2022 IEEE International Conference on Software Analysis, Evolution and Reengineering (SANER) | 978-1-6654-3786-8/22/$31.00 ©2022 IEEE | DOI: 10.1109/SANER53432.2022.00105

2022 IEEE International Conference on Software Analysis, Evolution and Reengineering (SANER)

Variant Forks — Motivations and Impediments

John Businge,” Ahmed Zerouali,* Alexandre Decan,” Tom Mens," Serge Demeyer,” and Coen De Roover,*
*University of Antwerp, Antwerp, Belgium
{ john.businge | serge.demeyer } @uantwerpen.be
TUniversity of Mons, Mons, Belgium
{ alexandre.decan | tom.mens } @umons.ac.be
¥ Vrije Universiteit Brussels, Brussels, Belgium
{ ahmed.zerouali | coen.de.roover } @vub.be

Abstract—Social coding platforms centred around git provide
explicit facilities to share code between projects: forks, pull
requests, cherry-picking to name but a few. Variant forks are an
interesting phenomenon in that respect, as they permit for differ-
ent projects to peacefully co-exist, yet explicitly acknowledge the
common ancestry. Several researchers analysed forking practices
on open source platforms and observed that variant forks get
created frequently. However, little is known on the motivations
for launching such a variant fork. Is it mainly technical (e.g.,
diverging features), governance (e.g., diverging interests), legal
(e.g., diverging licences), or do other factors come into play? We
report the results of an exploratory qualitative analysis on the
motivations behind creating and maintaining variant forks. We
surveyed 105 maintainers of different active open source variant
projects hosted on GitHub. Our study extends previous findings,
identifying a number of fine-grained common motivations for
launching a variant fork and listing concrete impediments for
maintaining the co-existing projects.

Index Terms—Mainlines, Variants, GitHub, Software ecosys-
tems, Maintenance, Variability

I. INTRODUCTION

The collaborative nature of open source software (OSS)
development has led to the advent of social coding platforms
centred around the git version control system, such as GitHub,
BitBucket, and GitLab. These platforms bring the collaborative
nature and code reuse of OSS development to another level,
via facilities like forking, pull requests and cherry-picking.
Developers may fork a mainline repository into a new forked
repository and take governance over the latter while preserving
the full revision history of the former. Before the advent of
social coding platforms, forking was rare and was typically
intended to compete with the original project [1]-[6].

With the rise of pull-based development [7], forking has be-
come more common and the community typically characterises
forks by their purpose [8]. Social forks are created for isolated
development with the goal of contributing back to the mainline.
In contract, variant forks are created by splitting off a new
development branch to steer development into a new direction,
while leveraging the code of the mainline project [9].

Several studies have investigated the motivations behind
variant forks in the context of OSS projects [1]-[6]. However,
most have been conducted before the rise of social coding
platforms and it is known that GitHub has significantly changed
the perception and practices of forking [8]. In this social coding
era, variant projects often evolve out of social forks rather

than being planned deliberately [8]. To this end, social coding
platforms often enable mainlines and variants to peacefully co-
exist rather than compete. Little is known on the motivations for
creating variants in the social coding era, making it worthwhile
to revisit the motivation for creating variant forks (why?).

Social coding platforms offer many facilities for code sharing
(e.g., pull requests and cherry-picking). So if projects co-
exist, one would expect variant forks to take advantage of this
common ancestry, and frequently exchange interesting updates
(e.g., patches) on the common artefacts. Despite advanced code-
sharing facilities, Businge et al. observed very limited code
integration, using the git and GitHub facilities, between the
mainline and its variant projects [10]. This suggests that code
sharing facilities in themselves are not enough for graceful
co-evolution, making it worthwhile to investigate impediments
for co-evolution (how?).

We therefore explore two research questions:

RQI1: Why do developers create and maintain variants
on GitHub? The literature pre-dating git and social coding
platforms identified four categories of motivations for creating
variant forks: technical (e.g., diverging features), governance
(e.g., diverging interests), legal (e.g., diverging licences), and
personal (e.g., diverging principles). RQ1 aims to investigate
whether those motivations for variant forks are still the same,
or whether new factors have come into play.

RQ2: How do variant projects evolve with respect to the
mainline? If, despite advanced code sharing facilities, there
is limited code integration between the mainline and the
variant projects, a possible cause could be related to how the
teams working on the variants and the mainline are structured.
Therefore, RQ)2 investigates the overlap between the teams
maintaining the mainline and variant forks, and how these
teams interact. As such we hope to identify impediments for
co-evolution.

The investigations are based on an online survey conducted
with 105 maintainers involved in different active variant forks
hosted on GitHub.

Our contributions are manifold: we identify new reasons
for creating and maintaining variant forks; we identify and
categorize different code reuse and change propagation prac-
tices between a variant and its mainline; we confirm that little
code integration occurs between a variant and its mainline, and
uncover concrete reasons for this phenomenon. We discuss

978-1-6654-3786-8/22/$31.00 ©2022 IEEE 867
DOI 10.1109/SANERS53432.2022.00105
Authorized licensed use limited to: University of Massachusetts Amherst. Downloaded on June 19,2025 at 02:17:19 UTC from IEEE Xplore. Restrictions apply.

the implications of these findings and how tools can help to
achieve an efficient code integration and collaboration between
mainlines and diverging variant forks. Our replication package
can be found .

II. RELATED WORK

Previous research has focused on (A) motivations for creating
or maintaining variant forks; and (B) interaction between variant
forks and their mainline.

A. Motivations for creating or maintaining variant forks

Several studies have investigated motivations for creating
and maintaining variant forks. However, most of these studies
were carried out on SourceForge, pre-dating the advent of
social coding platforms like GitHub [1]-[5], [11]. Several of
those early studies report perceived controversy around variant
forks [5], [12]-[17]. Jiang et al. [18] state that, although forking
may have been controversial in the OSS community, it is now
encouraged as a built-in feature on GitHub. They further report
that developers create social forks of repositories to submit
pull requests, fix bugs, and add new features. Zhou et al. [8]
conclude that most variant forks started as social forks and that
perceptions of forks have changed with the advent of GitHub.
Robles and Gonzélez-Barahona [2] carried out a comprehensive
pre-GitHub study on a carefully filtered list of 220 potential
forks referenced on Wikipedia. They report motivations and
outcomes for forking on these 220 projects.

The literature has uncovered a number of motivations for
creating variants. Below, we present those where both the
mainline and variant co-evolve together. The motivation of
reviving an abandoned project is not considered in this study
since it does involve co-evolution if the variants.

o Technical (addition of functionality). Sometimes devel-
opers want to include new functionality into the project,
but the main developer(s) do not accept the contribution.
An example is Poppler, a fork of xpdf relying on the
poppler library [2].

o Governance disputes. Some contributors from the com-
munity create a variant project because they feel that their
feedback is not heard, or because the maintainers of the
mainline are unresponsive or too slow at accepting their
patches. A well-known example is a fork of GNU Emacs
(originally Lucid) which was created as a result of the
significant delays in bringing out a new version to support
the Energize C++ IDE [19].

o Legal issues. This includes disagreements on the license
and trademarks, and changes to conform to rules and
regulations. An example is X.Org, which originated from
XFree86 [2], [19]. XFree86 was originally MIT/X
open source license that is GPL-compatible and then
was changed to one that was not GPL-compatible. This
caused many practical problems and a serious uproar in
the community, resulting in the project fork X.Org.

110.5281/zenodo.5855808

o Personal reasons. In some situations, the developer team
disagrees on fundamental issues (beyond mere technical
matters) related to the software development process and
the project. An example is the OpenBSD fork from
NetBSD. One of the developers of NetBSD had a
disagreement with the rest of the core developers and
decided fork and focus his efforts on OpenBSD [20].

Focusing on variant forks in the Android ecosystem, Businge
et al. [21] found that re-branding, simple customizations, feature
extension, and implementation of different but related features
are the main motivations to create forks of Android apps. Zhou
et al. [8] interviewed 18 developers of hard forks on GitHub to
understand reasons for forking in social coding environments
that explicitly support forking. The motivations they observed
align with the findings of the aforementioned studies.

Sung et al. [9] investigated variant forks in an industrial case
study to uncover the implications of frequent merges from the
mainline and the resulting merge conflicts in the variant forks.
They implemented a tool that can automatically resolve up to
40% of 8 types of mainline-induced build breaks.

While the pre-GitHub studies reported perceived controversy
around variant forks, Zhou et al. [8] report that this controversy
has reduced with the advent of GitHub. Jiang et al. [18] report
that, while forking is considered controversial in traditional
OSS communities, it is actually embraced as a built-in feature
in GitHub. Our study builds on these previous studies to identify
whether the motivations for variant forks are still the same or
whether new factors have come into play.

B. Interaction between variant forks and their mainline

We have only encountered two studies that investigated the
interaction between variant forks and mainlines [8], [10]. Zhou
et al. [8] conducted 18 semi-structured developer interviews.
Many respondents indicated being interested in coordination
across repositories, either for eventually merging changes
back into the mainline, or to monitor activity in the mainline
repository and select and integrate interesting updates into
their variant project. Businge et al. [10] also investigated
the interaction between mainline and variants. The authors
quantitatively investigated code propagation among variants
and their mainline in three software ecosystems. They found
that only about 11% of the 10,979 mainline—variant pairs
had integrated code between them. Since the mainlines and
variants share a common code base, and with the collaborative
maintenance facilities of git and the pull-based development
model, one would expect more interactions between the
mainline and its variants. We hypothesise that there are
some impediments to enable such interactions. Since the two
aforementioned studies do not report any such impediments,
we decided to carry an exploratory qualitative survey with
variant maintainers to identify possible impediments.

III. STUDY DESIGN

To understand the motivations behind the creation and
maintenance of variant forks we conducted an online survey
with maintainers of variant forks. In this section, we explain

Authorized licensed use limited to: University of Massachusetts Amherst. Downloaded on June 19,2025 at 02:17:19 UTC from IEEE Xplore. Restrictions apply.

how we (i) designed the survey protocol; (ii) collected mainline—
variant pairs and extracted the maintainers of the variant forks;
and (iii) recruited the survey participants.

A. Survey Protocol Design

We designed a 12-question survey that would last at most
15 minutes. Since we aimed to learn from a large number
of projects, we used an online survey as this data collection
approach is known to scale well [22]. The survey can be found
here?. The questions were designed to cover our two main
research questions. 8 of the 12 questions were close-ended and
respondents could answer them either via multiple choice or
Likert scales. An optional free-text form was provided for 3
of the 8 close-ended questions to allow respondents to share
additional thoughts and feedback. The 4 remaining questions
are open-ended. All questions were carefully formulated so as
not to bias respondents towards a specific answer. We validated
them by subjecting them to the critical eye of 7 colleagues
and by conducting trial runs of the survey with the same 7
participants.

B. Identifying variant projects and participants

Given the scope of the survey, we target respondents involved
in the creation and maintenance of variant projects. Therefore,
we first needed to identify such variants. To this end, we relied
on two data sources: Libraries.io and GitHub.

Libraries.io contains metadata about projects distributed
through various package registries. We collected the metadata
for all projects of some of the largest package registries (npm,
Go, Maven, PyPI and Packagist). We relied on this metadata
to identify those projects that are variants of another one,
following the variant identification method proposed by Businge
et al. [10], [23]. We only considered variants that are actively
maintained in parallel with their mainline counterparts. We
extracted variants for which the mainline—variant pair was
created before 2019-04-01 and updated at least once after
2020-04-01 (i.e., active projects). This process yielded 227
mainline—variant project pairs.

We collected additional mainline-variant pairs from GitHub
directly. To do so, we searched for mainline projects using the
GitHub search endpoint. We looked for popular (> 50 stars and
forks), long-lived (created before 2018) and active (still updated
in 2020) repositories. We focused on software development
repositories whose main language is among the top 17 of most
popular languages used in GitHub (e.g., JavaScript, Java,
Go, Python, Ruby, C, etc). For all the mainline projects we
found, we tried to identify and collect variant forks. This
process is subject to a known threat to validity since previous
studies revealed that the majority of forks on GitHub are
inactive [24], [25] or are social forks [21]. To reduce this
threat, we filtered forks based on the following heuristics: > 10
stars, > 10 commits ahead of the mainline, > 5 closed pull
requests, diverging README files. We manually verified these
remaining forks to ensure they corresponded to variants of the

210.5281/zeno0do.5855808

869

corresponding mainline. This process yielded 264 additional
mainline-variant project pairs, leading to a total of 491
collected mainline-variant pairs.

C. PFarticipant Recruitment

Based on this collection of mainline-variant pairs, we
identified contributors that had integrated at least one pull
request into the variant. We retrieved their public-facing
emails (if available) using the GitHub API, while ensuring
to respect the GitHub Privacy Statement.> We individually
contacted a total of 762 variant maintainers from the 491 variant
projects, and received a total of 105 responses (response rate
14%), representing a total of 105 variant forks (21%). All
participants were requires to read and accept an informed
consent form before taking part in the survey.

10°

104 [mainline
variant
o 10| | varia —
3 102
S 10
10t
i 1
10°
PRs

stars issues commits

Fig. 1: Distribution of selected metrics. PRs, issues and commits
are counted after the fork date for both mainline and variant.

We wanted to compare the popularity of the 105 mainline—
variant pairs since the fork date. To this end, we collected
metrics of stars, pull requests, issues and commits from the
projects. For the variant projects, all these metrics are calculated
from the fork date. For the mainline projects, we calculate the
metrics of pull requests, issues and commits from the fork date.
The number of stars in the mainline are calculated throughout
the lifetime of the project. The boxplots in Fig. 1 show the
distributions of stars, pull requests, issues and commits for
the selected mainline-variant pairs. While it is not surprising
that the counts for mainline metrics are always higher than
those of the variants, it is interesting that most variants are also
popular in stars, pull requests and issues counts. This gives
us confidence that we are studying real variants as opposed to
social forks.

D. Analysis

We used open card sorting [26], on the 3 open-ended
questions to identify common responses reported by the
participants. In the analysis, we grouped similar responses
from the open-ended questions into themes. We did not start
with any pre-defined themes in mind, but instead derived the
themes from the open-ended answers, iterating as many times
as needed until reaching a saturation point. The first iteration of
coding themes was performed by the first author of the paper,
and any responses the first author was unsure of were decided
by discussion with the second author. Once the first two authors
agreed on the themes, a virtual meeting was set with all six
authors to discuss the resulting themes and come to a negotiated
agreement [27]. This allowed us to remove duplicates and, in
some cases, to generalize or specialize themes.

3https://docs.github.com/en/githubr/site-policy/github-privacy-statement

Authorized licensed use limited to: University of Massachusetts Amherst. Downloaded on June 19,2025 at 02:17:19 UTC from IEEE Xplore. Restrictions apply.

community 25 (24.0%)

decision

individual 79 (76.0%)

0 20 40 60 80 100
percentage of respondents

= Strongly disagree Disagree Not applicable

W Agree EEE Strongly agree

technicalq

governance
i

——
legal] ‘ 1
[‘ []
[‘ o
100% 7§% Sd“Aa 25“& 0‘% 25% Sde 75%
percentage of respondents

personal q

others

100%

(a) Was the motivation for creating the variant an individual decision or a (b) What was the motivation for creating the variant of the mainline project?

community decision?

Fig. 2: RQI: Why do developers create and maintain variants on GitHub?

IV. RQI1: WHY DO DEVELOPERS CREATE AND MAINTAIN
VARIANTS ON GITHUB?

RQ@1 aims to investigate whether new motivations for
creating variant forks have changed since the advent of social
coding platforms. To do so, we asked the survey participants
the following questions:

SQL: Was the motivation for creating the variant an individual
or a community decision?

SQ;: What was the motivation for creating the variant of the
mainline project?

SQL: What are the motivation details relating to the motivation
in SQp?

For SQ., we presented a multiple choice question. SQ;
presented Likert-scale answer options, while SQ! was an
optional open-ended question. For the latter, we coded the
responses into themes and categorised common themes. When
quoting the survey respondents, we refer to them using [RV]
notation, where N is the respondent’s ID. The respondents’
answers that include the selection on the multiple choice
answers as well as the themes resulting from coding open-
ended answers are underlined. The open-ended responses
are presented in ifalics. Where applicable, we integrate and
compare our findings with related research findings.

A. Results

Fig. 2 summarises the responses for SQ? and SQ;. Fig. 2(a)
shows that the majority of the participants responded that the
decision was individual. Fig. 2(b) shows that the majority

We also see quite a number of highly ranked motivations of
governance and others.

While previous studies have investigated the motivations for
creating variants, no study has investigated the details of those
motivations (SQ!) . To identify these details, two optional
open-ended questions allowed respondents to provide details
on their Likert-scale answer to S Qi. The two questions were
(1) Kindly provide details for your selected answer(s) on the
motivation, and (2) If there are any links that are documented
relating to your choice of answers on motivation detail, kindly
point us there.

100 of the 105 survey respondents answered the optional
open-ended question SQ.. Luckily, during the coding process
(cf. Section III-D), we were able to identify possible answers
of the 5 respondents that did not answer SQi by comparing

the information on the readme.md files of the variant and
mainlines. 30 of the 105 respondents provided links to
documents (pull requests, issues, and blogs) relating to their
choice of answers on motivation detail.

Fig 3 presents a Sankey diagram summarising the details
of the respondents’ choice of motivation based on the coded
themes. The figure presents the distribution of the responses to
all questions relating to R(Q)1 and how these responses relate to
each other. The thickness of the edge represents the frequency
of respondents between two entities.

Focusing on the axes of decision and motivation, we can
confirm the observations from Fig. 2(b) that the majority of
respondents had an individual and technical motivation. The

developers? selected none implying that the majority of the
variants were started by different developers. Since the answers
to S Q; were presented on a Likert scale, participants were
asked to rank the appropriate motivation(s) to why they created
the variant. While coding the motivations details, we identified
respondents who ranked highly more than one motivation
category and also provided a response in the open-ended
question to support each highly ranked motivation category. In
this scenario, each highly ranked motivation category would
have a motivation detail for the same respondent. At the end we
found that 105 of the survey participants chose 145 motivation
categories, of which 84 technical, 34 governance, 3 legal and

and some specific responses we found very interesting.

Technical. Maintenance is the most frequently mentioned

to performing bug/security fixes.
e [R59] ranked highly both technical and governance and

mentioned “The PR to merge the fork’s new capabilities into
the mainline code was too large, [...] and my attempts to
incorporate feedback into the PR [...] ended upsetting the
primary maintainer who has been studiously ignoring the
pull request for three years ©@”. The respondent also provided
a GitHub link to his pull request to the mainline. Indeed,
we found that the PR was made in February 2018 and was
accompanied by a discussion of 218 comments between the
mainline maintainer and the respondent. On October 2021,
the PR was still open.

870

Authorized licensed use limited to: University of Massachusetts Amherst. Downloaded on June 19,2025 at 02:17:19 UTC from IEEE Xplore. Restrictions apply.

original developers? common active maintainers? decision?

none individual

[lone — —
-— s es D ’
=610 e [y community
2.5 — ——e==yes & no
——notsure
==-unknown

motivation? motivation detail?

[Imaintenance
[different goals

[Inew features

C— customization

=== unmaintained feature
== technology

=== enhancement

technical —— new release
—— stripped version
[] responsiveness
D governance [feature acceptance
—— differences
l:| others === supporting personal projects
== supporting upstream
legal == code quality
== community related

= |ocalization
—— upstream lacks the resources
== closed source

Fig. 3: Sankey diagram summarising the detailed motivations behind creating variant forks.

o “I forked the original project in order to fix a bug. However,
the way the original was architected made this very chal-
lenging, so I ended up rewriting it instead of submitting a
patch to the original.” [R79]

technical motivation detail

The next prominent was

different goals.

mentioned phrases related to variants present different
goals/ content /communities / directions:

o “[We] list websites that accept Bitcoin Cash cryptocurrency,
as opposed to the mainline that lists websites with 2 factor
authentication.” [R1]

o “The original goal of the mainline is completely different
from the fork variant. ” [R4]

o “We wanted to take the project in a different direction’
[R100].

1}

An equally prominent technical motivation detail was new

features. 17 respondents who selected technical, mentioned

phrases related to introduction of new features not in the
mainline:

e “[...] to add support for a feature I knew would not get
merged into the main project.” [R53]

o “Mainline developer only does bugfixes and eventual under-
lying runtime/SDK upgrades to stay current. He did not add
new features due to lack of interest ...” [R67]

e “Our variant introduces new experimental functionality that
is not yet ready for use in the mainline.” [R80]

Another technical motivation was customization. 8 respondents

customizes the mainline features:

o “The “bones” were good, but I wanted to add some aesthetics
[...] so, I forked it to make it pretty and my own.” [R10]

o “The new version is a vectorized, accelerated version of the
original.” [R37]

o “[We] added some syntactic sugar and some improvements
by itself ...” [R42]

871

The next technical motivation was unmaintained feature. 8

to one of the mainline feature used by the variant is no longer
maintained.

o “The ‘shiny’ component of mainline was declared to be no
longer maintained around the time I created our fork. [...]
I did not like many of the architectural decisions of the
original project, I opted to create a fork instead of volunteer
to maintain the original.” [R65]. The respondent provided
an extra link. An issue about ‘shiny’ component was opened
up in July 2015 and closed in July 2017. The issue contained
93 comments from 35 participants. When closing the issue
the maintainer stated that “/...] If somebody or bodies from
the community wants to fork the source code and run with
it, they have my blessing [...])”. The variant was created on
August 2017.

o “The mainline project had made a radical shift from providing
one set of features to a different, disjoint set of features. The
maintainer had thought about it very well, but some users
(including myself) had built their workflows around one of the
old features. For this reason, I lifted that particular feature
into a separate project that was also published under a
different name to the package index.” [R23]. The respondent
also provided us a GitHub issue link, discussing the details.
The issue was opened by the variant maintainer on July 2015
and was eventually closed on April 2018. The issue had 33
comments involving 17 participants.

o “Mainline dropped support for a small subset of the code
and asked for community support to create a fork to support
that subset” [R66].

A final technical motivation was technology. 7 respondents

created to depend on a different technology.

o “Added support for Open Street Maps as an available map
provider [...] mainline was not willing to accept this kind of
contribution.” [R8]. This was also ranked as a governance.

Authorized licensed use limited to: University of Massachusetts Amherst. Downloaded on June 19,2025 at 02:17:19 UTC from IEEE Xplore. Restrictions apply.

o “The mainline wasn’t updated to use .NET Core which I was
using in my project, so I updated it” [R29]

o “[...] to keep the source code compatible with the language/-
compiler version that we use (Swift / Xcode). [...] if the
maintainer of the mainline is supporting a different one, then
we could not compile our dependency anymore.” [R54]

Governance. After technical, governance is the secondmost

nent governance category. 18 of the 34 respondents who
selected governance mentioned phrases related to mainline
was unresponsive to pull requests or issues for a long time.
Most of the respondents that ranked governance highly as their

motivation, also ranked other options of motivations highly.
Only 4 of the 34 ranked only governance.

o “[They] had a series of commits that fixed functionality for
newer PHP versions, but never made into a release. After
waiting for more than a year for a release, a fork was done
Jjust to push a newer release into Composer/Packagist.” [R21]

o “We submitted some bug fixes [...], but didn’t hear back from

the maintainer for a while and needed to progress to meet

our own goals so we forked. I followed up over email with
the maintainer and he merged the patches about a month
later, at which point we closed down and archived our fork
and returned to using the mainline.” [R15]. Merging back
to the original corresponds to one the outcomes of variant

forking reported in [2].

“[...] due to lack of response from mainline maintainer (more

than months) and need of release. This lead to release of a

new variant. [...] there is no intention to submit changes to

mainline anymore (even when the first PR was merged into
mainline after more than year).” [R56]

The next governance motivation was feature acceptance. 15

related to mainline hesitant to or not willing to accept feature.
o “TECHNICAL: Added support for Open Street Maps as
an available map provider. GOVERNANCE: not exactly
governance, but mainline was not willing to accept this
kind of contribution” [R8]. This was coded as technology

link containing extra information. The PR included 45
conversations and 15 participants between June 2018 until
March 2021 when it was closed.

“Mainline was not ready to accept those changes in part
because the maintainers were not responsive. Since that time
all of the issues have been dealt with and my variant is no
longer needed, though the infrastructure for creating a new
release of the variant remains in place in the event that it
might be needed in the future.” [R44]

“[...] even main repo maintainer was saying he is busy and
please use your fork for thing X and Y. We don’t know the
exact reason why he stopped maintaining it and also did not
allow us to maintain his repo” [R89]. In one of the multiple
choice answers, the respondent indicated that the variant was
created through a community decision. The respondent also

provided an extra link, revealing that three contributors from

872

the community were interested in a couple of new features
that were missing in mainline, but the mainline maintainer
seemed busy. At the end, two members of the community
took over the fork maintenance and introduced the missing
features and advertised the additions in the readme.md file
of the fork as well as in the issue.

Others. The most prominent motivation for others is

supporting personal projects. 8 of the 24 respondents who

selected 7(§ti1§r:si }nieinitiio}léaiphrases related to variant was

created to support personal projects.

o “[The] maintainer was not interested in a PR that added
functionality needed by a project I'm developing. [It] was
considerably easier to add the logic into the [new] library
than bolt it on.” [R18]. This was ranked as technical,

governance, and others. As we can see in the participant

response we have phrases like “adding logic" (new features,

“In Oct 2017 [...] has changed its API and these changes
broke the mainline project. 1 used this project daily and
needed to fix it ASAP. After quick fix I started to add my
own features. [...] the mainline project has been fixed and
refactored, but my other projects were already depending on
my own fork.” [R56]

“[...] to make sure that no matter what happen to the mainline
repository, we can maintain source access to this library,
which is an essential dependency of our project. ...” [R54].
This response is in line with Nyman et al. [1] who reported
that forking provides a mechanism for safeguarding against
despotic decisions by the project lead, who is thus guided in
their actions to consider the best interest of the community.

The next motivation for others was supporting mainline, which

was mentioned by 7 respondents who selected others:

o “We have a fork that is the “main fork”, which is [...],

and the “development fork” is [FORKNAME]. In this case,

our modeling tool [...] is only maintained as the fork [...]
we synchronize everything between both forks while the

[FORKNAME] one is mainly used to develop new features,

which are then pushed as PRs to the main fork.” [R61]

“Preparation of mainline pull requests. mainline repo should

not be spammed by WIP PRs by students. Supervisors do

coaching and try to improve the quality by the initial mainline
pull request. [...] Keeping the PR open on the fork, reduces
the number of PRs.” [R73]

o “We needed a repository for tracking our ideas to keep the
number of issues of the main repository low.” [R83]. The
extra link that was provided revealed that the mainline and
variant are owned by the same developer: “this repository is
used by [X] to make his ideas transparent. He collects the
issues here to avoid flooding the “official” issue tracker. -
Refined issues will be migrated to the official issue tracker".

The next motivation detail for others was code quality. 3

respondents who selected others, mentioned phrases related to

mainline low code quality.

Authorized licensed use limited to: University of Massachusetts Amherst. Downloaded on June 19,2025 at 02:17:19 UTC from IEEE Xplore. Restrictions apply.

o “The mainline [...] was clearly written by someone who isn’t
a professional software engineer.” [R63]

o “The way the original was architected made this very
challenging, so I ended up rewriting it instead of submitting
a patch to the original.” [R79]

Legal. The motivation of legal was least popular, corresponding
to only 3 of the 105 respondents that indicated phrases related to
closed source. Below we present their corresponding responses.
e “[The] main reason is creating [an] open source and

commercial product which has much more features” [R7].

This motivation detail was also categorised as: (new features,

“5 years ago the permissions model for GitHub and Travis
is not what it is today. I wanted to use Travis but if I granted
Travis access to my primary github account, it would have
read access to all the github repos [...], which would expose
private customer code. I forked the repo [but] the permissions
model has evolved [and 1] deleted the fork” [R24].

“The founders of the mainline had been absent from the
project for several years, but came back and booted the
maintainers off and [...] shifted the project to a closed
source. ” [R36]. The respondent provided a link with extra
information showing that three of the maintainers that were
booted from the original project and a fourth one from
the community joined forces and are now maintaining the
variant. The variant currently has over 739 stars, is used by
35 developers, has 101 pull requests and 195 issues.

B. Discussion and Implications

RQ1 mainly focused on determining the motivations for
creating and maintaining variants, especially those that are
actively being maintained in parallel with their mainline
counterparts. We identified that the decision to create the
variants is mostly initiated by individuals and less by the
community. Our observations thereby confirm the findings in
the literature. Our study also extends the state-of-the-art by
providing fine-grained reasons for creating and maintaining
variants relating to the reported motivations. Furthermore, our
study revealed new reasons that have not been reported in
literature (categorised as others in our survey) which include:
1) supporting the mainline, 2) variant supporting other personal
projects, 3) localization purposes and 4) variant developers not
trusting the code quality of the mainline. The reported findings
are very useful to guide follow-up studies in investigating the
co-evolution of mainline and variant projects.

Fig. 3 presented an overview of how the detailed motivations
relate to who is involved in creating and maintaining the
variants. The motivations majorly related to developers outside
the core contributors of the mainlines (82%). We also observed
quite a significant number of respondents (24%) reporting that
the decision to create the variant was initiated by the community.
We observed from the open-ended responses that, before the
transition from social to variant fork, some variant maintainers
engage with the mainline maintainers through discussions in
issues and pull requests. This is inline with the Zhou et al.
who reported that many variant forks start as social forks [8].

Besides the motivations for creating and maintaining variants,
the respondents reported some interesting software reuse
practices by the variants, like those categorized in the themes
of: different goals, new features, customization, technology,

theme, stated that in the cryptocurrency world, all applications
inherit code from the mother project bitcoin/bitcoin. Down-
stream applications also monitor their immediate upstream
and other in the hierarchy for important updates like bug
and security fixes as well as other specific updates. These
cryptocurrency applications can be considered as a software
Sfamily [21] or software ecosystem [28]. Variants are also likely
to occur in other dedicated software ecosystems like Eclipse,
Atom, Emacs, software library distributions for Java, C, C++,
Python, Go, Ruby, and OS distributions for macOS, Linux,
Windows, and iOS. To this end, our study opens up different
research directions that can aim at deeply investigating different
reuse practices in software families and software variants.
A deeper understanding of these reuse practices can aid in
developing tools that can support more effective software reuse.

Summary - RQI: Many variant forks start as social
forks. The decision to create/maintain the forks is either
community-driven (contributing up to 24%) or individual
(76%). The majority of the developers (82%) creating the
forks are not maintainers of the mainlines. We identified 18
variant creation/maintenance motivation details categorized
in the motivations of technical (accounting 58% of the

responses), governance (24%), others (16%) and legal (2%).

The detailed motivations in the others category are newly

introduced since the social coding era.

V. RQ2: HOW DO VARIANT PROJECTS EVOLVE WITH
RESPECT TO THE MAINLINE?

R@2 aims to identify the impediments for co-evolution
between the mainline and variant projects. This question lead to
two specific focuses reflecting the who and the how, respectively.
The who focus aimed at identifying who are the developers
involved in maintaining variants. The how aimed to understand
how variant forks evolve w.r.t. the mainline. As for RQ1 we
refer to the responses using underlined, ifalics and [RN].

A. Results for the “who?” focus

To understand who is creating and maintaining variant forks,
we asked two multiple-choice questions:

SQi: How many of the original developers of the mainline
maintained the variant in its first 6 months?

SQf: Do the variant and mainline have common active
maintainers?

Fig. 4(a) and Fig. 4(b) summarise the answers to SQi
and SQ%, respectively. The majority of the respondents chose
the options of none for SQg (none of the creators of the
variant were part of the mainline) and no for SQ? (they
do not have common active maintainers). This implies that

Authorized licensed use limited to: University of Massachusetts Amherst. Downloaded on June 19,2025 at 02:17:19 UTC from IEEE Xplore. Restrictions apply.

w
5} none
&
K] one 16 (15.4%)
3 2.5 6 (5.8%)
©
5 6-10 4 (3.8%)
: unknown 3(2.9%)
0 20 40 60 80 100

percentage of respondents

(a) SQ2. How many mainline developers involved in creation of variant?

yes 18 (17.3%)

3(2.9%)

yes & no

not sure 1(1.0%)

0 20 40 60 80 100
percentage of respondents

common active maintainers

(b) SQ%. Do the variant and mainline have common active maintainers?

Fig. 4: Who are the developers involved in creating and maintaining variants of a mainline project?

most developers involved in the creation and maintenance of
variants are not core maintainers of the mainline from where
the variant was forked. Fig. 3 reveals the difference in the
numbers of participants who selected none for SQ? and no for
S Qﬁ. Focusing at how responses of .S Qg—ioiriigjggidieygliopieris?
observe that most respondents that selected option none in
S Qﬁ went ahead to select option no in S Qg. Other associations
between responses of SQ2 and SQ§ can be observed as well.

Anecdotally, [R36] responded to SQ? that 6 — 10 developers

to have common maintainers in the early stages of the variant,
but now the projects have technically diverged away from each
other, there are no more common maintainers"”. Respondents
[R51] and [R57] selected for SQg the options 6 — 10 and 2
— 5 respectively, while selecting the option no for SQ%. Thi
implies that at least two maintainers involved in fork creation
are not (or no longer) contributing to the mainline.

Summarising our observations for SQ? and S Qg, we
conclude that variant forks are created and maintained
by developers different from those in the mainline coun-
terparts. This observation concurs with the earlier findings of
Businge et al. [10].

B. Results for the “how?” focus

To understand how variant forks evolve w.r.t. the mainline,
we asked two additional questions:
SQ?2: Do the variant forks and the upstream still discuss the
main directions of the project?
Sin: Do the variant developers integrate changes to and from
the upstream repository?

never 53(51.5%)
yes 16 (15.5%)

technically diverged 11 (10.7%)

ur

variant follows mainline
variant merged back
common issues are discussed
conntrolled by same developers
in contact but rarely discuss
mainline hostile
mainnline not very active
only once
they swap techical details
variant'is a mirror of mainline

20 30 40 50 60
percentage of respondents

Fig. 5: SQ? Do the variant forks and the mainline still discuss
the main directions of the project?

For SQ? we presented four multiple choice answer options,
corresponding to the first four answers reported in Fig. 5,
gathering the highest number of responses. We allowed
respondents to provide an open-ended answer if they felt that
their choice was not among the four proposed options. The
open-ended answers were coded into themes (listed in Fig. 5
from variant follows mainline—to variant is a mirror of the

chose the option of never (corresponding to: no, there has never
been any discussion since the creation of the variant). Even if
there was some discussion, 10.7% of the respondents signal
that they technically diverged (corresponding to: “They used
to discuss but not anymore since the projects have technically
diverged from each other”). The open-ended answers also
revealed variant responses that do not discuss the directions

of the project, like mainline hostile to variant, not very active,

An explanation for the high number of variant developers
that do not discuss with the mainline developers about the
project direction can be derived from the findings of SQ? and
SQ%. The majority of the variants are created and maintained
by developers that are not core developers of the mainline. Also,
most of the motivation details in RQ)1 could explain the high
numbers of never. For example we observed that the majority of

the variants in the motivation details category of different goals,

accepted by the mainline (feature acceptance), selected never

in SQ2. We conclude that the reasons for the majority of
variant forks not to discuss the project directions with
the mainline could be attributed to a diverging range
of motivations for creating the variant as well as to the
variant creators not being part of the mainline’s core
development team.

Anecdotally, 5 respondents indicated phrases related to
variant follows mainline. Respondent [R77] indicated that “in
the crypto world, the mainline inherits changes from BITCOIN,
for example, security commits, and the variant merges those
changes in. So the variant is very interested in every change in
the Mainline. However, the variant must maintain the specific
new features that we added separately, and the Mainline is not
interested in helping the Variant do this.” We also observed
two interesting cases where the variants merged back to the

874

Authorized licensed use limited to: University of Massachusetts Amherst. Downloaded on June 19,2025 at 02:17:19 UTC from IEEE Xplore. Restrictions apply.

= Never Rarely Sometimes ~ WmW Often WEE Always
New features | — T —
Bug Fixes I T
Security fixes - | I T
Refactoring 4 | : T
Documentation 4 |]
Others I : I

100% 90% 80% 70% 60% 50% 40% 30% 20% 10% 0% 10% 20% 30% 40% 50%

percentage of respondents

(a) Code integration back from the mainline

kept in sync

occasionally pull from mainline
specific changes are pulled
everything except specific changes
patch set from mainline

attempts to sync at the beginning
every commit that passes CI

nothing to share

used as inspiration but no integration
variant merged back

5 (17.9%)

percentage of respondents

(c) integration back from the mainline (coded themes)

= Never Rarely Sometimes mmE Often WM Always
New features 4 | : T
Bug fixes - | U
Security Fixes 1 | : T
Refactoring 4 | : T
Documentation - |
Others - ———————— : .

100% 90% 80% 70% 60% 50% 40% 30% 20% 10% 0% 10% 20% 30% 40% 50%

percentage of respondents

(b) Code integration from variant to mainline

PRs are suggested
changes are out of scope

mainline not responsive

specific changes not yet discovered in mainline
everything except specific changes

kept in sync

mainline changed code base

merged back

2(11.8%)
2(11.8%)
1(5.9%)
1(5.9%)
1(5.9%)
1(5.9%)
1(5.9%)

0 10 20 30 40 50
percentage of respondents

(d) integration from variant to mainline (coded themes)

Fig. 6: RQ2: How do variant projects evolve with respect to the mainline?

mainline. This is in line with Robles and Gonzélez-Barahona [2]
who reported that one of the outcomes of forking is the fork
merging back.

For SQ?I we asked respondents two closed-ended questions:
(1) How often do the maintainers of the variant integrate the
following types of changes from the mainline?; and (2) How
often do the maintainers of the variant integrate the following
types of changes into the mainline?. We provided Likert-scale
options for the two questions. We presented optional follow-
up questions with open-ended answers, for each of the two
questions, allowing respondents to provide extra information.

Fig. 6(a) presents the answers from the respondents on
what they value most when integrating changes back from the
mainline. The highly scored changes are bug fixes and security

fixes. One can observe that most respondents were leaning
towards the negative side of the Likert scale, implying hat
most variants are not interested in integrating changes from
the mainline. Fig. 6(b) focuses on integrations from variants
towards the mainline. We observe a similar trend to Fig. 6(a),

with an even more pronounced negative inclination.

Fig. 6(c) and Fig. 6(d) present the coded themes of the
extra information gathered from the open-ended answers
corresponding to the results in Fig. 6(a) and Fig. 6(b),
respectively. Fig. 6(c) summarises the results of 28 respondents
who provided the extra information, while Fig. 6(d) summarises
the results of only 17 respondents, most likely because most
variants do not submit changes to the mainline. The most
prominent response in Fig. 6(c) was related to being kept in
sync, signaling the desire of variants to keep in sync with the
changes made in the mainline. The next prominent response was
related to occasionally pull from mainline implying that vari-
ants from time to time pull changes made in the mainline. Some
respondents mentioned phrases related to specific changes are

pulled; for example, [R63] indicated that “It’s mostly changes

that make the library for specific iRobot Roomba models (new
ones for example)”’. Other respondents mentioned phrases

related to everything except specific changes; for example,
[R48] mentioned that “All non-compiler specific changes are
pulled”. In Fig. 6(d) there were two prominent answers: PRs
are suggested, for example, “Made PRs with changes but those
have just been ignored. They’re still “open” with 0 comments
from the mainline dev”’ [R67]. The other prominent answer
is changes are out of scope, for example, “We use this as a
dependency in another project [...] which is often diverging
from the language version of the mainline, so there is little

reason for us to push this to mainline” [R54].

C. Discussion and Implications

The results of RQ2 revealed that variants are created and
maintained by developers that are not core developers of
the mainline. We also observed limited interaction between
the mainline and its variant(s). Although we found there is
little code integration, the integration from mainline to variant
is more frequent than from variant to mainline. Our study
confirms and extends the findings of Businge et al. [10]: we
provide concrete reasons relating to little integration between
the mainline and variants that include:

1) technical divergency: variants and mainlines are offering
different goals, implementing different technologies, variant is
maintaining a part of the mainline that is frozen;

2) governance disputes: mainlines are unresponsive to pull
requests and issues from the variants and mainlines not willing
or hesitant to accept some features from the variants. One
respondent also reported that mainline is actively very hostile to
variants as a result of mainline’s license changing to proprietary;
3) distinct developers: Another reason for the lack of code
integration is because most of the variants are maintained by
developers that are not part of the core team of the mainline.
Furthermore, we observed that a few mainline—variant pairs
that do interchange code are mostly interested in patch sets
(security fixes and bug fixes).

Although maintenance and collaboration have improved
through dedicated tooling, especially through distributed ver-

875

Authorized licensed use limited to: University of Massachusetts Amherst. Downloaded on June 19,2025 at 02:17:19 UTC from IEEE Xplore. Restrictions apply.

sion control systems like Git [29] and transparency mechanisms
on social coding platforms like GitHub [30], these tools are
only ideal for social forks which aim to sync all the changes
between repositories. For example, code integration using pull
requests and it tools like merge/rebase may not be the
best when integrating changes in between mainline and variant
forks since they involve syncing upstream/downstream with
all changes missing in the current branch.

This study reveals that some variant maintainers are only
interested in integrating commits with specific changes. A
suitable integration mechanism would be commit cherry picking
since the developers can choose the exact commits they want
to integrate. However, GitHub’s current setup does not make
it easy to identify commits to cherry-pick without digging
through the branch’s history to identify relevant changes since
the last code integration. Additionally, even though the variants
have diverged from their mainlines, we do believe that since
they share common code, some of the common code may
go through maintenance to perform some bug and security
fixing. Since these mainline—variant repository pairs are being
maintained by uncommon developers, chances are that these
fixes could be missed or they could be fixed at different times
by different developers, resulting in duplicated effort.

Our findings are very relevant to code integration tool
builders between mainline and variants to prioritise certain cat-
egories of mainline—variant pairs by targeting specific changes.
Ideally, a tooling would help identify possibly important fixes
in commits and recommend these commits to mainline or
variant developers to support a more efficient reuse. Some
promising studies in this direction have focused on providing
the mainline with facilities to explore non-integrated changes
in forks to find opportunities for reuse [31] and cross-fork
change migration [32]. More experimental ideas have focused
on virtual product-line platforms for unified development of
multiple variants of a project [33]—[37].

Summary-RQ?2: Variant forks do not usually interact with
the mainline during their co-evolution. The lack of interaction
could be attributed to a variety of reasons including: (i)
technical divergence, where variants and mainlines are offer-
ing different features or implementing different technologies
having nothing to share; (ii) governance disputes, where
mainlines are unresponsive to the requests from community
and also uninterested in some features suggested by the
community; (iii) distinct development teams that no longer
interact; (iv) diverging licenses, where the mainline variant
has changed the license and integration is no longer possible.
As a result of these divergences, it is likely that important
security or patch updates could be missed or are duplicated.

VI. THREATS TO VALIDITY

Construct validity. The response categories for the closed
questions in the survey originated from a thorough literature
review. The questions were carefully phrased to avoid biasing
the respondent towards a specific answer. We validated the

876

questions by consulting seven colleagues from three different
universities and through trial runs of the survey with seven
participants. Social desirability bias may also have influenced
the answers [38]. To mitigate this issue, we informed partici-
pants that the responses would be anonymous and evaluated
in a statistical form.

Internal validity. We used an open coding process to classify
the participants responses received from open-ended questions.
The coding process is known to lead to increased processing
and categorization capacity at the loss of accuracy of the
original response. To alleviate this issue lack of accuracy, we
allowed more than one code to be assigned to the same answer.
Generalizability. Our study is limited to variants of mainline
repositories that are hosted on GitHub. We do not claim that
our findings generalize to other social coding platforms. In
addition, the set of participants we interviewed corresponds
to those who decided to make their e-mail public and who
accepted to take part in our study. As such, they are not de
facto representative of all maintainers of variant forks.

VII. CONCLUSIONS

Thanks to social coding platforms like GitHub, software

reuse through forking to create variant projects is on the rise.
We carried out an exploratory study with 105 maintainers of
variants, focusing on answering two key research questions:
1) Why do developers create and maintain variants on GitHub?
We observed that the motivations reported by studies carried out
in the the pre-GitHub era, still hold. We identified 18 motivation
details for variant creation and maintenance, categorized in the
motivations of fechnical (58% of the responses), governance
(24%), others (16%) and legal (2%). Some of these motivations
are newly introduced in the social coding era.
2) How do variants projects evolve with respect to the
mainlines? We have found that there is little interaction between
the variants and their mainlines during the co-evolution and
reported possible impediments to the lack of interaction. These
include: (i) technical (i.e., diverging features), where variants
and mainlines are offering different goals or implementing
different technologies having nothing to share; (ii) governance
(i.e., diverging interests), where mainlines are unresponsive to
the requests from community and also uninterested in some
features suggested by the community; (iii) legal (e.g., diverging
licenses), where the mainline variant has changed the license
and integration is no longer possible.

Our findings are very useful to guide follow-up studies
in investigating the co-evolution and reuse practices between
mainline and variants. A deeper understanding of these practices
can aid code integration tool builders in developing tools to
support more effective software reuse between mainline projects
and their variant forks.

ACKNOWLEDGMENT

This work is supported by the joint FWO-Vlaanderen and
F.R.S.-FNRS Excellence of Science project SECO-ASSIST
under Grant number 0.0157.18F- RG43.

Authorized licensed use limited to: University of Massachusetts Amherst. Downloaded on June 19,2025 at 02:17:19 UTC from IEEE Xplore. Restrictions apply.

(1]

(2]

[10]

[11]

[12]

[13]

[14]

[15]
[16]
[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

REFERENCES

L. Nyman, T. Mikkonen, J. Lindman, and M. Fougere, “Perspectives

on code Forking and Sustainability in open source software,” in Open

Source Systems: Long-Term Sustainability, 2012, pp. 274-279.

G. Robles and J. M. Gonzilez-Barahona, “A comprehensive study of

software forks: Dates, reasons and outcomes,” in Open Source Systems:

Long-Term Sustainability, 2012, pp. 1-14.

R. Viseur, “Forks impacts and motivations in free and open source

projects,” International Journal of Advanced Computer Science and

Applications, vol. 3, no. 2, February 2012.

L. Nyman and J. Lindman, “Code forking, governance, and sustainability

in open source software,” Technology Innovation Management Review,

vol. 3, pp. 7-12, January 2013.

L. Nyman and T. Mikkonen, “To fork or not to fork: Fork motivations

in SourceForge projects,” in Open Source Systems: Grounding Research,

2011, pp. 259-268.

J. Gamalielsson and B. Lundell, “Sustainability of open source software

communities beyond a fork: How and why has the libreoffice project

evolved?” Journal of Systems and Software, vol. 89, pp. 128 — 145, 2014.

G. Gousios, M. Pinzger, and A. van Deursen, “An exploratory study of

the pull-based software development model,” in International Conference

on Software Engineering, 2014, pp. 345-355.

S. Zhou, B. Vasilescu, and C. Kistner, “How has forking changed in

the last 20 years? a study of hard forks on GitHub,” in International

Conference on Software Engineering. ACM, 2020, pp. 268-269.

C. Sung, S. K. Lahiri, M. Kaufman, P. Choudhury, and C. Wang, “Towards

understanding and fixing upstream merge induced conflicts in divergent

forks: An industrial case study,” in International Conference on Software

Engineering. ACM, 2020, pp. 172-181.

J. Businge, M. Openja, S. Nadi, and T. Berger, “Reuse and maintenance

practices among divergent forks in three software ecosystems,” Journal

of Empirical Software Engineering, 2021.

A. S. Laurent, Understanding Open Source and Free Software Licensing.

O’Reilly Media, 2008.

B. B. Chua, “A survey paper on open source forking motivation reasons

and challenges,” in Pacific Asia Conference on Information Systems,

2017.

J. Dixion, “Different kinds of open source forks: Salad, dinner, and

fish,” https://jamesdixon.wordpress.com/2009/05/13/different-kinds-of-

open-source-forks-salad-dinner-and-fish/, 2009.

N. A. Ernst, S. M. Easterbrook, and J. Mylopoulos, “Code forking in open-

source software: a requirements perspective,” ArXiv, vol. abs/1004.2889,

2010.

L. Nyman, “Hackers on Forking,” in The International Symposium on

Open Collaboration, 2014, pp. 1-10.

E. S. Raymond, The Cathedral & the Bazaar: Musings on linux and

open source by an accidental revolutionary. O’Reilly Media, Inc., 2001.

P. Bratach, “Why Do Open Source Projects Fork?”

https://thenewstack.io/open-source-projects-fork/, 2017.

J. Jiang, D. Lo, J. He, X. Xia, P. S. Kochhar, and L. Zhang, “Why

and how developers fork what from whom in GitHub,” Empirical Softw.

Engg., vol. 22, no. 1, pp. 547-578, Feb. 2017.

D. A. Wheeler, ““forking”,” https://dwheeler.com/oss_fs_why.html#forking,
2009, revised as of July 18, 2015.

T. de Raadt, “Theo de Raadt’s dispute w/ NetBSD,”

https://zeus.theos.com/deraadt/coremail.html, 2006, retrieved October

2021.

J. Businge, M. Openja, S. Nadi, E. Bainomugisha, and T. Berger, “Clone-

based variability management in the Android ecosystem,” in International

Conference on Software Maintenance and Evolution. 1EEE, 2018, pp.

625-634.

F. Uwe, An Introduction to Qualitative Research.
Publications, 2014.

J. Businge, A. Decan, A. Zerouali, T. Mens, and S. Demeyer, “An em-
pirical investigation of forks as variants in the npm package distribution,”
in The Belgium-Netherlands Software Evolution Workshop, ser. CEUR
Workshop Proceedings, vol. 2912. CEUR-WS.org, 2020.

J. Businge, M. Openja, D. Kavaler, E. Bainomugisha, F. Khomh, and
V. Filkov, “Studying Android app popularity by cross-linking GitHub and
Google Play store,” in International Conference on Software Analysis,
Evolution and Reengineering, 2019, pp. 287-297.

London: Sage

877

[25]

[26]

(27]

(28]

[29]

(30]

[31]

(32]

(33]

(34]

(351

[36]

(371

[38]

J. Businge, S. Kawuma, E. Bainomugisha, F. Khomh, and E. Nabaasa,
“Code authorship and fault-proneness of open-source Android applications:
An empirical study,” in PROMISE, 2017.

T. Zimmermann, “Card-sorting: From text to themes,” in Perspectives on
Data Science for Software Engineering. Elsevier, 2016, pp. 137-141.
D. Garrison, M. Cleveland-Innes, M. Koole, and J. Kappelman, “Revis-
iting methodological issues in transcript analysis: Negotiated coding and
reliability,” The Internet and Higher Education, vol. 9, pp. 1-8, 03 2006.
A. Decan, T. Mens, and P. Grosjean, “An Empirical Comparison of De-
pendency Network Evolution in Seven Software Packaging Ecosystems,”
Empirical Softw. Engg., vol. 24, no. 1, pp. 381-416, Feb. 2019.

C. Rodriguez-Bustos and J. Aponte, “How distributed version control
systems impact open source software projects,” in Working Conference
on Mining Software Repositories. 1EEE, 2012, pp. 36-39.

L. Dabbish, C. Stuart, J. Tsay, and J. Herbsleb, “Social Coding in GitHub:
Transparency and Collaboration in an Open Software Repository,” in
Conference on Computer Supported Cooperative Work, 2012, pp. 1277-
1286.

L. Ren, S. Zhou, and C. Kistner, “Poster: Forks insight: Providing an
overview of GitHub forks,” in The International Conference on Software
Engineering: Companion (ICSE-Companion), 2018, pp. 179-180.

L. Ren, “Automated patch porting across forked projects,” in Joint
European Software Engineering Conference and Symposium on the
Foundations of Software Engineering, 2019, pp. 1199-1201.

M. Antkiewicz, W. Ji, T. Berger, K. Czarnecki, T. Schmorleiz, R. Limmel,
u. Stanciulescu, A. Wasowski, and 1. Schaefer, “Flexible Product Line
Engineering with a Virtual Platform,” in Companion of the International
Conference on Software Engineering, 2014, pp. 532-535.

S. Fischer, L. Linsbauer, R. E. Lopez-Herrejon, and A. Egyed, “Enhancing
clone-and-own with systematic reuse for developing software variants,”
in International Conference on Software Maintenance and Evolution,
2014, pp. 391-400.

L. Montalvillo and O. Diaz, “Tuning GitHub for SPL development:
Branching models & repository operations for product engineers,” in
International Conference on Software Product Lines, 2015, pp. 111-120.
J. Rubin and M. Chechik, “A framework for managing cloned product
variants,” in International Conference on Software Engineering. IEEE,
2013, pp. 1233-1236.

S. Stanciulescu, T. Berger, E. Walkingshaw, and A. Wasowski, “Concepts,
operations, and feasibility of a projection-based variation control system,”
in International Conference on Software Maintenance and Evolution
(ICSME), 2016, pp. 323-333.

A. Furnham, “Response bias, social desirability and dissimulation,”
Personality and Individual Differences, vol. 7, no. 3, pp. 385-400, 1986.

Authorized licensed use limited to: University of Massachusetts Amherst. Downloaded on June 19,2025 at 02:17:19 UTC from IEEE Xplore. Restrictions apply.

