent packages. Figure 9d shows the dependent projects distributions for both
the mainline and fork variants for the variants in the JavaScript ecosystem. Each point
on the x-axis represents a pair and we sort the pairs by the number of mainline depen-
dent project. We also observe a similar distribution for number of dependent projects
such as that observed in the number of dependent packages. The remaining two graphs,
Figs. 9e and f, show the same data for the .NET ecosystem, and both show similar trends
to those observed for JavaScript.

Comparing the popularity of all the ecosystems, we observe that the mainline variants
are more popular than the fork variant counterparts. This is not surprising since the forks
are clones of the mainline. However from Fig. 9, in all the three ecosystems, its interest-
ing to observe a few fork variants being more popular than their mainline counterparts. In
a follow-up study it would be interesting to investigate possible explanations why the vari-
ants are more popular than their mainline counter parts. Comparing the popularity of the
variants in the JavaScript and .NET ecosystems, we observe that on average the variants
in the JavaScript ecosystem are more popular than the variants in the .NET ecosystem. We
also observe that the fork variants in the .NET in the ecosystem are less popular (have fewer
dependent packages/projects) than the variants in the JavaScript ecosystem. In a follow-
up study it would also be interesting to investigate why variants in JavaScript families are
more popular than the variants in .NET families and also why the fork variant variants in the
JavaScript families are more popular than the fork variant variants in the .NET families.

Tables 4 and 5 present a few examples showing the variant popularity (for all the three
ecosystems) and variant maintenance activities (for only .NET and JavaScript). In Table 5
columns mainline and fork we use the package names of the variants since repos-
itory names on GitHub were too long. In both tables, we present two interesting examples
of variant pairs that we randomly picked: (1) abandoned mainlines: the first variant pair
in each of the ecosystems has the fork variant more popular that the mainline. When we

Table 4 Example of mainline–fork pairs from the Android ecosystem showing statistics on the app popularity

mainline fork mainline fork mainline fork

downloads downloads reviews review

TobyRich / TailorToys / 10K 100K 106 1,034

app-smartplane-android app-powerup-android

opendatakit / kobotoolbox / 1,000K 100K 3,049 1,527

collect collect

Empir Software Eng (2022) 27: 5454 Page 26 of 47

Table 5 Example of mainline–fork pairs from the .NET and JavaScript ecosystems showing statistics on the
popularity and maintenance activities

mainline fork mainline fork mainline fork

dependent dependent package package

packages packages releases releases

.NET Flurl.Signed Flurl.Http.Signed 3 10 6 10

Ninject Portable.Ninject 638 19 75 14

JS selenium selenium-server 97 2,046 2 51

gulp-istanbul gulp-babel-istanbul 5,867 11 24 14

JSJavaScript

compared the last release dates of the variants in all the ecosystems, we observed that the
mainlines seem to have been abandoned while the fork variant continued to evolve. This
is the reason the fork variants are more popular. In Table 5 we can also see that the fork
variants have more releases than the mainlines. (2) Co-evolution: the second pair in each of
the ecosystems we present another interesting case of co-evolution of both the mainline and
fork variant. are continuously being maintained and where both are popular. In this cases, it
would be interesting co-evolution of the variants in both technical and social aspects. Tech-
nical: for example investigating if the variants are complementary or they are competing?
Social: What can we learn about the variant communities?

Observation 3–RQ1: Although the mainline variants are more popular, which is
not surprising, there is quite a number of fork variants that are also popular. We also
observe a few of the fork variants being more popular than theirmainline counterparts.
This again tells us the forks we are studying are indeed variant forks being used by the
community of other developers (in the cases of .NET and JavaScript variants) and for
Android variants, being downloaded and installed on user phones. We have pointed out
some interesting research directions that can be investigated in follow-up studies.

5 Code Propagation in the Software Families (RQ2)

So far, we have analyzed the characteristics of the software families in across our three
ecosystems. Our results from RQ1 give us confidence that the fork variants in our data
set are indeed variant forks. In RQ2, we present the results of how variants in the same
family co-evolve. Specifically, we are interested in their code propagation practices to
understand if the variants evolve separately or if they propagate code between each other
after the forking date. We present the results of code propagation between family vari-
ants in terms of propagated commits, while differentiating the propagation mechanisms
we explained in Sections 2 and 3.3. Recall that these commit types determine the vari-
ous code propagation strategies (e.g., pull requests versus direct integration through git).

Empir Software Eng (2022) 27: 54 Page 27 of 47 54

Tables 6, 7, 8 and 9 show the metrics we use in this RQ to measure the types of prop-
agated commits in the ecosystems of Android, JavaScript, and .NET. Where applicable,
we specify the direction of the propagated code, i.e., mainline→ fork or fork→ main-
line. Recall from Section 3.3.1 that we do not differentiate between git merge and git
rebase commits and that we assume that all integrated git merge and git rebase
commits are in the direction mainline→ fork. This is why Tables 7 and 8 show only one
metric gitPullMLV-FV to represent these two commit integration types. Tables 6–9 show
the summary of the descriptive statistics of all the metrics we use to investigate code

Table 6 Pull request (inside GitHub) code propagation practices, at commit level, for the 54 mainline–fork
pairs , 10,357 mainline–fork pairs, and 590 mainline–fork pairs in the Android, JavaScript, .NET ecosystems,
respectively

Metric Mean Min Median Max Description

Android variants

mergedPRsMLV-FV 0.31 0 0 15 Number of merged PR from the mainline to
the fork variant.

mergedPRsFV-MLV 0.09 0 0 4 Number of merged PR from a given the fork
to the mainline variant.

prMergedCommitsMLV-FV 8.33 0 0 427 Number of merged PR commits from the
mainline to the fork variant.

prMergedCommitsFV-MLV 0.57 0 0 28 Number of merged PR commits from the
fork to the mainline variant.

prSquashedMLV-FV 0 0 0 0 Number of squashed PR from the the main-
line to the fork variant.

prSquashedFV-MLV 0 0 0 0 Number of squashed PR from a given the
fork to the mainline variant.

prRebasedMLV-FV 0 0 0 0 Number of rebased PR from the the mainline
to the fork variant.

prRebasedFV-MLV 0 0 0 0 Number of rebased PR from a given the fork
to the mainline variant.

.NET variants

mergedPRsMLV-FV 0 0 0 3 Number of merged PR from the mainline to
the fork variant.

mergedPRsFV-MLV 0.2 0 0 13 Number of merged PR from a given the fork
to the mainline variant.

prMergedCommitsMLV-FV 0.2 0 0 30 Number of merged PR commits from the
mainline to the fork variant.

prMergedCommitsFV-MLV 1.2 0 0 207 Number of merged PR commits from the
fork to the mainline variant.

prSquashedMLV-FV 0 0 0 0 Number of squashed PR from the the main-
line to the fork variant.

prSquashedFV-MLV 0 0 0 5 Number of squashed PR from a given the
fork to the mainline variant.

prSquashedCommitsFV-MLV 0.1 0 0 14 Number of squashed PR commits from the
fork to the mainline variant.

prRebasedMLV-FV 0 0 0 0 Number of rebased PR from the the mainline
to the fork variant.

prRebasedFV-MLV 0 0 0 0 Number of rebased PR from a given the fork
to the mainline variant.

Empir Software Eng (2022) 27: 5454 Page 28 of 47

Table 6 (continued)

Metric Mean Min Median Max Description

JavaScript variants

mergedPRsMLV-FV 0 0 0 26 Number of merged PR from the mainline to
the fork variant.

mergedPRsFV-MLV 0.4 0 0 4 Number of merged PR from a given the fork
to the mainline variant.

prMergedCommitsMLV-FV 0.1 0 0 399 Number of merged PR commits from the
mainline to the fork variant.

prMergedCommitsFV-MLV 0.57 0 0 28 Number of merged PR commits from the
fork to the mainline variant.

prSquashedMLV-FV 0 0 0 2 Number of squashed PR from the the main-
line to the fork variant.

prSquashedFV-MLV 0 0 0 21 Number of squashed PR from a given the
fork to the mainline variant.

prSquashedCommitsMLV-FV 0.4 0 0 52 Number of squashed PR commits from the
mainline to the fork variant.

prSquashedCommitsFV-MLV 0 0 0 109 Number of squashed PR commits from the
fork to the mainline variant.

prRebasedMLV-FV 0 0 0 2 Number of rebased PR from the the mainline
to the fork variant.

prRebasedFV-MLV 0 0 0 3 Number of rebased PR from a given the fork
to the mainline variant.

prRebasedCommitsMLV-FV 0.4 0 0 4 Number of rebased PR commits from the
mainline to the fork variant.

prRebasedCommitsFV-MLV 0 0 0 25 Number of rebased PR commits from the
fork to the mainline variant.

propagation at the commit level for all the three ecosystems of Android, JavaScript, and
.NET.

5.1 Pull Request Propagation (Commit Integration Inside GitHub)

We present the results of the pull request integration techniques: merge, rebase and squash
(as well as the unclassified PRs) for the mainline–fork pairs in all the three ecosystems of
Android, JavaScript, and .NET. In Table 6 the results of the summary statistics and in Table 7
we present the details of the summary statistics. We also present the distributions of the
integration in both directions in Fig. 10.

Figure 10 shows the box plots showing the distributions of the different PR inte-
gration techniques. For example for the variants in the Android ecosystem, the distribu-
tion of the PR integration in both directions of mainlines→ fork and fork→ mainline
are shown in Fig. 10a. There was only one pull request in each direction of inte-
gration. Both pull requests were integrated using the PR merge option. There was no
PR integrated using any of the other PR integration options. We can see that in all
the boxplots the majority of the mainline–fork variant pairs have zero PRs integrated
in either direction. This implies that most of the pairs do not integrate PRs between
themselves.

Empir Software Eng (2022) 27: 54 Page 29 of 47 54

Table 7 Number of mainline–fork pairs, pull requests involved in code propagation in our dataset of 54
mainline–fork pairs, 10,357 mainline–fork pairs, and 590 mainline–fork pairs from the ecosystems of
Android, JavaScript, and .NET, respectively

Mainline→ Fork Fork→ mainline

Pairs PRs Commits Pairs PRs Commits

Android variants

PR Merged 1 1 5 1 2 427

Rebased 0 0 0 0 0 0

Squashed 0 0 0 0 0 0

Unclassified 0 0 0 0 0 0

Git Cherry-pick 5 n/a 250 4 n/a 136

gitPullMLV-FV 18 n/a 13,198 n/a n/a n/a

.NET variants

PR Merged 9 13 96 67 139 721

Rebased 0 0 0 0 0 0

Squashed 0 0 0 13 21 72

Unclassified 0 0 0 3 3 9

Git Cherry-pick 15 n/a 99 16 n/a 138

gitPullMLV-FV 106 n/a 5,601 n/a n/a n/a

JavaScript variants

PR Merged 99 162 1,862 724 1,394 4,523

Rebased 1 1 4 11 13 67

Squashed 5 6 72 132 250 1,048

Unclassified 7 10 33 23 32 134

Git Cherry-pick 95 n/a 275 91 n/a 251

gitPullMLV-FV 1,180 n/a 40,001 n/a n/a n/a

For example, the Android apps, the first row in the direction of mainline→ fork, only 1 fork variant merged 1
PR from the mainline containing 5 commits and in the direction of fork→ mainline, only 1 mainline merged
2 PRs containing 427 commits

Table 7 shows the details of summary statistics in the distributions. For example, in
the top section of Table 7 (Android variants) and in the first row, we observe 1 of the 54
mainline–fork variant pairs that integrated 1 PR having a total of 5 commits, using the
merge pull request option, in the direction of mainline→ fork. In the same row, in the
direction of fork→ mainline, we observe 1 mainline–fork pair that integrated 2 PRs, having
a total of 427 commits, using the merge pull request option, in the direction of fork→
mainline.

We can see that for Android variants only 1 of the 54 (1.9 %) mainline–fork pairs inte-
grated commits using the merge pull request option. We observe more or less similar
trends for the mainline–fork variants pairs in the other two ecosystems. For the JavaScript
mainline–fork variant pairs, we observe 99 of the 10,357 mainline—fork variant pairs (1 %)

Empir Software Eng (2022) 27: 5454 Page 30 of 47

Table 8 Git based (outside GitHub) code propagation practices, at commit level, for the 54 mainline–fork
pairs , 10,357 mainline–fork pairs, and 590 mainline–fork pairs in the Android, JavaScript, .NET ecosystems,
respectively

Metric Mean Min Median Max Description

Android variants

gitCherrypickedMLV-FV 4.6 0 0 168 Number of git cherry-picked commits from
the the mainline to the fork variant.

gitCherrypickedFV-MLV 2.5 0 0 75 Number of git cherry-picked commits from
the fork to the mainline variant.

gitPullMLV-FV 244 0 0 6567 Number of git merged/rebased commits
from the the mainline to the fork variant.

.NET variants

gitCherrypickedMLV-FV 1.5 0 0 42 Number of git cherry-picked commits from
the the mainline to the fork variant.

gitCherrypickedFV-MLV 0.4 0 0 148 Number of git cherry-picked commits from
the fork to the mainline variant.

gitPullMLV-FV 9.5 0 0 2,317 Number of git merged/rebased commits
from the the mainline to the fork variant.

JavaScript variants

gitCherrypickedMLV-FV 4.6 0 0 168 Number of git cherry-picked commits from
the the mainline to the fork variant.

gitCherrypickedFV-MLV 0 0 0 70 Number of git cherry-picked commits from
the fork to the mainline variant.

gitPullMLV-FV 3.7 0 0 6,035 Number of git merged/rebased commits
from the the mainline to the fork variant.

integrating commits, using the merge pull request option, in the direction of mainline→
fork and 724 of the 10,357 mainline–fork pairs (7 %) in the direction of fork→ mainline.
We observe very few mainline–fork variant pairs, in the JavaScript software packaging
ecosystem, integrating commits using the pull request squash/rebase options in either
integration directions. For the mainline–fork variant pairs in the .NET ecosystem, we
observe 9 of 590 mainline–fork pairs (1.5 %) and 67 of the 590 mainline–fork pairs (11.3 %)
integrating commits, using the merge pull request option, in the direction of mainline→
fork and fork→ mainline, respectively. We did not observe any commits integrated using
the rebased pull request option in either integration direction, while for the commits inte-
grated using the squash pull request option, we only observed integration in the direction
of fork→ mainline accounting for 13 of the 590 mainline–fork pairs (2 %).

We observe that there are more mainline–fork variant pairs integrating commits in the
direction of fork→ to mainline as opposed to mainline→ fork irrespective of the PR inte-
gration option used. For Android variants we observed 1 pair each in either direction (1.9 %
each); for JavaScript variants we have 867 of 10,357 mainline–fork pairs (8.4 %) in the
direction of fork→ mainline to 105 of 10,357 mainline–fork pairs (14 %). Regarding the
pull request integration options, we can see that the merge pull request option is clearly the
most frequently used in all integration directions and in all the three ecosystems. In all three
software packaging ecosystems, the squash and rebase options are rarely used. How-
ever, comparing the two PR options, squash and rebase, we observe that the squash
PR option is used more often.

Empir Software Eng (2022) 27: 54 Page 31 of 47 54

Table 9 Unique commits and variability percentage for the 54 mainline–fork pairs , 10,357 mainline–fork
pairs, and 590 mainline–fork pairs in the Android, JavaScript, .NET ecosystems, respectively

Metric Mean Min Median Max Description

Android variants

uniqueMLV 1,122 0 228 18,961 Number of unique commits in the mainline
variant in a given mainline–fork pair.

uniqueFV 98.3 1 16 1,646 Number of unique commits in the fork vari-
ant in a given mainline–fork pair.

InheritedCommits 1,884 10 755 29,110 Number of common commits between a
given fork and the mainline variant.

VariabilityPercentage 15 0 2.7 93.8 Percentage of unique commits according to
(1).

.NET variants

uniqueMLV 102.2 0 3 10,789 Number of unique commits in the mainline
variant in a given mainline–fork pair.

uniqueFV 16.2 0 5 605 Number of unique commits in the fork vari-
ant in a given mainline–fork pair.

InheritedCommits 224.5 0 42.1 20,538 Number of common commits between a
given fork and the mainline variant.

VariabilityPercentage 20 0 11 99 Percentage of unique commits according to
(1).

JavaScript variants

uniqueMLV 33.5 0 3 10,223 Number of unique commits in the mainline
variant in a given mainline–fork pair.

uniqueFV 12.8 0 5 1,229 Number of unique commits in the fork vari-
ant in a given mainline–fork pair.

InheritedCommits 111.5 14 32 66,861 Number of common commits between a
given fork and the mainline variant.

VariabilityPercentage 22.3 0 14 99 Percentage of unique commits according to
(1).

Observation 1–RQ2:Code propagation using PRs is rarely used in all themainline–
fork variant pairs from the three ecosystems that we studied. Unsurprisingly, we have
observed that PRs in the direction of fork mainline are more than those in the direc-
tion of mainline fork. However, although low numbers are observed, there are some
PRs in the direction of mainline fork. We have also observed that, in all the three
ecosystems, the most used integration option is by far the merge PR option. The
squash and rebase PR option are less frequently used in mainline–fork variant
pairs all the three ecosystems, although the squash PR option is more used that the
rebase PR option. The low numbers could be attributed to the fact that the fork vari-
ants are created not to submit PRs but to diverge away from the mainline to solve a
different problem. A follow-up study involving a user study could investigate motiva-
tion behind fork variant are creation and why there is limited collaboration between
mainline and fork variants.

Empir Software Eng (2022) 27: 5454 Page 32 of 47

Fig. 10 Distribution of pull requests in both integration directions for variants in the three ecosystems. The
datasets of 54 mainline–fork pairs, 590 mainline–fork pairs, and 10,357 mainline–fork pairs from the ecosys-
tems of Android, .NET, and JavaScript, respectively. Note: The graphs are presented on different scales for
visibility purposes

5.2 Git Propagation (Commit Integration Outside GitHub)

In this section we present the results of commit integration outside GitHub relating to git
cherry-pick and git merge /rebase (gitPullMLV-FV). The summary statistics of these
two commit integration techniques are presented in Table 8. In Table 7, the detailed results
corresponding to the summary statistics in Table 8 are presented We first present the results
of git cherry-pick, and we follow with the results of git merge /rebase.

• git cherry-pick commit integration: Like we stated in Section 3.3 commits can
be cherry-picked from mainline in two directions: mainline→ fork or fork→ main-
line. The two metrics: gitCherrypickedMLV-FV and gitCherrypickedFV-MLV (in Table 8)
corresponding to the two commit integration directions for the mainline→ fork and
fork→ mainline, respectively, in the three ecosystems. In Fig. 11 we present boxplot
distributions corresponding to the results in Table 8. We can see all the distributions
only show outliers, meaning that most pairs do not have cherry-picked commits. The
detailed statistics in Table 7 reveal the same results. For example, the upper part of
Table 7 presenting the Android variants, we can see that there are only of 5 of the 54
mainline–fork pairs (9 %) that integrated a total of 250 commits in the direction of

Empir Software Eng (2022) 27: 54 Page 33 of 47 54

Fig. 11 Distribution of commits integrated outside GitHub. The datasets of 54 mainline–fork pairs, 10,357
mainline–fork pairs, and 590 mainline–fork pairs from the ecosystems of Android, JavaScript, and .NET,
respectively. Note: The graphs are presented on different scales for visibility purposes

mainline→ fork. In the direction of fork→ mainline there were 4 of the 54 mainline–
fork pairs (7.4 %) integrating a total of 136 commits. Like the results of pull request
integration presented earlier, we can also clearly see that commit integration using git
cherry-pick is rarely used in the mainline–fork variant pairs in all the three ecosys-
tems we have studied. Unlike pull request integration where the developer has to sync
upstream or downstream the new changes, with git cherry-pick the developer have
to search for specific commits to integrate. This requires to first look into the pool of
new changes and identify the ones of interest to cherry-pick. If the mainline and fork
variant have diverged solving different problems, then finding the interesting commits
in the new changes might be laborious. We hypothesize that this could be one of the
reasons why there are few numbers of commits observed in mainline–fork variant pairs
in the three ecosystems. A follow up study to confirm or refute this hypothesis would
add value to this study.

• git merge /rebase commit integration: In Table 8 we can see metric gitPullMLV-FV
representing the the git merge /rebase commit integration in the direction of
mainline→ fork, in the three ecosystems. Again we can see that the all the medians for
all the metric in all the three ecosystems are all zeros. Figure 11 shows three boxplots
showing the distributions of gitPullMLV-FV metric for the mainline–fork variant pairs
in the three ecosystems. From the boxplots, we can also observe that the medians are
all zeros. In Table 7 we present the detailed statistics for the metric gitPullMLV-FV. For
Android mainline–fork variant pairs, we observe 18 of the 54 mainline–fork pairs (33 %)
with a total of 13,198 commits being integrated in the direction of mainline→ fork. For
.NET mainline–fork variant pairs, we observe 106 of the 590 mainline–fork pairs (18 %)
with a total of 5,601 commits being integrated in the direction of mainline→ fork.
And finally for JavaScript mainline–fork variant pairs, we observe 1,180 of the 10,357
mainline–fork pairs (11 %) with a total of 40,001 commits being integrated in the direc-
tion of mainline→ fork. We can see that although git merge /rebase still rarely
used in the mainline–fork variants in all the three ecosystems, it is more used than the
other two options of pull requests and git cherry-pick. We can conclude that git
merge/rebase is the most used code integration mechanism between the variants

Empir Software Eng (2022) 27: 5454 Page 34 of 47

in variant families. Again, we speculate that the lack of integration mainline–fork vari-
ant pairs could be as a results of the variants diverging to solve different problem from
those being solved by their mainline counterparts.

Observation 2–RQ2: Like the integration technique using PRs, we also observe that
git merge/rebase and git cherry-pick integration techniques are also
less frequently used in the variants in the three ecosystems. However, we observe that
integration using git merge/rebase is themost commonly used integrationmech-
anism between the mainline–fork variants in all the three ecosystems which occurs in
the integration direction of mainline fork. In general a follow-up study to investi-
gate why most variants do not share code would reveal reasons for the low numbers of
integration.

5.2.1 Fork Variability Percentage

This section present the results of variability percentage (metric VariabilityPercentage) for
the fork variants in the three ecosystems. In Table 6 we present the summary statistics for the
metrics used to calculate VariabilityPercentage in (1). Figure 12 presents the distributions
of the metric VariabilityPercentage of the fork variants in the three ecosystems. We can
see that the medians are 2.7 %, 11 %, and 14 %, forks variants in the three ecosystems of
Android, .NET, and JavaScript, respectively. A high value of the metric VariabilityPerc-
entage implies that the fork differs from its mainline counterpart. For the fork variants in
the Android ecosystem, we observe quite a number of the forks, 35 of the 54 (35 %), have
a high VariabilityPercentage (>= 10%). The fork variants from the .NET ecosystem, we
also observe the majority of the forks, 281 / 590 (53 %), have a high VariabilityPercentage
(< 10%). Lastly, the fork variants in the JavaScript ecosystem, we also observe quite the
majority of the forks, 6,076 / 10,357 (58 %), have a relatively high VariabilityPercentage
(< 10%).

Fig. 12 Distribution of fork variability percentage–VariabilityPercentage for the variants in the three ecosys-
tems. The datasets of 54 fork variants, 10,357 fork variants, and 590 fork variants from the ecosystems of
Android, JavaScript, and .NET, respectively

Empir Software Eng (2022) 27: 54 Page 35 of 47 54

Observation 3–RQ2: The majority of the fork variants in the three ecosystems of
Android, JavaScript, and .NET highly differ from their mainline counterparts (i.e., they
have higher numbers of unique commits). The findings of forks variants differing from
their mainlines could be used to support our earlier finding relating to limited commit
integration in the mainline–fork variant pairs in the three ecosystems.

5.3 Summary

We have presented results of code propagation practices among mainline–fork variant
pairs from the three ecosystems of Android, .NET, and JavaScript. Overall, in all the
studied mainline–fork variant pairs of the three ecosystems, we observe infrequent code
propagation, regardless of the type propagation mechanism or direction. The most used
code propagation technique is git merge/rebase, which is used in 33 % of Android
mainline-fork pairs, 11 % of JavaScript pairs, and 18 % of .NET pairs. For integration
using pull requests, developers often integrate code in the direction of fork→ mainline
compared to those in the direction of mainline→ fork, in all the mainline–fork variants.
The code integration in the direction of mainline→ fork is often done using the merge
pull request option or git merge/rebase outside GitHub. Moreover, the squash
and rebase pull request options are less frequently used in mainline–fork variant pairs,
although the squash PR option is more used than the rebase pull request option. Finally,
by comparing the fork variability percentage, we observed a high percentage difference
between the fork variants and their mainline counterparts, indicated by the higher num-
ber of unique commits. These results are consistent across all the variants of the three
ecosystems (i.e., Android, JavaScript, and .NET) that we studied. Our findings potentially
indicate that the fork variants are being created with the intention of diverging away from
the mainline to solve a different problem (i.e., with no intention to sync in any way
with the original mainline). Future studies could investigate the motivation behind fork
variants’ creation and why there is a limited collaboration between mainline and fork
variants.

6 Discussion and Implications

The observations from our two research questions have several implications for future
research on co-evolution of software families and for respective tool support.

Implications for Identifying Variant Forks As opposed to previous studies that relied on
heuristics applied to GitHub repositories to identify Variant forks, in this study, we ensure
that all members of a variant family represent different variants in the marketplace (Google
Play, JavaScript, and .NET). Relying on only heuristics applied to GitHub repositories to
find variant forks may have false positives (i.e., fork classified as a variant fork, yet it is a
social fork). The method for identifying divergent forks can be reused by other researchers
interested in studying variant families in other ecosystems, including operating-system
packages (e.g., Debian packages (Berger et al. 2014)) and ecosystems established for other
programming languages. In fact, most of the popular programming language today, such as
JavaScript Java, PHP, .NET, Python, and many more have their own package managers

Empir Software Eng (2022) 27: 5454 Page 36 of 47

available that host hundreds of thousands of packages. More details on the package man-
agers can be found on Libraries.io which is a platform we have used to identify and extract
details about variant families from the JavaScript and .NET ecosystem. Libraries.io refer-
ences packages from over 37 package managers where one can obtain software families in
the different ecosystems.

Implications for Forking Studies Observation 1–RQ2 and Observation 2–RQ2 suggest
that, in our studied divergent forks, direct integration using git outside of GitHub is more
commonly used than GitHub pull requests. This implies that simply relying on pull requests
to understand code propagation practices in divergent forks is not enough. Furthermore, it
seems that integration using git rebase is common, as per Observation 2–RQ2. Rebas-
ing complicates the git history and empirical studies that do not consider rebasing may
report skewed, biased and in accurate observations (Paixão and Maia 2019). Thus, in addi-
tion to looking beyond pull requests when studying code propagation, studies must also
consider rebased commits. In this paper, we contribute reusable tooling for identifying these
rebased commits.

Implications for Integration Support Tools Regardless of the integration technique used,
our findings based on the variants from the three ecosystems studied suggest that code prop-
agation rarely happens between a fork and its mainline. In our datasets, we observe 35 % of
54 mainline–fork pairs, 21 % of 590 mainline–fork pairs, and 11.5 % of 10,357 mainline–
fork pairs that integrated commits using at least one of the commit integration techniques
in the three ecosystems of Android, .NET, and JavaScript, respectively. The lack of integra-
tion may be problematic, since the fork variants may rely on the correct functionality of the
existing code from the mainline. This means that any bugs that exist in the mainline will
also exist in these forks, unless bug fixes are propagated from one variant to the other. How-
ever, current integration techniques (Lillack et al. 2019; Krueger and Berger 2020a; Krueger
et al. 2020) do not necessarily facilitate finding such bug fixes. For example, code integra-
tion using pull requests and git merge/rebase may not be the best when integrating
changes in variant forks since they involve syncing upstream / downstream all the changes
missing in the current branch. Alternatively, cherry picking is probably more suitable for
bug fixes since the developer can choose the exact commits they want to integrate. However,
GitHub’s current setup does not make it easy to identify commits to cherry-pick with out
digging through the branch’s history to identify relevant changes since the last code integra-
tion. As a result of the difficulty of finding commits to cherry-pick, developers may end up
fixing the same bugs, which would result in duplicated effort and wasted time. To check if
a possible duplication of effort occurs in our data set, we looked at the unique commits of
the variants and indeed found that developers independently update files shared by the vari-
ants. For example, in the mainline–fork variant pair (k9mail/k-9, imaeses/k-9)
the shared file ImapStore.java13 has been touched by 15 different developers in 142
commits in the mainline variant while in the fork variant it has been touched by one devel-
oper in 9 different commits. It is possible that these developers could be fixing similar
bugs existing in these shared artifacts. Moreover, the study of Jang et al. (2012) reports
that during the parallel maintenance of cloned code, a bug found in one clone can exist in
other clones, thus, it needs to be fixed multiple times. Furthermore, as a result of differ-
ent developers changing shared files, it is possible that these developers do not integrate

13src/com/fsck/k9/mail/store/ImapStore.java. Same path for both mainline and fork.

Empir Software Eng (2022) 27: 54 Page 37 of 47 54

https://libraries.io/
https://libraries.io/
src/com/fsck/k9/mail/store/ImapStore.java

code because of “fear of merge conflict.” In relation to this conjecture, several studies have
reported that merging diverged code between repositories is very laborious as a result of
merge conflicts (Stanciulescu et al. 2015; Brun et al. 2011; de Souza et al. 2003; Perry et al.
2001; Sousa et al. 2018; Mahmood et al. 2020; Silva et al. 2020). To this end, it would be
interesting for future research to interview the developers of our forks (and further forks) to
determine whether the lack of support for cherry picking bug fixes or specific functionality
does indeed contribute to the lack of code propagation. In that case, developing a patch rec-
ommendation tool that can inform developers of possible interesting changes as soon as they
are introduced in one variant and recommend them to other variants in a family can help
save developers’ efforts. The recent work by Ren et al. (2018) that focused on providing the
mainline with facilities to explore non-integrated changes in forks to find opportunities for
reuse is one step towards this direction. Our work opens up more opportunities for applying
such tools since, as mentioned above with respect to identifying divergent forks, we pro-
vide a technique for identifying such forks by combining information from GitHub and the
ecosystem’s main delivery platform as well as we mention various other ecosystems where
a similar strategy can be adopted. Finally, the limited sharing of changes can give rise to
quality issues. We did not specifically investigate the propagation of test cases, which might
not be propagated as well. Developing techniques for propagating test cases within families
could significantly enhance the quality of variants within families. The potential of test-case
propagation has recently been pointed out in a preliminary study by Mukelabai et al. (2021).

Implications for Future Research Our work is the first to perform a large-scale empirical
study on the practices used to manage software families within software ecosystems. Our
results give rise to the following open research questions that could be addressed as follow
up studies to further understand the evolution of such families.

1. More than two variants in a family: In the results of RQ1, we showed that there are quite
a number of families that had a FamilySize of more than two variants (i.e., mainline
with two ore more fork variants). However, in this study we only concentrated on the
practices used to manage mainline-fork pairs. For example, we did not look at fork-fork
pairs in a given family or looking at the holistic evolution the families that have more
than two variants. It would be interesting to extend the study to those families study the
evolution of the family.

2. Variant dependencies: In RQ1, we observed that in some variant pairs in all the three
ecosystems, one of the mainline or fork variant in the pair has more dependencies than
the other. This implies that the variant that has more dependencies implements new
functionality relating to the extra dependencies that are missing in the counterpart. It
would be interesting to investigate what / why the new functionality is missing in the
counterpart variant. Another interesting research relating to dependencies would be to
investigate if there are some variants in a family that have updated their code to depend
on new releases of the common dependencies, while other variants in the same family
are still dependent on the old releases of the dependencies. Updating code to implement
a new release of a dependency may involve fixing incompatibilities, especially if the
new release of the dependency involves a breaking change. To avoid effort duplication,
a tool could be developed that could help in transplanting patches (related to the incom-
patibility fixes), to other variants in the family that have not yet migrated their code to
the new API-breaking change of the release of the common dependency.

3. Limited sharing of changes in unique commits: In RQ2 we have observed that there is
limited sharing of the changes in the unique commits between the mainline–fork variant

Empir Software Eng (2022) 27: 5454 Page 38 of 47

pairs in the three ecosystems. We hypothesized that one of the possible reasons could be
the variants diverging from each other to solve different problems. We also stated that
fork variants could be created to support a new technology, serve different community,
target different content, to support a frozen feature in the mainline. Fork variants created
for the above reasons are likely to have little to share with their mainline variants. It
would be interesting to carry out a study involving mixed methods of quantitative and
user studies to verify our hypothesis.

4. Impediments in co-evolving variants in software families: Like in the study of Robles
and González-Barahona (2012), in our dataset we also observed that some mainline–
fork variant pairs continue to co-exist, while others one of the variants in the pair is
abandoned as the other continues to evolve. A Follow-up study can be conducted to
investigate the impediments to co-evolving these variants. Inspirations can be leveraged
from the studies of the co-evolution of Eclipse platform and its third-party plug-
ins (Businge et al. 2012a; 2013; 2010; 2012b; 2015; Businge et al. 2019; Kawuma
et al. 2016).

7 RelatedWork

We discuss related work on (i) variant forking and on (ii) code propagation in forked
projects, as well as we discuss (iii) general studies on forking.

7.1 Variant Forking

To understand the variants in our variant families, RQ2 explored the reasons forks were
created. While there are existing studies on variant forks, most of these were done in the pre-
GitHub days of SourceForge, before the advent of social coding environments (Nyman
et al. 2012; Robles and González-Barahona 2012; Viseur 2012; Nyman and Lindman 2013;
Laurent 2008; Nyman and Mikkonen 2011). These studies reported controversial percep-
tions around variant forks in the pre-GitHub days (Chua 2017; Dixion 2009; Ernst et al.
2010; Nyman and Mikkonen 2011; Nyman 2014; Raymond 2001). However, Zhou et al.
(2020) recently report that these perceptions have changed with the advent of GitHub. In
the Pre-GitHub days, variant forks were frequently considered as risky to projects, since
they could fragment a community and lead to confusion of developers and users. Jiang et al.
(2017) state that, although forking is controversial in the traditional open source software
(OSS) community, it is encouraged and is a built-in feature in GitHub. The authors further
report that developers carry out social forking to submit pull requests, fix bugs, add new fea-
tures, and keep copies. Zhou et al. (2020) also report that most variant forks start as social
forks. Robles and González-Barahona (2012) comprehensively study a carefully filtered list
of 220 potential forks of different projects that were referenced on Wikipedia. The authors
assume that a fork is significant if a reference to it appears in the English Wikipedia. They
found that technical reasons and discontinuation of the original project were the most com-
mon reasons for creating variant forks, accounting for 27.3% and 20% respectively. More
recently, Zhou et al. (2020) interviewed 18 developers of variant forks on GitHub to under-
stand reasons for forking in more modern social coding environments that explicitly support
forking. The authors report that the motivations they observed align with the above prior
studies.

All the above works studied forks for any type of project, not limited to a specific techno-
logical space (e.g., web applications or mobile apps). Our paper is different in that it focuses

Empir Software Eng (2022) 27: 54 Page 39 of 47 54

on Android apps, triangulating data from both GitHub and Google Play to study real-world
apps. Specifically, we study variant reuse practices in RQ2 and, different from both studies
((Zhou et al. 2020) and (Robles and González-Barahona 2012)), we investigate additional
phenomena, such as code propagation with RQ3.

Another difference between the current study and the study of Zhou et al. (2020) is the
heuristics the two studies employ to determine variant forks. Zhou et al. (2020) classify
forks on GitHub as variant forks using the following heuristics: (i) contain the phrase “fork
of” in the description, (ii) received at least three external pull requests, (iii) have at least
100 unique commits, (iv) have at least one year of development, and (v) have changed their
name. In our work, we use the external validation of a fork being listed on Google Play
under a different package name, and we use the description there to verify that this app is
indeed a variant of the mainline.

7.2 Code Propagation Practices

There are only a few studies that investigated code integration between a given repository
and its forks. Stanciulescu et al. (2015) studied forking on GitHub using a case study of
Marlin, an open source firmware for 3D printers. The authors observed that many forked
variants share their changes with the mainline. However, their work does not differentiate
between social and variant forks. Thus, we do not know whether this observed prevalent
code propagation is simply due to the fact that these are social forks created with the main
goal of contributing back to the original project (Zhou et al. 2019). In our current paper,
we are interested only in variant forks. Recently, Zhou et al. (2020) observed that only
16% of of their 15,306 studied variant forks ever syncronized or merged changes with their
mainline repository. However, based on their discussed threats to validity, it seems that the
authors relied only on common commit IDs to identify shared commits. As we explained
in Section 2, there are several integration techniques that result in propagated commits hav-
ing different commit IDs. Thus, relying only on the commit ID may result in missing other
shared commits. To mitigate this problem, our work identifies integrated commits that pre-
serve the commit ID as well as those that may have been integrated using techniques that
change the commit ID. Another study on code propagation practices work of Kononenko
et al. (2018). The authors considered three types of commit integration: GitHub merge,
cherry-pick merge and commit squashing. In comparison to our study, we only do not study
commit squashing but we look at other techniques the authors did not consider like: GitHub
rebase and squash pull requests as well as git merge and rebase

Code propagation practices do not necessarily have to be in the context of forks. For
example, German et al. (2016) investigated how Linux uses Git. The authors stated that code
changes are variant to track because of the proliferation of code repositories and because
developers modify (“rebase”) and filter (“cherry-pick”) the history of these changes to
streamline their integration into the repositories of other developers. To this end, the authors
presented a method continousMining that crawls all known git repositories of a project mul-
tiple times a day to record and analyze all change-sets of a project. They authors state that
continousMining not only yields a complete git history, but also catches phenomena that are
variant to study such as rebasing and cherry-picking. While we do not continuously capture
the “live” history of a software project, we are able to capture rebased and cherry-picked
commits in the context of forked projects by relying on the commit meta data, after a thor-
ough investigation of how this meta data changes depending on the propagation strategy
.

Empir Software Eng (2022) 27: 5454 Page 40 of 47

7.3 Other Studies About Forking

Gamalielsson and Lundell (2014) studied the long term sustainability of Open Source soft-
ware communities in Open Source software projects involving a fork. The authors study
was based on LibreOffice project, which is a fork from the OpenOffice project.
They wanted to understand how Open Source software communities were affected by a
forking. The authors undertook an analysis of the LibreOffice project and the related
OpenOffice and Apache OpenOffice projects by reviewing documented project
information and a quantitative analysis of project repository data as well as a first hand
experiences from contributors in the LibreOffice community. Their results strongly
suggested a long-term sustainable LibreOffice community that had no signs of stag-
nation in the LibreOffice project 33 months after the fork. They also reported that
good practice with respect to governance of Open Source software projects is perceived by
community members as a fundamental challenge for establishing sustainable communities.
Nyman (Nyman 2014) interviewed developers to understand their views on forking. His
findings from the interviews differentiate good forks, which are those that (i) revive aban-
doned programs, (ii) experiment with and customize existing programs, or (iii) minimize
tyranny and resolve disputes by allowing involved parties to develop their own versions of
the program, vs. bad forks, which are those that (i) create confusion among users or (ii) add
extra work among developers (including both duplication of efforts and increased work if
attempting to maintain compatibility).

8 Threats to Validity

Internal Validity We identify four issues that could threaten the internal validity of our
results: (1) In Section 3.1, the heuristics used for app family data identification in Steps 2 &
6 resulted in mismatch in the mapping of some the forks on GitHub and Google Play. We
mitigated the threat by carrying out a through manual analysis in Section 3.1–Step 7 and
discarded the mismatched apps. Some of the steps we carried out during Android variant’s
data collection are manual, and any errors in those could affect our results. (2) Although we
did not observe any cases where the developer changed the message in cherry-picked com-
mits, we acknowledge that our algorithm will not be able to identify such cases; instead,
our algorithm will identify them as unique commits in the respective variants. (3) We also
acknowledge that our tool chain may miss some commits that are integrated using more
than one integration technique. For example in Section 3.3.3, we presented the unclassi-
fied merged pull requests, which were listed on the GitHub API as merged yet they were
not merged in the master branch. We discovered that the pull requests were integrated in
a different branch other than the mainline but had all failed the build integration tests. To
this end, when integrating commits from a fork→ mainline, as a “best practice”, developers
may wish to first integrate the commits into a different branch (say staging branch) per-
form and integration test and then later integrate them into the master. However, following
the “best practice” we have explained, if the developer first integrates into the development
branch using one commit integration technique. Thereafter the developer may wish inte-
grate the same commits into the master using a different technique that changes the original
integrator’s metadata (for example cherry-picking). In that case, our toolchain will miss
such commits. (4) In Section 2.2, we also stated that our scripts are not able to identify
the integrated commits if the integrator uses git commands that rewrite the commit history.

Empir Software Eng (2022) 27: 54 Page 41 of 47 54

However, like we stated in Section 3.3.3, we believe that the practice of rewriting contribu-
tions from the community is likely to be rare with experienced developers, since rewriting
changes commit authorship. (5) In Step 6 of Section 3.1, we eliminated all Android main-
lines that did not at least one fork having a different package name on Google Play store.
This means that we eliminate fork variants that were created for different markets other than
Google play. However, unlike Google play where one can use an app’s package name as
a unique ID on Google play, other markets, such as anzhi, apkmirror, appsapk
do not implement this strategy which means we cannot easily identify the correct app for
a given GitHub repository. Therefore, we intentionally focus only on Android apps that are
distributed on Google play store, which limits the number of Android families we are able
to identify.

Construct Validity The calculation of variability percentage of the fork variants treats com-
mits the same way irrespective of the number of files touched. For example, a commit that
has touched 100 files is treated the same as one that has just touched on file. While this may
be misleading, the measure provides some indication of unique development activity.

External Validity We analyzed only 54 Android mainline–fork variant pairs while there
exists millions of android applications on Google Play and other Android markets, which
means that our results might not be representative of all the Android applications. How-
ever, we also analyze mainline–fork variant pairs from two other ecosystems that also show
similar results and behavior.

9 Conclusion

We presented a large-scale exploratory study on reuse and maintenance practices via code
propagation between variant forks and their mainline counterparts in software ecosystems.
Our subject ecosystems cover different technological spaces: Android, JavaScript,
and .NET. As part of our study, we designed a systematic method to identify real variant
forks as well.

We identified and analyzed families of variants that are maintained together and that
exist both on the official package distribution platforms (Google play, nuget, and npm)
as well as on GitHub, allowing us to analyze reuse practices in depth. For variants in
a given ecosystem, we mined from both sources of information—from GitHub and the
package distribution site—to study their characteristics, including their variations, and code-
propagation practices. In the Android ecosystem we identified 38 software families with
a total of 54 mainline–fork pairs, in the .NET ecosystem 526 software families with 590
mainline–fork pairs, and in the JavaScript ecosystem 8,837 JavaScript software families
with 10,357 mainline–fork pairs. We provide a toolchain for analyzing code integration
between any mainline-fork variant pair. Regardless of the integration technique used, our
findings suggest that code integration rarely happens between a fork and its mainline. In
our study, in the Android ecosystem, we observed only 19 of the 54 (35 %) that integrated
commits using at least one of the commit integration techniques we discussed. In the .NET
ecosystem, we observed a total of 126 of the 590 mainline–fork pairs pairs (21 %) that that
integrated commits using at least one of the commit integration techniques. In the JavaScript
ecosystem, we observe a total of 1,189 of the 10,357 mainline–fork pairs pairs (11.5 %) that
integrated commits using at least one of the commit integration techniques.

Empir Software Eng (2022) 27: 5454 Page 42 of 47

Overall, we analyzed variant forks on GitHub for two main reasons: (1) many previous
studies focused on social forks, (2) the few studies on variant forks are conducted in the pre-
GitHub days of SourceForge. In the future, it would be interesting to investigate a middle
ground between the variant forks and social forks. For example, one could investigate if the
practices observed in the variant forks are different from those of social forks.

Acknowledgements We thank Serge Demeyer for comments on earlier drafts of this work.
John Businge’s work is supported by the FWO-Vlaanderen and F.R.S.-FNRS via the EOS project

30446992 SECO-ASSIST. Thorsten Berger’s work is supported by Swedish research council and Wallen-
berg Academy. Sarah Nadi’s research was undertaken, in part, thanks to funding from the Canada Research
Chairs Program.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

Online appendix (2020) https://github.com/johnxu21/emse2020
GitHub I. (2020). About pull request merges. https://help.github.com/en/github/collaborating-with-

issues-and-pull-requests/about-pull-request-merges
Apel S, Batory D, Kȧstner C, Saake G (2013) Feature-oriented software product lines, Springer, Berlin
Berger T, Pfeiffer R, Tartler R, Dienst S, Czarnecki K, Wasowski A, She S (2014) Variability mechanisms in

software ecosystems. Inf Softw Technol 56(11):1520–1535
Berger T, Steghöfer JP, Ziadi T, Robin J, Martinez J (2020) The state of adoption and the challenges of

systematic variability management in industry. Empir Softw Eng 25:1755–1797
Brun Y, Holmes R, Ernst MD, Notkin D (2011) Proactive detection of collaboration conflicts. In: Pro-

ceedings of the 19th ACM SIGSOFT symposium and the 13th European conference on foundations of
software engineering, ESEC/FSE ’11. Association for Computing Machinery, New York, pp 168–178.
https://doi.org/10.1145/2025113.2025139

Businge J, Decan A, Zerouali A, Mens T, Demeyer S (2020) An empirical investigation of forks as variants
in the npm package distribution. In: Papadakis M, Cordy M (eds) Proceedings of the 19th Belgium-
Netherlands software evolution workshop, BENEVOL 2020, Luxembourg, December 3-4, 2020, CEUR
Workshop Proceedings, vol. 2912. CEUR-WS.org. http://ceur-ws.org/Vol-2912/./paper1.pdf

Businge J, Kawuma S, Bainomugisha E, Khomh F, Nabaasa E (2017) Code authorship and fault-proneness
of open-source android applications: An empirical study. In: Proceedings of the 13th international con-
ference on predictive models and data analytics in software engineering, PROMISE. ACM, New York,
pp 33–42. https://doi.org/10.1145/3127005.3127009

Businge J, Kawuma S, Openja M, Bainomugisha E, Serebrenik A (2019) How stable are eclipse applica-
tion framework internal interfaces? In: 2019 IEEE 26th international conference on software analysis,
evolution and reengineering (SANER). pp 117–127. https://doi.org/10.1109/SANER.2019.8668018

Businge J, Openja M, Kavaler D, Bainomugisha E, Khomh F, Filkov V (2019) Studying android app
popularity by cross-linking github and google play store. In: SANER

Businge J, Openja M, Nadi S, Bainomugisha E, Berger T (2018) Clone-based variability management in
the android ecosystem. In: 2018 IEEE international conference on software maintenance and evolution,
ICSME 2018, Madrid, Spain, September 23-29, 2018, pp 625–634

Businge J, Serebrenik A, van den Brand M (2012) Compatibility prediction of eclipse third-party plug-ins
in new eclipse releases. In: 12th IEEE international working conference on source code analysis and
manipulation, SCAM 2012, Riva del Garda, Italy, September 23-24, 2012, pp 164–173

Businge J, Serebrenik A, van den Brand M (2012) Survival of eclipse third-party plug-ins. In: 28th IEEE
international conference on software maintenance, ICSM 2012, Trento, Italy, September 23-28, 2012,
pp 368–377. https://doi.org/10.1109/ICSM.2012.6405295

Empir Software Eng (2022) 27: 54 Page 43 of 47 54

http://creativecommons.org/licenses/by/4.0/
https://github.com/johnxu21/emse2020
https://help.github.com/en/github/collaborating-with-issues-and-pull-requests/about-pull-request-merges
https://help.github.com/en/github/collaborating-with-
https://doi.org/10.1145/2025113.2025139
http://ceur-ws.org/Vol-2912/./paper1.pdf
https://doi.org/10.1145/3127005.3127009
https://doi.org/10.1109/SANER.2019.8668018
https://doi.org/10.1109/ICSM.2012.6405295

Businge J, Serebrenik A, van den Brand M (2013) Analyzing the eclipse API usage: Putting the developer
in the loop. In: 17th European conference on software maintenance and reengineering, CSMR 2013,
Genova, Italy, March 5-8, 2013. pp 37–46

Businge J, Serebrenik A, van den Brand MGJ (2010) An empirical study of the evolution of Eclipse third-
party plug-ins. In: EVOL-IWPSE’10. ACM, pp 63–72

Businge J, Serebrenik A, van den Brand MGJ (2015) Eclipse API usage: the good and the bad. Softw Qual J
23(1):107–141. https://doi.org/10.1007/s11219-013-9221-3

Chacon S, Straub B (2014) git tools - rewriting history. https://git-scm.com/book/en/v2/Git-Tools-
Rewriting-History

Chacon S, Straub B (2014) Pro Git Apress
Chua BB (2017) A survey paper on open source forking motivation reasons and challenges. In: Alias RA,

Ling PS, Bahri S, Finnegan P, Sia CL (eds) 21st Pacific Asia conference on information systems, PACIS
2017, Langkawi, Malaysia, July 16-20, 2017. p 75

Czarnecki KBanâtre JP, Fradet P, Giavitto JL, Michel O (eds) (2005) Overview of generative software
development. Springer, Berlin

Decan A, Mens T, Grosjean P (2019) An empirical comparison of dependency network evolution
in seven software packaging ecosystems. Empir Softw Eng 24(1):381–416. https://doi.org/10.1007/
s10664-017-9589-y

Dixion J (2009) Different kinds of open source forks – salad, dinner, and fish. https://jamesdixon.wordpress.
com/2009/05/13/different-kinds-of-open-source-forks-salad-dinner-and-fish/

Dubinsky Y, Rubin J, Berger T, Duszynski S, Becker M, Czarnecki K (2013) An exploratory study of cloning
in industrial software product lines. In: CSMR

Ernst NA, Easterbrook SM, Mylopoulos J (2010) Code forking in open-source software: a requirements
perspective. arXiv:1004.2889

Gamalielsson J, Lundell B (2014) Sustainability of open source software communities
beyond a fork: How and why has the libreoffice project evolved? J Syst Softw 89:128–
145. https://doi.org/10.1016/j.jss.2013.11.1077. http://www.sciencedirect.com/science/article/pii/
S0164121213002744

German DM, Adams B, Hassan AE (2016) Continuously mining distributed version control systems: An
empirical study of how linux uses git. Empir Softw Eng 21(1):260–299

Jang J, Agrawal A, Brumley D (2012) Redebug: Finding unpatched code clones in entire OS distributions. In:
IEEE symposium on security and privacy, SP 2012, 21-23 May 2012, San Francisco, California, USA.
IEEE Computer Society, pp 48–62. https://doi.org/10.1109/SP.2012.13

Jiang J, Lo D, He J, Xia X, Kochhar PS, Zhang L (2017) Why and how developers fork what from whom in
github. Empir Softw Eng 22(1):547–578. https://doi.org/10.1007/s10664-016-9436-6

Kalliamvakou E, Gousios G, Blincoe K, Singer L, German DM, Damian D (2014) The promises and perils
of mining github. In: MSR

Kawuma S, Businge J, Bainomugisha E (2016) Can we find stable alternatives for unstable eclipse inter-
faces? In: 2016 IEEE 24th international conference on program comprehension (ICPC), pp. 1–10.
https://doi.org/10.1109/ICPC.2016.7503716

Kononenko O, Rose T, Baysal O, Godfrey M, Theisen D, de Water B (2018) Studying pull request merges: a
case study of shopify’s active merchant. In: Proceedings of the 40th international conference on software
engineering: software engineering in practice, ICSE-SEIP ’18. Association for Computing Machinery,
New York, pp 124–133. https://doi.org/10.1145/3183519.3183542

Krueger J, Berger T (2020) Activities and costs of re-engineering cloned variants into an integrated plat-
form. In: 14th international working conference on variability modelling of software-intensive systems
(VaMoS)

Krueger J, Berger T (2020) An empirical analysis of the costs of clone- and platform-oriented software reuse.
In: 28th ACM SIGSOFT international symposium on the foundations of software engineering (FSE)

Krueger J, Mahmood W, Berger T (2020) Promote-pl: A round-trip engineering process model for adopting
and evolving product lines. In: 24th ACM international systems and software product line conference
(SPLC)

Laurent AS (2008) Understanding open source and free software licensing. O’Reilly Media, Newton
Li L, Martinez J, Ziadi T, Bissyandé TF, Klein J, Traon YL (2016) Mining families of android applications

for extractive spl adoption. In: SPLC
Lillack M, Stanciulescu S, Hedman W, Berger T, Wasowski A (2019) Intention-based integration of software

variants. In: 41st international conference on software engineering (ICSE)
Mahmood W, Chagama M, Berger T, Hebig R (2020) Causes of merge conflicts: A case study of elastic-

search. In: 14th international working conference on variability modelling of software-intensive systems
(VaMoS)

Empir Software Eng (2022) 27: 5454 Page 44 of 47

https://doi.org/10.1007/s11219-013-9221-3
https://git-scm.com/book/en/v2/Git-Tools-Rewriting-History
https://git-scm.com/book/en/v2/Git-Tools-
https://doi.org/10.1007/s10664-017-9589-y
https://doi.org/10.1007/
https://jamesdixon.wordpress.com/2009/05/13/different-kinds-of-open-source-forks-salad-dinner-and-fish/
https://jamesdixon.wordpress.com/2009/05/13/different-kinds-of-open-source-forks-salad-dinner-and-fish/
http://arxiv.org/abs/1004.2889
https://doi.org/10.1016/j.jss.2013.11.1077
http://www.sciencedirect.com/science/article/pii/S0164121213002744
http://www.sciencedirect.com/science/article/pii/S0164121213002744
https://doi.org/10.1109/SP.2012.13
https://doi.org/10.1007/s10664-016-9436-6
https://doi.org/10.1109/ICPC.2016.7503716
https://doi.org/10.1145/3183519.3183542

Mojica IJ, Adams B, Nagappan M, Dienst S, Berger T, Hassan AE (2014) A large scale empirical study on
software reuse in mobile apps. IEEE Softw 31(2):78–86

Mukelabai M, Berger T, Borba P (2021) Semi-automated test-case propagation in fork ecosystems. In: 43rd
international conference on software engineering, new ideas and emerging results track (ICSE/NIER)

Munaiah N, Kroh S, Cabrey C, Nagappan M (2017) Curating GitHub for engineered software projects. Empir
Softw Eng 22(6):3219–3253

Nyman L (2014) Hackers on forking. In: Proceedings of The international symposium on open collaboration.
pp 1–10

Nyman L, Lindman J (2013) Code forking, governance, and sustainability in open source software. Technol
Innov Manag Rev 3:7–12

Nyman L, Mikkonen T (2011) To fork or not to fork: Fork motivations in sourceforge projects. In: Open
source systems: grounding research. pp 259–268

Nyman L, Mikkonen T, Lindman J, Fougère M (2012) Perspectives on code forking and sustain-
ability in open source software. In: Open source systems: long-term sustainability. pp 274–
279

Openja M, Adams B, Khomh F (2020) Analysis of modern release engineering topics : – a large-scale study
using stackoverflow –. In: 2020 IEEE international conference on software maintenance and evolution
(ICSME). pp 104–114. https://doi.org/10.1109/ICSME46990.2020.00020

Paixão M, Maia P (2019) Rebasing in code review considered harmful: A large-scale empirical investigation.
In: 2019 19th international working conference on source code analysis and manipulation (SCAM). pp
45–55

Parnas DL (1976) On the design and development of program families. IEEE Trans Softw Eng 2(1):1–9.
https://doi.org/10.1109/TSE.1976.233797

Perry DE, Siy HP, Votta LG (2001) Parallel changes in large-scale software development: An observational
case study. ACM Trans Softw Eng Methodol 10(3):308–337. https://doi.org/10.1145/383876.383878

Raymond ES (2001) The Cathedral & the Bazaar: Musings on linux and open source by an accidental
revolutionary. Newton, O’Reilly Media Inc

Ren L, Zhou S, Kästner C (2018) Poster: forks insight: providing an overview of github forks. In: 2018
IEEE/ACM 40th international conference on software engineering: companion (ICSE-Companion). pp
179–180

Robles G, González-Barahona JM (2012) A comprehensive study of software forks: dates, reasons and
outcomes. In: Open source systems: long-term sustainability. pp 1–14

Sattler F, von Rhein A, Berger T, Johansson NS, Hardø MM, Apel S (2018) Lifting inter-app data-flow
analysis to large app sets. Autom Softw Eng 25:315–346

Silva LD, Borba P, Mahmood W, Berger T, Moisakis J (2020) Detecting semantic conflicts via auto-
mated behavior change detection. In: 36th IEEE international conference on software maintenance and
evolution (ICSME)

Sousa M, Dillig I, Lahiri SK (2018) Verified three-way program merge. Proc ACM Program Lang
2(OOPSLA). https://doi.org/10.1145/3276535

de Souza CRB, Redmiles D, Dourish P. (2003) Breaking the code, moving between private and public work
in collaborative software development. In: Proceedings of the 2003 international ACM SIGGROUP
conference on supporting group work, GROUP ’03. Association for Computing Machinery, New York,
pp 105–114. https://doi.org/10.1145/958160.958177

Stanciulescu S, Schulze S, Wasowski A (2015) Forked and integrated variants in an open-source firmware
project. In: IEEE international conference on software maintenance and evolution (ICSME), ICSME ’15

Sung C, Lahiri SK, Kaufman M, Choudhury P, Wang C (2020) Towards understanding and fix-
ing upstream merge induced conflicts in divergent forks: An industrial case study. In: Proceed-
ings of the ACM/IEEE 42nd international conference on software engineering: software engineer-
ing in practice, ICSE-SEIP ’20. Association for Computing Machinery, New York, pp 172–181.
https://doi.org/10.1145/3377813.3381362

Vandehey S (2019) Rebase and merge. https://cloudfour.com/thinks/squashing-your-pull-requests/
Viseur R (2012) Forks impacts and motivations in free and open source projects. Int J Adv Comput Sci Appl

- IJACSA 3(2)
Zhou S, Stănciulescu C, Leßenich O, Xiong Y, Wasowski A, Kästner C (2018) Identifying features in forks.

In: Proceedings of the 40th international conference on software engineering. pp 105–116
Zhou S, Vasilescu B, Kästner C (2019) What the fork: A study of inefficient and efficient forking practices

in social coding. In: Proceedings of the 2019 27th ACM joint meeting on european software engineering
conference and symposium on the foundations of software engineering. pp 350–361

Zhou S, Vasilescu B, Kästner C (2020) How has forking changed in the last 20 years? a study of hard forks
on github. In: Proceedings of the 42nd international conference on software engineering. Accepted

Empir Software Eng (2022) 27: 54 Page 45 of 47 54

https://doi.org/10.1109/ICSME46990.2020.00020
https://doi.org/10.1109/TSE.1976.233797
https://doi.org/10.1145/383876.383878
https://doi.org/10.1145/3276535
https://doi.org/10.1145/958160.958177
https://doi.org/10.1145/3377813.3381362
https://cloudfour.com/thinks/squashing-your-pull-requests/

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

John Businge is a Postdoctoral fellow in the LORE lab at the Uni-
versity of Antwerp, Belgium. He received his PhD from Eindhoven
University of Technology, the Netherlands in 2013. After receiving
his PhD, he was a lecturer at Mbarara University of Science and
Technology, Uganda. For six months in 2016 he was a Fulbright
research scholar at the University of California, Davis in the U.S.A.
His research focuses on mining software repositories, clone detection,
program analysis, variability management, and empirical software
engineering.

Moses Openja is a PhD student and a member of SWAT Lab Poly-
technique Montreal, Canada. He received his bachelor’s degree in
2017 from Mbarara University of Science and Technology, Uganda
and his masters degree in 2021 from Polytechnique Montreal,
Canada. His research area includes software quality of machine
learning applications, empirical software Engineering, Software
maintenance and evolution in the software ecosystem, and release
engineering.

SarahNadi is an Assistant Professor in the Department of Computing
Science at the University of Alberta, and a Tier II Canada Research
Chair in Software Reuse. She obtained her Master’s (2010) and PhD
(2014) degrees from the University of Waterloo in Canada. Before
joining the University of Alberta in 2016, she spent approximately
two years as a post-doctoral researcher at the Technische Univer-
sitat Darmstadt in Germany. Sarah’s research focuses on providing
intelligent support for software maintenance and reuse, including cre-
ating recommender systems to guide developers through correctly
and securely reusing individual functionality from external libraries.

Empir Software Eng (2022) 27: 5454 Page 46 of 47

Thorsten Berger is a Professor in Computer Science at Ruhr Uni-
versity Bochum in Germany. After receiving the PhD degree from
the University of Leipzig in Germany in 2013, he was a Postdoc-
toral Fellow at the University of Waterloo in Canada and the IT
University of Copenhagen in Denmark, and then an Associate Profes-
sor jointly at Chalmers University of Technology and the University
of Gothenburg in Sweden. He received competitive grants from the
Swedish Research Council, the Wallenberg Autonomous Systems
Program, Vinnova Sweden (EU ITEA), and the European Union. He
is a fellow of the Wallenberg Academy—one of the highest recogni-
tions for researchers in Sweden. He received two best-paper awards
and one most influential paper award. His service was recognized
with distinguished reviewer awards at the tier-one conferences ASE
2018 and ICSE 2020. His research focuses on model-driven software
engineering, program analysis, and empirical software engineering.

Affiliations

John Businge1,2 ·Moses Openja3 · Sarah Nadi4 · Thorsten Berger5,6

Moses Openja
openjamosesopm@gmail.com

Sarah Nadi
nadi@ualberta.ca

Thorsten Berger
thorsten.berger@rub.de

1 Mbarara University of Science and Technology, Mbarara, Uganda
2 University of Antwerp, Antwerp, Belgium
3 SWAT Lab., École Polytechnique de Montréal, Montréal, Canada
4 University of Alberta, Edmonton, Canada
5 Ruhr University Bochum, Bochum, Germany
6 Chalmers | University of Gothenburg, Gothenburg, Sweden

Empir Software Eng (2022) 27: 54 Page 47 of 47 54

http://orcid.org/0000-0003-3206-7085
mailto: openjamosesopm@gmail.com
mailto: nadi@ualberta.ca
mailto: thorsten.berger@rub.de

	Reuse and maintenance practices among divergent forks...
	Abstract
	Introduction
	Background on Code Propagation Strategies
	Propagation with GitHub Facilities
	Propagation with Git Facilities (Cherry Pick, Merge, and Rebase Commits)

	Methodology
	Identifying Software Families
	Identifying Android Families
	Identifying JavaScript and .NET Families

	Identifying Family Characteristics (RQ1)
	General Characteristics
	Family Size
	Variant Package Dependencies
	Android variant categories

	Identifying Maintenance Activities (JavaScript & .NET only)
	Identifying Variant Ownership Characteristics
	Identifying Variant Popularity

	Identifying Code Propagation (RQ2)
	Identifying Common Commits
	Identifying Unique Commits
	Verifying our Commit Categorization Methods
	Fork Variability Percentage

	Variant Family Characteristics (RQ1)
	General Variant Characteristics
	Variant Maintenance Activity (JavaScript & .NET)
	Variant Ownership Characteristics
	Variant Popularity Characteristics

	Code Propagation in the Software Families (RQ2)
	Pull Request Propagation (Commit Integration Inside GitHub)
	Git Propagation (Commit Integration Outside GitHub)
	Fork Variability Percentage

	Summary

	Discussion and Implications
	Implications for Identifying Variant Forks
	Implications for Forking Studies
	Implications for Integration Support Tools
	Implications for Future Research

	Related Work
	Variant Forking
	Code Propagation Practices
	Other Studies About Forking

	Threats to Validity
	Internal Validity
	Construct Validity
	External Validity

	Conclusion
	References
	Affiliations

