
10 International Journal of Open Source Software and Processes, 3(3), 10-35, July-September 2011

Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Keywords:	 Case	 Study,	 Component-Based	 Software	 Development,	 Empirical	 Study,	 Open	 Source	
Software,	Quantitative	Study,	Software	Evolution,	Software	Reuse

INTRODUCTION

Reuse of software components is one of the
most promising practices of software engi-
neering (Basili & Rombach, 1991). Enhanced
productivity (as less code needs to be written),
increased quality (since assets proven in one
project can be carried through to the next) and
improved business performance (lower costs,
shorter time-to-market) are often pinpointed as
the main benefits of developing software from

a stock of reusable components (Sametinger,
1997; Sommerville, 2004).

Although much research has focused on the
reuse of Off-The-Shelf (OTS) components, both
Commercial OTS (COTS) and Open Source
Software (OSS), in corporate software pro-
duction (Li et	al., 2009; Torchiano & Morisio,
2004), the reusability of OSS projects in other
OSS projects has only recently started to draw
the attention of researchers and developers in
OSS communities (Lang et	al., 2005; Mockus,
2007; Capiluppi & Boldyreff, 2008). A vast
amount of code is created daily, modified and
stored in OSS repositories, and the inherent

Software Reuse in Open Source:
A Case Study

Andrea	Capiluppi,	Brunel	University,	UK

Klaas-Jan	Stol,	Lero	(The	Irish	Software	Engineering	Research	Centre),	University	of	
Limerick,	Ireland

Cornelia	Boldyreff,	University	of	East	London,	UK

ABSTRACT
A	promising	way	to	support	software	reuse	is	based	on	Component-Based	Software	Development	(CBSD).	Open	
Source	Software	(OSS)	products	are	increasingly	available	that	can	be	freely	used	in	product	development.	
However,	OSS	communities	still	face	several	challenges	before	taking	full	advantage	of	the	“reuse	mecha-
nism”:	many	OSS	projects	duplicate	effort,	for	instance	when	many	projects	implement	a	similar	system	in	the	
same	application	domain	and	in	the	same	topic.	One	successful	counter-example	is	the	FFmpeg	multimedia	
project;	several	of	its	components	are	widely	and	consistently	reused	in	other	OSS	projects.	Documented	is	
the	evolutionary	history	of	the	various	libraries	of	components	within	the	FFmpeg	project,	which	presently	are	
reused	in	more	than	140	OSS	projects.	Most	use	them	as	black-box	components;	although	a	number	of	OSS	
projects	keep	a	localized	copy	in	their	repositories,	eventually	modifying	them	as	needed	(white-box	reuse).	
In	both	cases,	the	authors	argue	that	FFmpeg	is	a	successful	project	that	provides	an	excellent	exemplar	of	
a	reusable	library	of	OSS	components.

DOI: 10.4018/jossp.2011070102

International Journal of Open Source Software and Processes, 3(3), 10-35, July-September 2011 11

Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

philosophy around OSS is indeed promoting
reuse. Yet, software reuse in OSS projects is
hindered by various factors, psychological and
technical. For instance, the project to be reused
could be written in a programming language that
the hosting project dislikes or is incompatible
with; the hosting project might not agree with
the design decisions made by the project to be
reused; finally, individuals in the hosting project
may dislike individuals involved in the project
to be reused (Senyard & Michlmayr, 2004). A
search for the “email	client” topic in the Source-
Forge repository (http://www.sourcforge.net)
produces 128 different projects (SourceForge,
2011): this may suggest that similar features in
the same domain are implemented by different
projects1, and that code and features duplica-
tion play a significant role in the production
of OSS code.

The interest of practitioners and researchers
in the topic of software reuse has focused on two
predominant questions: (1) from the perspective
of OSS	integrators (Hauge et	al., 2007), how to
select an OSS component to be reused in another
(potentially commercial) software system, and
(2) from the perspective of end-users, how to
provide a level of objective “trust” in available
OSS components. This interest is based on a
sound reasoning; given the increasing amount
of source code and documentation created and
modified daily, it starts to be a (commercially)
viable solution to browse for components in
existing code and select existing, working
resources to reuse as building blocks of new
software systems, rather than building them
from scratch.

Among the reported cases of successful
reuse within OSS systems, components with
clearly defined requirements, and hardly af-
fecting the overall design (i.e., the “S” and “P”
types of systems following the original S-P-E
classification by Lehman (1980)) have often
proven to be the typically reused resources by
OSS projects. Reported examples include the
“internationalization” (often referred to as I18N)
component (which produces different output
text depending on the language of the system),
or the “install” module for Perl subsystems

(involved in compiling the code, test and install
it in the appropriate locations) (Mockus, 2007).
To our best knowledge, there is no academic
literature about the successful reuse of OSS, and
an understanding of internal characteristics of
what makes a component reusable in the OSS
context is lacking.

The main focus of this paper is to report
on the FFmpeg project (http://ffmpeg.org/), and
its build-level components, and to show how
some of these components are currently reused
in other projects. This project is a cornerstone
in the multimedia domain; several dozens of
OSS projects reuse parts of FFmpeg, one of
the most widely reused being the libavcodec
component. In the domain of OSS multimedia
applications, libavcodec is the most widely
adopted and reused audio/video codec (coding
and decoding) resource. Its reuse by other OSS
projects is so widespread since it represents a
crosscutting resource for a wide range of sys-
tems, from single-user video and audio players
to converters and multimedia frameworks. As
such, FFmpeg represents a unique case (Yin,
2003, p.40), which is why we selected the
project for this study.

In particular, the study is an attempt to
evaluate whether the reusability principle of
“high cohesion and loose coupling” (Fenton,
1991; Macro & Buxton, 1987; Troy & Zweben,
1981) has an impact on the evolutionary history
of the FFmpeg components.

This paper makes two contributions:

1. It studies how the size of FFmpeg compo-
nents evolve: the empirical findings show
that the libavcodec component (contained
in FFmpeg) is an “evolving and reus-
able” component (an “E-type” of system)
(Lehman, 1980), and as such it poses
several interesting challenges when other
projects integrate it; and

2. It studies how the architecture of FFmpeg
components evolve, and how these compo-
nents evolve when separated from FFmpeg:
the empirical findings show two emerging
scenarios in the reuse of this resource. On
the one hand, the majority of projects that

12 International Journal of Open Source Software and Processes, 3(3), 10-35, July-September 2011

Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

reuse the FFmpeg components do so with
a “black-box” strategy (Szyperski, 2002),
as such incurring synchronization issues
due to the independent co-evolution of the
project and the component. On the other
hand, a number of OSS projects apply a
“white-box” reuse strategy, by maintaining
a private copy of the FFmpeg components.
The latter scenario is further empirically
analyzed in order to obtain a better un-
derstanding of how the component is not
only reused, but also integrated into a host
system.

The remainder of this paper is structured
following the guidelines for reporting case study
research proposed by Runeson and Höst (2009).
The next section provides relevant background
information and an overview of related work on
software components and OSS systems. This
is followed by a presentation of the research
design of our study. After this, the results of
the empirical study are presented. Followed by
threats to validity of this study. The last section
concludes with the key findings and provides
directions for future work.

BACKGROUND AND
RELATED WORK

This section presents background and related
work that is relevant for the remainder of the
paper. The first subsection briefly discusses
research on OSS reuse. This is followed by
a discussion of Component-Based Software
Development (CBSD) and the terminology
used in this paper. This is followed by a brief
overview of a useful and relevant categoriza-
tion of components. Since this work considers
the evolution of software components, a brief
summary of Lehman’s classification of software
programs is provided. This section concludes
with a brief discussion of related work regard-
ing software decay and architectural recovery.

Component-Based Software
Development and Terminology

As mentioned, Component-Based Software
Development (CBSD) has been proposed as
a promising approach to large-scale software
reuse. It is important, however, first to define
clearly what is meant by the term “component.”
The word “component” is often used in the con-
text of CBSD as a reusable piece of software,
either Commercial Off-The-Shelf (COTS) or
Open Source. For instance, Torchiano and Mori-
sio (2004) have derived the following definition:
“A	COTS	product	is	a	commercially	available	
or	 open	 source	 piece	 of	 software	 that	 other	
software	projects	can	reuse	and	integrate	into	
their	own	products.” This definition considers
a COTS or Open Source software product as an
independent unit that can be reused. However, a
number of authors have provided more specific
definitions; a commonly cited definition can be
found in Szyperski (2002, p. 41): “A	software	
component	is	a	unit	of	composition	with	contrac-
tually	specified	interfaces	and	explicit	context	
dependencies	only.	A	software	component	can	
be	 deployed	 independently	 and	 is	 subject	 to	
composition	by	third	parties.”

As De Jonge (2005) points out, “Compo-
nent-Based	 Software	 Engineering	 (CBSE)	 is	
mostly	 concerned	 with	 execution-level	 com-
ponents	(such	as	COM,	CCB,	or	EJB	compo-
nents).” Szyperski (2002, p. 3) also speaks of
software components as being “excecutable	
units	of	 independent	production,	acquisition,	
and	deployment	that	can	be	composed	into	a	
functioning	system.”

In this paper, following De Jonge (2005)
we use the term “build-level component.” De
Jonge speaks of build-level components as
“directory	hierarchies	containing	ingredients	of	
an	application’s	build	process,	such	as	source	
files,	build	and	configuration	 files,	 libraries,	
and	so	on.” In an earlier paper, De Jonge (2002)
uses the term “source code component.” In this
context, we interpret the meaning of “build-

International Journal of Open Source Software and Processes, 3(3), 10-35, July-September 2011 13

Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

level” component to be equivalent to the term
“module,” as used by Clements et	al. (2010,
p. 29). They indicate that a module refers to
a unit	of	implementation, and as such, can be
source code or other implementation artifacts.
Eick et	al. (2001) also interpret a module to
be a directory in the source code file system,
which contains several files, though they note
that this terminology is not standard. Tran et	
al. (1999, 2000) considered individual source
files as modules. Clements et	 al. define a
“component” to be a runtime	entity, which is
consistent with the definition by Szyperski.
Although important issues are already known
when incorporating and reusing whole systems
into larger, overarching projects (as in the case
of Linux distributions German & Hassan, 2009),
in the remainder of this paper, we use the term
“component” to refer to build-level component.

Components can be reused in different
ways, as briefly mentioned: black-box reuse and
white-box reuse (Szyperski, 2002). Black-box
reuse refers to the reuse of a component as-is
without any alterations. The component can only
be viewed in terms of its input and output. This
is typically the case when proprietary (COTS)
components are used, as the source code is
usually not available for proprietary software.
On the other hand, when the component’s
source code is available, the integrator can
perform white-box reuse. The integrator may
make changes to a component to fit his or her
intended purpose. Obviously, the availability
of the source code makes OSS components
particularly suitable for white-box reuse.

The two scenarios are summarized in
Figure 1. As an example, the MPlayer project
keeps a copy of the library in its repository
(and it eventually modifies, or “forks,” it for its
own purposes, in a white-box reuse scenario),
while the VLC project, at compilation time,
requires the user to provide the location of
an up-to-date version of the FFmpeg project
(black-box reuse).

Research on Open Source
Software Reuse

There is a growing body of empirical research
the use of OSS components in CBSD (Ayala
et	al., 2007; Hauge et	al., 2009; Capiluppi &
Knowles, 2009; Li et	al., 2009; Ven & Man-
naert, 2008). There is an increasing number of
OSS products available, many of which have
become viable alternatives to commercial
products (Fitzgerald, 2006), and adopting OSS
components to build products is a common
scenario (Hauge et	al., 2010).

Research on OSS reuse can be classified
along two dimensions. The first dimension
considers the question who reuses the software.
This can either be an Independent Software
Vendor (ISV), or other OSS communities.
The second dimension considers the software
that is reused, in particular the granularity of
components. Haefliger et	al. (2008) identified
different granularities of code reuse: algo-
rithms and methods, single lines of code, and
components. Components themselves may be
of a coarse granularity, i.e., complete software
systems. A common example of this is the so-

Figure	1.	Black-box	reuse	(by	VLC)	and	white-box	reuse	(by	MPlayer)

14 International Journal of Open Source Software and Processes, 3(3), 10-35, July-September 2011

Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

called “LAMP stack,” (Wikipedia, n.d.) which
is an “ensemble” of Linux, Apache, MySQL,
and a scripting language such as Python, Perl,
PHP or Ruby. Much of the literature on OSS
reuse focuses such coarse grained components
by ISVs, though it is noteworthy that granular-
ity cannot be measured on a discrete scale but
rather a continuous one. German et	al. (2007)
discuss dependencies between packages (which
they define as an installable unit of software),
such as found in Linux distributions. They
define a model to represent and analyze such
dependencies. Other work led by German in-
vestigated the issue of licenses when reusing
different OSS components (German & Hassan,
2009; German & González-Barahona, 2009).

On the other hand, reuse can be done with
components of a finer granularity. There are few
studies of this, all of which focus on the reuse by
other OSS projects. The study presented in this
paper also considers components of relatively
small granularity, which is why we discuss this
related work in more detail. Table 1 provides
an overview of the study objectives as well as
research methods and samples.

One of the first studies that quantifies the
reuse in Open Source Software is by Mockus
(2007). That study focuses on reuse by identi-
fying directories of source code files that share
a number (defined by a threshold) of file names;
therefore, the study only considers white-box
reuse. Mockus studied reuse on a large sample

of 38,700 unique projects with 5.3 million
unique file name paths. Mockus found that
approximately half of the files are used in more
than one project, which indicates significant
reuse among OSS projects.

Haefliger et	al. (2008) conducted a study
of 15 OSS projects, six of which were studied
in-depth. The goal of this study was an investiga-
tion of the influence of several factors identified
in the literature on the support of code reuse in
OSS development. Factors included standards
and tools, quality ratings and certificates, and
incentives as found in commercial software
development firms. The study shows that all
studied projects reuse software, and that black-
box reuse was the predominant form.

Sojer and Henkel (2010) conducted a sur-
vey to investigate quantitatively the relationship
between developer and project characteristics on
the one hand and the degree of software reuse
in OSS projects on the other hand. The survey
among 686 OSS developers identified a number
of factors, such as developers’ experience in
OSS projects that affect software reuse in OSS
projects. Unlike other studies, such as the one
by Mockus and Haefliger et	al. mentioned, this
study does not investigate actual reuse within
OSS projects, but rather developers’ behavior
and opinions on the topic.

Heinemann et	al. (2011) studied reuse in a
sample of 20 OSS projects written in the Java
programming language, using clone detection

Table	1.	Overview	of	previous	studies	of	reuse	in	OSS	

Authors Study objective Method and sample

Mockus et	al.
(2007)

To identify and quantify large-scale reuse in OSS. Survey of 38,700 projects, 13.2
MLOC

Haefliger et	al.
(2008)

Is code reuse supported in OSSD? Multiple case study, 15 projects,
in-depth analysis of 6 projects,
6MLOC

Sojer and Hen-
kel (2010)

How important is code reuse in OSS projects?
What are perceived benefits, issues and impediments of
code reuse?
How is code reuse affected by characteristics of developers
and project?

Web-based survey, 686 responses

Heinemann et	
al. (2011)

Do OSS projects reuse software? How much black-box/
white-box?

Empirical study, 20 OSS Java
projects, 3.3 MLOC

International Journal of Open Source Software and Processes, 3(3), 10-35, July-September 2011 15

Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

techniques complemented with manual inspec-
tion. Their study investigated whether OSS
projects reuse software, and to what extent such
reuse happens as white-box and black-box. They
found that reuse is common in the OSS Java
projects studied, in particular black-box reuse,
as previously found by Haefliger et	al. (2008).
It must be noted that their measurements also
counted reuse of the Java standard libraries.

Component Characterization

Components, as defined, can be characterized
in different categories depending on their re-
lationships to other components. Lungu et	al.
(2006) distinguish between four types of (Java)
packages. These are:

1. Silent package: no dependency relations
between the package and other packages.

2. Consumer package: a dependency relation
from the package to other packages (that
is, the package depends on, or consumes,
functionality from other packages);

3. Provider package: there is a dependency
from other packages to the package (that
is, the package provides functionality to
other packages);

4. Hybrid package: the package is both a
consumer and provider at the same time
(that is, it both consumes and provides
functionality to and from other packages,
respectively).

Though Lungu et	al. refer to Java packages,
which, they argue, are the main mechanism for
the decomposition and modularization of a soft-
ware system written in Java, we argue that the
same four types listed can be used to characterize
components as directories containing source
code files (as defined in the previous subsec-
tion). That is, a provider is a component that
provides services to other components (which
therefore become dependent upon the provider).
Likewise, a consumer relies on functionality
provided in other components (and is therefore
dependent upon those). Incidentally, Java pack-

ages are in fact represented as directories in a
source code file system.

Software Evolution and
Program Classification

There is a continuous pressure on software
systems to evolve in order to prevent becom-
ing obsolete (Lehman, 1978). Lehman (1980)
stated a number of “laws of software evolution”.
He presents a classification of programs into
three classes: S, P and E, which relates to how
programs evolve. The three program types are
briefly summarized below.

S-Programs

Lehman (1980) described S-Programs as: “pro-
grams whose function is formally defined by
and derivable from a specification.” These are
programs that solve a specific problem, which
is completely defined. The specification of the
problem “directs	and	controls	the	programmer	
in	his	creation	of	the	program	that	defines	the	
desired	 solution” (Lehman, 1980). Changes
may of course be made to the program, for
instance, to improve resource usage or improve
its maintainability. However, such changes must
not change the mapping between the input and
output. If changes are made due to a changed
specification, it is a different program that solves
a new problem. Typical examples of S-type
programs are library routines that implement
mathematical operations, for instance the sine
and cosine functions.

P-Programs

P-Programs are programs that implement a
solution to a problem that is well-defined but
whose implementation must be limited to an
approximation to achieve practicality. The
problem statement of P-Programs “is	a	model	
of	 an	 abstraction	 of	 a	 real-world	 situation,	
containing	uncertainties,	unknown,	arbitrary	
criteria	and	continuous	variables” (Lehman,
1980). Whereas the correctness of an S-Program
depends on its specification, the value and valid-
ity of P-Programs is dependent on the solution

16 International Journal of Open Source Software and Processes, 3(3), 10-35, July-September 2011

Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

acquired in a real-world environment. As the
environment or world in which the program
is used is changing, P-Programs themselves
must also change. Examples, as suggested by
Lehman, are a software program implementing
the game of chess, as well as weather predic-
tion software.

E-Programs

The defining characteristic of the third class of
programs, E-Programs, is that the installation
of a program itself changes the nature of the
problem that it is solving. As Lehman (1980)
stated: “Once	 the	program	 is	completed	and	
begins	 to	 be	 used,	 questions	 of	 correctness,	
appropriateness	 and	 satisfaction	 arise	 […]	
and	inevitably	lead	to	additional	pressure	for	
change.” In other words, the environment (or
world) in which the program was originally
conceived is changing due to the introduction
of the program itself. Or, stated in more ab-
stract terms, the introduction of a solution (the
software program) to a problem changes the
nature of the problem itself. This leads to the
need for continuous change to E-type programs.
Lehman mentions as examples of such types
of programs operating systems and air-traffic
control software (Lehman, 1980).

Software Architecture, Decay
and Architectural Recovery

The empirical analysis of the FFmpeg compo-
nents reported below revealed several changes
in the components and in their connections to
the core of the system: these changes revealed
(in at least one case) a decay in how some of the
components are internally structured, and exter-
nally connected to other components. Therefore
this work is also related to the study of software
architectures, as it relates to components, and
their mutual relationships (Bass et	al., 2003).

It is now widely accepted that a system’s
software architecture has different views (IEEE,
2000); well known is the 4+1 view model of
architecture (Kruchten, 1995), which defines the
logical, development, process, physical views,
plus a use-case view. As outlined, our study

considers components as directories containing
source code files, which would be presented in
the development view. One related aspect that
was also considered for the present study is about
how such structural characteristics decay over
time, how components become less cohesive
and how the connections between them infringe
the original design constraints.

One important aspect of software architec-
tures and components is modularity (Parnas,
1972): the division of a system into modules
(or components) helps in the separation of the
functionality and responsibilities of the various
modules. Reusability is a quality attribute that is
directly related to a component’s (or system’s);
examining the inter-component couplings (Bass
et	al., 2003) may provide valuable insights that
help to assess the reusability of a component (or
system). The analysis of coupling and cohesion
of object-oriented systems has also shown that
a good degree of modularity is achieved by
observing the “loose coupling and high cohe-
sion” principle for components (Fenton, 1991;
Macro & Buxton, 1987; Troy & Zweben, 1981).

As software systems evolve over time,
the software engineering literature has firmly
established that software architectures and the
associated code suffer from software	 decay
(Eick et	al., 2001). Perry and Wolf (1992) speak
of architectural	erosion and architectural	drift.
The former occurs as a result of violating the
(conceptual) software architecture. The latter
is due to an insensitivity of stakeholders about
the architecture, which may lead to an obscu-
ration of the architecture, which in turn may
cause violation of the architecture. As a result,
software systems have the progressive tendency
to lose their original structure, which makes
it difficult to understand and further maintain
them (Schmerl et	al., 2006). Among the most
common discrepancies between the original
and the degraded structures, the phenomenon
of highly coupled, and lowly cohesive, modules
has already been known since 1972 (Parnas,
1972) and it is an established topic of research.

Architectural	recovery is one of the recog-
nized counter-measures to this decay (Dueñas et	
al., 1998). Several earlier works have focused

International Journal of Open Source Software and Processes, 3(3), 10-35, July-September 2011 17

Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

on the architectural recovery of proprietary
software (Dueñas et	al., 1998), closed academic
software (Abi-Antoun et	 al., 2007), COTS-
based systems (Avgeriou & Guelfi, 2005) and
OSS (Bowman et	al., 1999; Godfrey & Lee,
2000; Tran et	al., 2000). In all of these stud-
ies, systems were selected in a specific state of
evolution, and their internal structures analyzed
for discrepancies between the conceptual and
concrete architectures (Tran et	al., 2000). Re-
searchers have proposed various approaches
to address this issue by proposing frameworks
(e.g., Sartipi et	al., 2000), methodologies (e.g.,
Krikhaar et	al., 1999) or guidelines and concrete
advice to developers (e.g., Tran et	al., 2000).

Architectural recovery provides insights
into the concrete architecture, which in turn
may be of help to developers and integrators.
For instance, certain architectural styles (Cle-
ments et	al., 2010) may be identified, which
can provide valuable insights into a system’s
quality attributes (Bass et	al., 2003; Harrison &
Avgeriou, 2011). Recovery is very important as
well to ensure the maintainability of a software
product; if the conceptual architecture is not
respected, the resulting concrete architecture
may become a spaghetti architecture, which
can be an obstacle to making necessary changes
to the system. In the context of software reuse,
and this research in particular, components (as
defined) may be identified that can be reused
in other systems (i.e., OSS projects).

RESEARCH DESIGN

The study presented in this paper is a quanti-
tative, descriptive case study (Yin, 2003). As
Easterbrook et	 al. (2008) pointed out, there
exists some confusion in the software engi-
neering literature over what constitutes a case
study, distinguishing between a case study
as a “worked example” and case study as an
“empirical method”. Case studies can also be
conducted in different contexts, for instance in
industry (“in vivo”) or in a research/laboratory
setting (“in vitro”). This study is an empiri-
cal, “in vitro” case study of one OSS project,

namely FFmpeg. As such, this study presents
the description and analysis of a system, and
following the classification by Glass et	 al.
(2002) the research approach can therefore be
classified as “descriptive.”

The remainder of this section proceeds as
follows. First, we provide further information
on the FFmpeg project. Second, we introduce
the research questions that guided the research.
Third, we present the definitions to operational-
ize this research. The section concludes with
a discussion of data collection and analysis
procedures.

Selection and Description
of the FFmpeg System

This paper presents a case study of reuse of
build-level components in the FFmpeg proj-
ect. We selected this project as an example of
software reuse for several reasons:

1. It has a long history of evolution as a mul-
timedia player that has grown and refined
several build-level components throughout
its life cycle. Some of these components
appear like “E” type systems, instead of
traditional “S” or “P” types, with lower
propensity for software evolution.

2. Several of its core developers have been
collaborating also in the MPlayer (http://
www.mplayerhq.hu) project, one of the
most commonly used multimedia players
across OSS communities. Eventually, the
libavcodec component has been incorpo-
rated (among others from FFmpeg) into
the main development trunk of MPlayer,
increasing FFmpeg’s visibility and wide-
spread usage.

3. Its components are currently reused on
different platforms and architectures, both
in static linking and in dynamic linking.
Static linking involves the inclusion of
source code files or pre-compiled libraries
at compile-time, while dynamic linking
involves the inclusion of a (shared) binary
library at runtime.

18 International Journal of Open Source Software and Processes, 3(3), 10-35, July-September 2011

Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

4. Finally, the static-linking reuse of the
FFmpeg components presents two opposite
scenarios: either a black-box reuse strategy,
with “update propagation” issues reported
when the latest version of a project has to
be compiled against a particular version
of the FFmpeg components (Orsila et	al.,
2008); or a white-box reuse strategy.

As mentioned, the FFmpeg system has suc-
cessfully become a highly visible OSS project
partly due to its components, libavcodec in
particular, which have been integrated into a
large number of OSS projects in the multimedia
domain2.

In terms of a global system’s design, the
FFmpeg project does not yet provide a clear
description of either its internal design, or how
the architecture is decoupled into components
and connectors. Nonetheless, by visualizing
its source tree composition (de Jonge, 2002),
the folders containing the source code files
appear to be semantically rich, in line with the
definitions of build-level	components (de Jonge,
2005), and source	tree	composition (de Jonge,
2002). The first column of Table 2 summarizes
which folders currently contain source code and
subfolders within FFmpeg.

As shown, some components act as contain-
ers for other subfolders, apart from source files,
as shown in columns two and three, respec-
tively. Typically these subfolders have the role

of specifying/restricting the functionalities of
the main folder in particular areas (e.g., the
libavutil folder which is further divided into
the various supported architectures, such as
Intel x86, ARM, PPC, etc.; as mentioned,
Lungu et	al. (2006) refer to this structural “pat-
tern” as an Archipelago). The fourth column
describes the main functionalities of the com-
ponent. It can be observed that each directory
provides the build and configuration files for
itself and the subfolders contained, following
the definition of build-level components (de
Jonge, 2005). The fifth column of Table 2 lists
the month in which the component was first
detected in the repository. Apart from the mis-
cellaneous tools component, each of these are
currently reused as OSS components in other
multimedia projects as development libraries,
for example, the libavutil component is cur-
rently redistributed as the libavutil-dev package.

Table 2 shows that the main components of
this system have originated at different dates,
and that the older ones (e.g., libavcodec) are typi-
cally more articulated into several directories
and multiple files. The libavcodec component
was created relatively early in the history of this
system (08/2001), and it has now grown to some
220,000 source lines of code (SLOC) alone.

As is visible in the time-line in Figure 2,
other components have coalesced since then;
each component appears modularized around
a specific “function,” according to the “De-

Table	2.	FFmpeg	build-level	components	

Component name Folder
count

File
count

Description First
detected

libavcodec 12 625 Extensive audio/video codec library 08/2001

libpostproc 1 5 Library containing video postprocessing routines 10/2001

libavformat 1 205 Audio/video container mux and demux library 12/2002

libavutil 8 70 Shared routines and helper library 08/2005

libswscale 6 20 Video scaling library 08/2006

tools 1 4 Miscellaneous utilities 07/2007

libavdevice 1 16 Device handling library 12/2007

libavfilter 1 11 Video filtering library 02/2008

International Journal of Open Source Software and Processes, 3(3), 10-35, July-September 2011 19

Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

scription” column in Table 2, and as such have
become more identifiable and hence reusable
in other systems (and are in fact repackaged as
distinct OSS projects, http://www.libav.org).

Research Questions

This research has been guided by three research
questions:

RQ1: How does the size of FFmpeg compo-
nents evolve?

Rationale: at first, we were interested in how
the components of FFmpeg behave in terms
of their size, when they become available,
and if there is a limit to growth in such
components affecting their ability to be
reused properly.

RQ2: How does the architecture of FFmpeg
components evolve?

Rationale: we were interested in understanding
how the various FFmpeg components relate
to one another in terms of coupling and co-
hesion. We consider these measures to be a
representation of the software architecture.

RQ3: How do FFmpeg components evolve
when separated from FFmpeg (e.g., in
white-box reuse)?

Rationale: as mentioned, the FFmpeg compo-
nents have been reused so far in a black-box
or a white-box scenario. OSS components
are particularly suitable for white-box reuse
due to the availability of the source code.
A number of FFmpeg components have in
fact been reused using a white-box reuse

approach. Since in such a scenario a copy
of the component is made and maintained
by a new hosting project, the component is
likely to evolve separately from its original
host project (i.e., FFmpeg). Therefore, it
is interesting to study how FFmpeg com-
ponents evolve when they are reused as
white-box components.

Definitions and Operationalization

This section introduces a number of definitions
that are relevant to the research presented in
this paper. In this paper we use terminology
and definitions provided in related and previ-
ous studies.

The previous section already discussed our
interpretation of the term component. To sum-
marize, we consider a directory in the source
code file system, containing several source
code files, to be a build-level component (de
Jonge, 2005), which are subsequently used as
units of composition. Others have used the word
“module” for this (e.g., Clements et	al., 2010).

In order to measure the evolution of
components and their architectural evolution,
we use a number of measurements that have
been well established in software engineering
measurement literature, namely coupling and
cohesion. Coupling is further divided into out-
bound coupling (fan-out) and inbound coupling
(fan-in). Furthermore, we have considered the
concept of “connection” which states whether
two components are related or not.

Figure	2.	Inception	dates	of	build-level	components

20 International Journal of Open Source Software and Processes, 3(3), 10-35, July-September 2011

Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

• Coupling: Coupling is a measure of the de-
gree of interdependence between modules
(Fenton, 1991). There are several types of
coupling, such as common coupling where
modules reference a global data area, con-
trol coupling where control data is passed
between modules, etc. An extensive clas-
sification of types of coupling is presented
by Lethbridge and Laganiére (2001, p.
323). In this study, we define coupling as
the union of “routine call” coupling and
“inclusion/import” coupling. Routine call
coupling refers to function calls from a
component A to a component B. Inclusion/
import coupling refers to dependencies
expressed using the #include directive of
the C preprocessor. We used the Doxygen
tool (http://www.doxygen.org/) to extract
this information. Since the empirical study
is based on the definition of build-level
components, two further conversions have
been made:
1. The file-to-file and the functions-to-

functions couplings have been “lifted”
(Krikhaar, 1999, p. 38, p. 85) into
folder-to-folder couplings, as also
done by Tran and Holt (1999); this is
graphically illustrated in Figure 3. A
stronger coupling link between folder
A and B will be found when many
elements within A call elements of
folder B.

2. Since the behavior of build-level
components is studied here, the cou-
plings to subfolders of a component
have also been redirected to the com-
ponent alone; hence a coupling
A→B/C(with C being a subfolder of
B) is reduced to A→B. This is graphi-
cally illustrated in Figure 4.

• Outbound coupling (fan-out): for each
component, the percentage of couplings
directed from any of its elements to ele-
ments of other components, as in requests
of services. A component with a large fan-
out, or “controlling” many components
provides an indication of poor design, since
the component is probably performing
more than one function.

• Inbound coupling (fan-in): for each
component, the percentage of couplings
directed to it from all the other compo-
nents, as in “provision of services.” A
component with high fan-in is likely to
perform often-needed tasks, invoked by
many components, which is regarded as
an acceptable design behavior.

• Cohesion: for each component, the sum
of all couplings, in percentage, between its
own elements (files and functions).

• Connection: distilling the couplings as
defined, one could say, in a Boolean man-
ner, whether two folders are linked by a
connection or not, disregarding the strength
of the link itself3. The overall number of

Figure	3.	Function	calls	from	a	file	in	component	A	to	a	file	in	component	B	are	modeled	as	a	
link	between	components	A	and	B

International Journal of Open Source Software and Processes, 3(3), 10-35, July-September 2011 21

Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

these connections for the FFmpeg project
is recorded monthly in Figure 5; the con-
nections of a folder to itself are not counted
(for the encapsulation principle), while
the two-way connection and is counted
just once (since we are only interested in
which folders are involved in a connection).

Data Collection and Analysis

The source code repository (SVN) of FFmpeg
was parsed monthly, resulting in some 100
temporal points, after which the tree structures
were extracted for each of these points. The
monthly extraction of the raw data was achieved
by downloading the repository on the first day
of each month. As an example, for retrieving
the snapshot for 02/2008, the following com-
mand was issued:

svn -r {2008-02-01} checkout svn://

svn.ffmpeg.org/ffmpeg/trunk

On the one hand, the number of source fold-
ers (but not yet build-level components) of the
corresponding tree is recorded in Figure 5. On
the other hand, in order to produce an accurate
description of the tree structure as suggested by
Tran et	al. (2000), each month’s data has been
further parsed using Doxygen, with the aim of
extracting the common coupling among the ele-
ments (i.e., source files and headers, and source

functions) of the systems. Doxygen generates
so-called .dot files in the process. Each of these
.dot files represents a file (or a class), or a clus-
ter of files, and its couplings towards other in
the system. In order to generate the .dot files
(and keep them available after the process), the
Doxygen configuration file (http://mastodon.
uel.ac.uk/IJOSSP2012/Doxygen_base.txt)
contains these two commands:

“HAVE_DOT = YES”

“DOT_CLEANUP = NO”

Various scripts are then applied to obtain
the summary of function calls (http://mastodon.
uel.ac.uk/IJOSSP2012/ffmpeg-2008-02-01-
summary_ALL_FUNCTION_CALLS.txt),
dependencies and include relationships. The
information in the summary files is at the atomic
level of functions or files: in order to define
inter-relationships between components, these
relations are lifted (Krikhaar, 1999) to the level
of the build-level components (i.e., folders) that
contain them, as was mentioned.

The analysis of size growth has been per-
formed using the SLOCCount tool (Wheeler,
n.d.).

For each build-level component summa-
rized in Table 2, a study of its relative change in
terms of the contained SLOC along its lifecycle
has been undertaken. In addition, a study of the

Figure	4.	Dependencies	from	component	A	to	subcomponent	C	(within	B)	are	redirected	to	the	
component	B

22 International Journal of Open Source Software and Processes, 3(3), 10-35, July-September 2011

Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

architectural connections has been performed,
by analyzing temporally:

1. The number of couplings that were actually
involved with elements of the same com-
ponent (as per the definition of cohesion);

2. The number of couplings that consisted of
links to or from other components (as per
the definition of inbound and outbound
couplings, respectively).

Previous studies that present recovered
architectures have used “box-and-line” (or
box and arrow) diagrams (e.g., Bowman et	al.,
1999). We use UML package diagrams (rather
than component diagrams) to graphically visual-
ize (build-level) components, as defined in the
previous section.

RESULTS AND DISCUSSION

This section provides the results of the empiri-
cal investigation, addressing the three research
questions identified in the previous section.
First, the size growth of the FFmpeg components
is presented (Table 2). This is followed by a
presentation of an analysis of the architectural
evolution of the components. This section con-

cludes with a discussion of the deployment of
libavcodec in other OSS projects.

Size Growth of FFmpeg
Components

As a general result, two different evolutionary
patterns can be observed, which have been
clustered in the two graphs of Figure 6 and
Figure 7; the measures are all relative to the
highest values recorded, and they are presented
as percentages on the Y-axis. In the top graph,
three components (libavcodec, libavutil and
libavformat in blue, yellow and red, respec-
tively) show a linear growth as a general trend
(relative to the maximum size achieved by each).
In the following, these components are referred
to as E-type components. On the other hand, the
other components in FFmpeg (Table 2) show
a more traditional evolution that is typical for
library packages, and are referred to as either
“S-type” or “P-type” systems (as presented in
the background section).

Size Growth in E-Type Components

Considering the top diagram in Figure 6, the
libavcodec component started out as a medium-
sized component (18 KSLOCs), but currently its

Figure	5.	Growth	of	folders	and	connections	of	the	FFmpeg	project

International Journal of Open Source Software and Processes, 3(3), 10-35, July-September 2011 23

Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

size has reached over 220 KSLOCs, which is an
increase of over 1,100%. Also, the libavformat
component has moved through a comparable
pattern of growth (250% increase), but with a
smaller size overall (from 14 to 50 KSLOC).
Although reusable resources are often regarded
as “S-type” or “P-type” systems, since their
evolutionary patterns manifest a reluctance to
growth (as in the typical behavior of software
libraries), these two components achieve an “E-
type” evolutionary pattern even when heavily
reused by several other projects. The studied

cases appear to be driven mostly by adaptive
maintenance (Swanson, 1976), since new audio
and video formats are constantly added and re-
fined among the functions of these components.

Using a metaphor from botany, these soft-
ware components appear and grow as “fruits”
from the main “plant” (“trunk” in the version
control system). Furthermore, these compo-
nents behave as “climacteric” fruits (such as
bananas), meaning that they ripen off the parent
plant (and in some cases, they must be picked
in order to ripen; that is, a component needs to

Figure	7.	Relative	growth	in	size	of	S-	and	P-type	components

Figure	6.	Relative	growth	in	size	of	E-type

24 International Journal of Open Source Software and Processes, 3(3), 10-35, July-September 2011

Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

be separated from the parent project in order to
allow it to mature and evolve). These FFmpeg
components have achieved an evolution even
when separated from the project they belonged
to (i.e., FFmpeg), similarly to climacteric fruits.

Size Growth in S- and
P-Type Components

The bottom diagram in Figure 7 details the
relative growth of the remaining components.
The Figures 6 and 7 show that these remaining
components show a more traditional library-
style type of evolution. Maintenance activities
in these components are more likely to be of a
corrective or perfective nature (Swanson, 1976).
The components libpostproc and libswscale ap-
pear to be hardly changing at all, even though
they have been formed for several years in the
main project (Figure 2). Libavdevice, when
created, was already at 80% of its current state;
libavfilter, in contrast, although achieving a
larger growth, does so since it was created at a
very small stage (600 SLOC), which has now
doubled (1,400 SLOCs). These resources are
effectively library-type of systems, and their
reuse is simplified by the relative stability
of their characteristics, meaning the type of
problem they solve. Using the same metaphor
as shown, the components (“fruits”) following
this behavior are unlikely to ripen any further
once they have been picked. Outside the main
trunk of development, these components remain
unchanged, even when incorporated into other
OSS projects.

Architectural Evolution of
FFmpeg Components

The observations related to the growth in size
have been used to cluster the components based
on their coupling patterns. As mentioned, each
of the 100 monthly checkouts of the FFmpeg
system were analyzed in order to extract the
common couplings of each element (functions
or files), and these common couplings were
then converted (lifted) into connections between
components.

As observed also with the growth in size,
the E-type components present a steadily in-
creasing growth of couplings compared to the
more stable S-type and P-type components. In
the following section, we will study whether
the former also display a more modularized
growth pattern, resulting in a more stable and
defined behavior.

Coupling Patterns in
E-Type Components

Figures 8 through 10 present the visualization
of the three E-type components identified. For
each component, four trends are displayed:

1. The overall amount of its common
couplings;

2. The amount of couplings directed towards
its elements (cohesion);

3. The amount of its outbound couplings
(fan-out);

4. The amount of its inbound couplings
(fan-in).

As seen, these trends are also measured
relative to the highest values recorded in each
trend, and they present the results in percent-
ages on the Y-axis.

Each component has a continuous growth
trend regarding the number of couplings af-
fecting it. The libavutil component has one
sudden discontinuity in this growth, which
will be later explained. As a common trend,
it is also visible that both the libavcodec and
libavformat components have a strong cohesion
factor, which maintains over the 75% threshold
throughout their evolution. In other words, in
these two components, more than 75% of the
total number of couplings are consistently
between internal elements. The cohesion of
libavutil, on the other hand, degrades until it
becomes very low, revealing a very high fan-in.
After the restructuring at around one fifth of its
lifecycle (June 2006), this component becomes
a provider (Lungu et	al., 2006), fully providing
services to other components (more than 90%
of the overall amount of its couplings – around

International Journal of Open Source Software and Processes, 3(3), 10-35, July-September 2011 25

Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

3,500 – are either towards its own elements or
serving calls from other components).

When observing the three components as
part of a common, larger system, the changes
in one component become relevant to the
other components as well. For example, the
general trend of libavcodec is intertwined to
the other two components (i.e., libavutil and
libavformat) in the following ways:

1. The overall cohesion decreases during a
time interval when no overall couplings
(i.e., the blue trend) were added, therefore
this attribute has decayed.

2. In parallel with the cohesion decay, the
fan-out of libavcodec (top of Figure 5)
abruptly increases, topping some 17% at
the latest studied point: at a closer inspec-

tion, this larger fan-out (e.g., requests of
services) is increasingly directed towards
the libavutil component, which around the
same period (middle of Figure 5) experi-
ences a sudden increase of its fan-in (i.e.,
provision of services).

3. Also, the fan-in of libavcodec decreases:
in the first part of its evolution, libavco-
dec served numerous requests from the
libavformat component; throughout the
evolution, these links are converted into
connections to libavutil instead, decreasing
the fan-in of libavcodec.

4. Performing a similar analysis for libav-
format, it becomes clear that its fan-out
degrades, becoming gradually larger, the
reason being an increasingly stronger link
to the elements of both libavcodec and
libavutil. This form of inter-component

Figure	8.	Coupling	patterns	of	E-type	components.	Libavavcodec.

Figure	9.	Coupling	patterns	of	E-type	components.	Libavutil.

26 International Journal of Open Source Software and Processes, 3(3), 10-35, July-September 2011

Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

dependencies is a form of architectural	
decay (Eick et	al., 2001). This has been
reproduced for the latest available data
point in Figure 11: both libavformat and
libavcodec depend heavily on libavutil
(1,093 and 1,748 overall couplings, re-
spectively); furthermore, the same two
components are also intertwined by 523
calls by libavformat that are served by
libavcodec.

Figure 11 shows that most of the couplings
of these displayed components are amongst
themselves; for instance, 68% of the couplings
of libavformat (4,051 couplings) are couplings
to itself (i.e., its cohesion); 18% (1,093) is to
libavutil, and 9% is to libavcodec. Ninety-five
per cent of libavformat’s couplings are found
within these three components; the remaining
5% are couplings to other components. When
comparing these results with the plots in Figures
8 through 10 (especially the one representing
the libavcodec component), it becomes clear
how its architecture has decayed. In the earli-
est points, libavcodec represented an excellent
component, with a cohesion made of 90% of
all its couplings, and a fan-in of 10% of all its
couplings. No fan-out was recorded, so essen-
tially libavcodec had no need for services by
other components. The latest available point,
instead (Figure 11), shows a component that has

decayed, that needs more from libavutil (16% of
all its couplings), and for which the fan-out has
increased to some 18% of its overall couplings.

The graph in Figure 11 shows another
result, representing in fact the typical trade-offs
between encapsulation and decomposition:
several of the common files accessed by both
libavformat and libavcodec have been “relo-
cated” (Tran & Holt, 1999) recently to a third
location (libavutil), that acts as a provider
(Lungu et	al., 2006) to both. This in turns has
a negative effect on reusability; when trying to
reuse (some of) the functionality of libavcodec,
it will be necessary to include also (some of)
the contents of libavutil, since a large amount
of calls are issued by libavformat towards
libavutil. Even worse, when trying to reuse
(some of) the functionality of libavformat, it
will be necessary to include also (some of the
functionality of) libavutil and libavcodec, since
the three components are heavily intertwined.

Coupling Patterns in S- and
P-Type Components

The characteristics of the E-type components
as described can be summarized as follows:

• High cohesion;
• Fan-out under a certain threshold; and

Figure	10.	Coupling	patterns	of	E-type	components.	Libavformat.

International Journal of Open Source Software and Processes, 3(3), 10-35, July-September 2011 27

Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

• Clear, defined behavior as a component
(e.g., a “provider” as achieved by the
libavutil component).

The second cluster of components identi-
fied (the “S-” and “P-type”) revealed several
discrepancies from the results observed previ-
ously. A list of key results is summarized here:

1. As also observed for the growth of com-
ponents, the number of couplings affecting
this second cluster of components reveals a
difference of one (libswscale, libavdevice
and libavfilter) and even two (libpostproc)
orders of magnitude with respect to the
E-type components.

2. Slowly growing trends in the number of
couplings were observed in libavdevice
and libavfilter, but their cohesion remains
stable. On the other hand, a high fan-out was
consistently observed in both, with values
of 0.7 and 0.5, respectively. Observing more
closely, these dependencies are directed
towards the three E-type components de-
fined. This suggests that these components
are not yet properly designed; this may also
be due to their relatively young age. Their
potential reuse is subsumed to the inclusion
of other FFmpeg libraries as well.

To summarize, this second type of com-
ponents can be classified as slowly growing,
less cohesive and more connected with other
components in the same system. They can be
acceptable reusable candidates, but resolving
the inter-connections with other components
from the same project could prove difficult.

Deployment of libavcodec
in other OSS Projects

Although identified as “E-type” components,
the three components libavcodec, libavformat
and libavutil have been shown as highly reus-
able, based on coupling patterns and size growth
attributes. This is interesting, as it seems to
contradict the expectation that E-type software
is less reusable, due to the need to continuously
evolve. In order to observe how these com-
ponents are actually reused and deployed in
other hosting systems, this section summarizes
the study of the deployment of the libavcodec
component in four OSS projects: avifile (http://
avifile.sourceforge.net/), avidemux (http://
fixounet.free.fr/avidemux/), MPlayer and xine
(Freitas, Roitzsch, Melanson, Mattern, Langauf,
Petteno et	al., 2002).

The selection of these projects for the de-
ployment study is based on their current reuse
of these components. Each project hosts a copy

Figure	11.	High	number	of	couplings	among	three	components	suggest	that	they	are	heavily	
dependent	on	each	other

28 International Journal of Open Source Software and Processes, 3(3), 10-35, July-September 2011

Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

of the libavcodec component in their code re-
positories, therefore implementing a white-box
reuse strategy of this resource. In other words,
these projects maintain their own copy of the
libavcodec component. The issue to investigate
is whether these hosting projects maintain the
internal characteristics of the original libavco-
dec, hosted in the FFmpeg project. In order to
do so, the coupling attributes of this folder have
been extracted from each OSS project, and the
number of connected folders has been counted,
together with the total number of couplings.
The results are shown in Figure 12.

Each diagram in Figure 12 represents a
hosting project: the libavcodec copy presents
some degree of cohesion (the re-entrant arrow),
and its specific fan-in and fan-out (inwards and
outwards arrows, respectively). The number of
connections (i.e., distinct source folders) re-
sponsible for the fan-in and fan-out are displayed
by the number in the (multi-) module diagram
in the upper-left and upper-right corners. The
following observations can be made:

• The total amount of couplings in each copy
is always lower than the original FFmpeg
copy; this means that not the whole FFmpeg
project is reused, but only some specific
resources.

• In each copy, the ratio fan−in/fan−out is
approximately 2:1. In the xine copy, this
is reversed: this is due to the fact that, ap-
parently, xine does not host a copy of the
libavformat component.

• For each graph, the connections between
libavcodec and libavutil, and between
libavcodec and libavformat have been
specifically detailed: the fan-in from libav-
format alone has typically the same order
of magnitude than all the remaining fan-in.

• The fan-out towards libavutil typically
accounts for a much larger ratio. This is a
confirmation of the presence of a consis-
tent dependency between libavcodec and
libavutil, which therefore must be reused
together. The avidemux project moved
the necessary dependencies to libavutil
within the libavcodec component; therefore

no build-level component for libavutil is
detectable.

THREATS TO VALIDITY

We are aware of a few limitations of this study,
which are discussed below. Threats may occur
with respect to construct validity, reliability
and external validity. Since we do not seek to
establish any causal relationships, we do not
discuss threats to internal validity.

Construct Validity

Construct validity is concerned with establish-
ing correct operational measures for the con-
cepts that are being studied (Yin, 2003). We used
coupling and cohesion measures to represent
inter-software component connections. These
measures are widely used within the software
engineering literature in relation to software
module inter-connectivity. We interpreted the
term “component” as “build-level” component,
as previously done in other studies (e.g., de
Jonge, 2005).

Furthermore, the build-level components
presented in Table 2 (though probably accurate)
are automatically assigned, but they could be
only subcomponents of a larger component (e.g.,
composed of both libavutil and libavcodec).

Reliability

Reliability is the level to which the operational
aspects of the study, such as data collection
and analysis procedures, are repeatable with
the same results (Yin, 2003, p. 34). At the time
of our study, FFmpeg was hosted in a Subver-
sion repository, which was parsed monthly,
as discussed in the research design section.
Guba (1981) states that an inquiry can be af-
fected by “instrumental drift or decay,” which
may produce effects of instability. In order to
guard against this, we have established an audit	
trail of the data extraction process, which is a
recommended practice to establish reliability
(Guba, 1981). A snapshot (of the example
given in the research design section) is made

International Journal of Open Source Software and Processes, 3(3), 10-35, July-September 2011 29

Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

publicly available (http://mastodon.uel.ac.uk/
IJOSSP2012/ffmpeg-2008-02-01.tar.gz). The
generated .dot files (which represent individual
files, classes or clusters of files, and contain its
couplings to other modules in the system) are
also publicly available (http://mastodon.uel.
ac.uk/IJOSSP2012/ffmpeg-2008-02-01-dots.
tar).

External Validity

External validity is concerned with the extent
to which the results of a study can be general-

ized. In our study, we have focused on one case
study (FFmpeg), which is written mostly in the
C programming language. Performing a similar
study on a system written in, for instance, an
object-oriented language (e.g., C++ or Java),
the results could be quite different. However,
as outlined in the introduction section, it is not
our goal to present generalizations based on
our results. Rather, the aim of this paper is to
document a successful case of OSS reuse by
other OSS projects.

Figure	12.	Deployment	and	reuse	of	libavcodec

30 International Journal of Open Source Software and Processes, 3(3), 10-35, July-September 2011

Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

CONCLUSION AND
FUTURE WORK

This section presents the conclusion of this
study followed by directions for future work.

Conclusion

Empirical studies of reusability of OSS re-
sources should proceed in two strands: first,
they should provide mechanisms to select the
best candidate component to act as a building
block in a new system; second, they should
document successful cases of reuse, where
an OSS component(s) has been deployed in
other OSS projects. This paper contributes to
the second strand by empirically analyzing
the FFmpeg project, whose components are
currently widely reused in several multimedia
OSS applications. The empirical study was per-
formed on project data for the last eight years of
its development, studied at monthly intervals, to
determine and extract the characteristics of its
size, the evolutionary growth and its coupling
patterns, in order to identify and understand the
attributes that made its components a successful
case of OSS reusable resources. After having
studied these characteristics, four OSS projects
were selected among the ones implementing a
white-box reuse of the FFmpeg components;
the deployment and the reuse of these compo-
nents was studied from the perspective of their
interaction with their hosting systems.

In our case study of FFmpeg, a number
of findings were obtained. First, it was found
that several of its build-level components make
for a good start in the selection of reusable
components. They coalesce, grow and become
available at various points in the life cycle of this
project, and all of them are currently available
as building blocks for other OSS projects to
use. Second, it was possible to classify (using
Lehman’s S-P-E program type categories) at
least two types of components: one set presents
the characteristics of evolutionary (E-type) sys-
tems, with a sustained growth throughout. The
other set, albeit with a more recent formation,

is mostly unchanged, therefore manifesting the
typical attributes of software libraries.

The two clusters were compared again in
the study of the connections between compo-
nents. The first set showed components with
either a clearly defined behavior, or an excel-
lent cohesion of its elements. It was also found
that these three components become increas-
ingly mutually connected, which results in the
formation of one single super-component. The
second set appeared less stable, with accounts
of a large fan-out, which suggests a poor design
or immaturity of the components.

One of the reusable resources found within
FFmpeg (i.e., libavcodec) was analyzed when
deployed into four OSS systems that have reused
it using a white-box approach. Its cohesion
pattern appeared similar to the original copy of
libavcodec, while it emerged with more clar-
ity that currently its reuse is facilitated when
the libavformat and libavutil components are
reused, too. Given that most of the projects
reusing the libavcodec library are “dynami-
cally” linking (i.e., black box reuse) it to their
code, any change made to the libavcodec library
have a propagation issue (Orsila et	al., 2008):
this means that the linking projects need to
adapt their code as long as a new version of
libavcodec is released; on the other hand, the
projects hosting their own copy of the same
library (i.e., white box reuse) will face less of
the propagation issue, since the changes pushed
onto the original version libavcodec will not
affect their copies.

Future Work

This work has several open strands to follow:
at first, it would be interesting to replicate
this study to other systems that are currently
widely reused. In particular, it is necessary
to start defining and distinguishing the reuse
of whole systems “as libraries” (such as the
project zlib), from the reuse of components
within larger projects (such as the component
libavcodec within the FFmpeg project). In the
first case, the whole project is reused as-is, and

International Journal of Open Source Software and Processes, 3(3), 10-35, July-September 2011 31

Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

it seems likely that only a subset of functions
will be reused. In the latter, the implications are
more interesting; researchers and practitioners
should try to extract automatically libraries that
comply with reusability principles, and avoid
reusing whole systems.

The second research direction that needs to
be addressed is about the evolution of reusable
resources. It needs to address the following
questions:

• Do libraries need to remain mostly un-
changed to be reusable?

• What are the main issues of forking reusable
libraries to avoid the effects of “cascade
updates”?

In this respect, OSS developers and inter-
ested parties have to produce a strategy for the
upgrade of their resources when such resources
rely heavily on external libraries.

Thirdly, the example of the components
being available at different times in FFmpeg
shows that other evolving projects might be
able to produce a similar response to the OSS
communities, by signaling the presence of reus-
able libraries that could benefit other projects
apart from their own.

Finally, the presence of so many available
OSS projects implementing similar applications
(e.g., our example of over 100 projects imple-
menting an “email client”) should be analyzed
further to detect how much code duplication,
code cloning or components reuse is visible in
these projects.

ACKNOWLEDGMENTS

The authors would like to thank Dr Daniel
German for the clarification on the potential
conflicts of licenses in the FFmpeg project,
Thomas Knowles for the insightful discussions,
and Nicola Sabbi for the insider knowledge of
the MPlayer system. We thank the anonymous
reviewers for their constructive feedback, which
has improved this paper. This work was, in
part, supported by Science Foundation Ireland

grant 10/CE/I1855 to Lero—The Irish Software
Engineering Research Centre (www.lero.ie).
This paper is a revised version of: Capiluppi,
A., Boldyreff, C. & Stol, K. (2011) Successful
Reuse of Software Components: A Report from
the Open Source Perspective, in: Hissam, S. A.,
Russo, B., de Mendonça Neto, M. G. & Kon,
F. (Eds.) Open Source Systems: Grounding
Research, Springer, Advances in Information
and Communication Technology (AICT) vol.
365, pp. 159-176.

REFERENCES

Abi-Antoun, M., Aldrich, J., & Coelho, W. (2007). A
case study in re-engineering to enforce architectural
control flow and data sharing. Journal	of	Systems	
and	 Software, 80(2), 240–264. doi:10.1016/j.
jss.2006.10.036

Avgeriou, P., & Guelfi, N. (2005). Resolving archi-
tectural mismatches of COTS through architectural
reconciliation. In X. Franch & D. Port (Eds.), Pro-
ceedings	 of	 the	 4th	 International	 Conference	 on	
COTS-Based	 Software	 Systems (LNCS 3412, pp.
248-257).

Ayala, C., Sørensen, C., Conradi, R., Franch, X., &
Li, J. (2007). Open source collaboration for foster-
ing off-the-shelf components selection. In Feller,
J., Fitzgerald, B., Scacchi, W., & Sillitti, A. (Eds.),
Open	source	development,	adoption,	and	innovation.
New York, NY: Springer. doi:10.1007/978-0-387-
72486-7_2

Basili, V. R., & Rombach, H. D. (1991). Support for
comprehensive reuse. IEEE	Software	Engineering	
Journal, 6(5), 303–316.

Bass, L., Clements, P., & Kazman, R. (2003). Soft-
ware	 architecture	 in	 practice (2nd ed.). Reading,
MA: Addison-Wesley.

Bowman, I. T., Holt, R. C., & Brewster, N. V. (1999).
Linux as a case study: Its extracted software archi-
tecture. In Proceedings	 of	 the	 21st	 International	
Conference	on	Software	Engineering (pp. 555-563).

Capiluppi, A., & Boldyreff, C. (2008). Identify-
ing and improving reusability based on coupling
patterns. In H. Mei (Ed.), Proceedings	of	the	10th	
International	Conference	on	Software	Reuse:	High	
Confidence	Software	Reuse	in	Large	Systems (LNCS
5030, pp. 282-293).

32 International Journal of Open Source Software and Processes, 3(3), 10-35, July-September 2011

Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Capiluppi, A., & Knowles, T. (2009). Software
engineering in practice: Design and architectures
of FLOSS systems. In Proceedings	of	the	5th	IFIP	
WG	2.13	International	Conference	on	Advances	in	
Information	and	Communication	Technology (Vol.
299, pp. 34-46).

Clements, P., Bachmann, F., Bass, L., Garlan, D.,
Ivers, J., & Little, R. …Stafford, J. (2010). Docu-
menting	software	architectures:	Views	and	beyond
(2nd ed.). Reading, MA: Addison-Wesley.

de Jonge, M. (2002). Source tree composition. In C.
Gacek (Ed.), Proceedings	of	the	7th	International	
Conference	on	Software	Reuse:	Methods,	Techniques,	
and	Tools (LNCS 2319, pp.17-32).

de Jonge, M. (2005). Build-level components.
IEEE	Transactions	on	Software	Engineering, 31(7),
588–600. doi:10.1109/TSE.2005.77

Dueñas, J. C., de Oliveira, W. L., & de la Puente, J.
A. (1998). Architecture recovery for software evolu-
tion. In Proceedings	of	the	2nd	Euromicro	Confer-
ence	on	Software	Maintenance	and	Reengineering
(pp. 113-119).

Easterbrook, S., Singer, J., Storey, M.-A., & Damian,
D. (2008). Selecting empirical methods for software
engineering research. In Shull, F., Singer, J., & Sjø-
berg, D. I. K. (Eds.), Guide	to	advanced	empirical	
software	 engineering (pp. 285–311). New York,
NY: Springer. doi:10.1007/978-1-84800-044-5_11

Eick, S. G., Graves, T. L., Karr, A. F., Marron, J. S.,
& Mockus, A. (2001). Does code decay? Assessing
the evidence from change management data. IEEE	
Transactions	on	Software	Engineering, 27(1), 1–12.
doi:10.1109/32.895984

Fenton, N. E. (1991). Software	metrics:	A	rigorous	
approach. London, UK: Chapman & Hall.

Fitzgerald, B. (2006). The transformation of open
source software. Management	Information	Systems	
Quarterly, 30(3), 587–598.

Freitas, M., Roitzsch, M., Melanson, M., Mattern,
T., Langauf, S., & Petteno, D. …Lee, A. (2002).
Xine	multimedia	engine. Retrieved from http://www.
xine-project.org/home

German, D. M., & González-Barahona, J. M. (2009).
An empirical study of the reuse of software licensed
under the GNU general public license. In Proceedings	
of	the	5th	IFIP	WG	2.13	International	Conference	
on	Open	Source	EcoSystems:	Diverse	Communities	
Interacting (pp. 185-198).

German, D. M., Gonzalez-Barahona, J. M., & Robles,
G. (2007). A model to understand the building and
running inter-dependencies of software. In Proceed-
ings	 of	 the	 14th	Working	Conference	 on	 Reverse	
Engineering (pp. 140-149).

German, D. M., & Hassan, A. E. (2009). License
integration patterns: Addressing license mismatches
in component-based development. In Proceedings	of	
the	31st	IEEE	International	Conference	on	Software	
Engineering (pp. 188-198).

Glass, R. L., Vessey, I., & Ramesh, V. (2002). Re-
search in software engineering: An analysis of the lit-
erature. Information	and	Software	Technology, 44(8),
491–506. doi:10.1016/S0950-5849(02)00049-6

Godfrey, M. W., & Lee, E. H. S. (2000). Secrets
from the monster: Extracting Mozilla’s software
architecture. In Proceedings	of	the	2nd	Symposium	on	
Constructing	Software	Engineering	Tools (pp. 15-23).

Guba, E. (1981). Criteria for assessing the trust-
worthiness of naturalistic inquiries. Educational	
Communication	and	Technology, 29, 75–92.

Haefliger, S., von Krogh, G., & Spaeth, S. (2008).
Code reuse in open source software. Management	Sci-
ence, 54(1), 180–193. doi:10.1287/mnsc.1070.0748

Harrison, N. B., & Avgeriou, P. (2011). Pattern-based
architecture reviews. IEEE	Software, 28(6), 66–71.
doi:10.1109/MS.2010.156

Hauge, Ø., Ayala, C., & Conradi, R. (2010). Adop-
tion of open source software in software-intensive
organizations - A systematic literature review. Infor-
mation	and	Software	Technology, 52(11), 1133–1154.
doi:10.1016/j.infsof.2010.05.008

Hauge, Ø., Østerlie, T., Sørensen, C.-F., & Gerea,
M. (2009, May 18). An empirical study on selection
of open source software - Preliminary results. In
Proceedings	of	the	2nd	ICSE	Workshop	on	Emerg-
ing	 Trends	 in	 Free/Libre/Open	 Source	 Software	
Research	and	Development, Vancouver, BC, Canada
(pp. 42-47).

Hauge, Ø., Sørensen, C.-F., & Røsdal, A. (2007).
Surveying industrial roles in open source software
development. In Feller, J., Fitzgerald, B., Scacchi,
W., & Sillitti, A. (Eds.), Open	source	development,	
adoption	and	innovation (pp. 259–264). New York,
NY: Springer. doi:10.1007/978-0-387-72486-7_25

International Journal of Open Source Software and Processes, 3(3), 10-35, July-September 2011 33

Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Heinemann, L., Deissenboeck, F., Gleirscher, M.,
Hummel, B., & Irlbeck, M. (2011). On the extent
and nature of software reuse in open source Java
projects. In K. Schmid (Ed.), Proceedings	 of	 the	
12th	International	Conference	on	Software	Reuse:	
Top	 Productivity	 through	 Software	 Reuse (LNCS
6727, pp. 207-222).

IEEE. (2000). IEEE	Std	1471-2000:	IEEE	recom-
mended	 practice	 for	 architectural	 description	 of	
software-intensive	systems. Piscataway, NJ: IEEE.

Krikhaar, R. (1999). Software	architecture	 recon-
struction (Unpublished doctoral dissertation). Uni-
versity of Amsterdam, Amsterdam, The Netherlands.

Krikhaar, R., Postma, A., Sellink, A., Stroucken,
M., & Verhoef, C. (1999). A two-phase process for
software architecture improvement. In Proceedings	
of	the	IEEE	International	Conference	on	Software	
Maintenance (pp. 371-380).

Kruchten, P. B. (1995). The 4+1 view model
of architecture. IEEE	 Software, 12(5), 42–50.
doi:10.1109/52.469759

Lang, B., Abramatic, J.-F., González-Barahona, J. M.,
Gómez, F. P., & Pedersen, M. K. (2005). Free and
proprietary software in COTS-based software devel-
opment. In X. Franch & D. Port (Eds.), Proceedings	
of	the	4th	International	Conference	on	Composition-
Based	Software	Systems (LNCS 3412, p. 2).

Lehman, M. M. (1978). Programs, cities, students,
limits to growth? Programming	Methodology, 42-62.

Lehman, M. M. (1980). Programs, life cycles, and
laws of software evolution. Proceedings	of	the	IEEE,
68(9), 1060–1076. doi:10.1109/PROC.1980.11805

Lethbridge, T. C., & Laganière, R. (2001). Object-
oriented	software	engineering:	Practical	software	
development	using	UML	and	Java (2nd ed.). London,
UK: McGraw-Hill.

Li, J., Conradi, R., Bunse, C., Torchiano, M., Slyngs-
tad, O. P. N., & Morisio, M. (2009). Development with
off-the-shelf components: 10 facts. IEEE	Software,
26(2), 80–87. doi:10.1109/MS.2009.33

Lungu, M., Lanza, M., & Gîrba, T. (2006). Package
patterns for visual architecture recovery. In Proceed-
ings	of	the	10th	European	Conference	on	Software	
Maintenance	and	Reengineering.

Macro, A., & Buxton, J. (1987). The	craft	of	software	
engineering. Reading, MA: Addison-Wesley.

Mockus, A. (2007). Large-scale code reuse in open
source software. In Proceedings	of	the	First	Inter-
national	Workshop	on	Emerging	Trends	in	FLOSS	
Research	and	Development.

Orsila, H., Geldenhuys, J., Ruokonen, A., & Ham-
mouda, I. (2008). Update propagation practices in
highly reusable open source components. In Pro-
ceedings	of	the	IFIP	20th	World	Computer	Congress	
on	Open	Source	Software (Vol. 275, pp. 159-170).

Parnas, D. L. (1972). On the criteria to be used
in decomposing systems into modules. Com-
munications	 of	 the	 ACM, 15(12), 1053–1058.
doi:10.1145/361598.361623

Perry, D. E., & Wolf, A. L. (1992). Foundations for
the study of software architectures. ACM	SIGSOFT	
Software	 Engineering	 Notes,	 17(4), Runeson, P.,
& Höst, M. (2009). Guidelines for conducting and
reporting case study research in software engineering.
Empirical	Software	Engineering, 14(2), 131–164.

Sametinger, J. (1997). Software	 engineering	with	
reusable	components. Berlin, Germany: Springer-
Verlag.

Sartipi, K., Kontogiannis, K., & Mavaddat, F.
(2000). A pattern matching framework for software
architecture recovery and restructuring. In Proceed-
ings	of	the	8th	International	Workshop	on	Program	
Comprehension (pp. 37-47).

Schmerl, B., Aldrich, J., Garlan, D., Kazman, R.,
& Yan, H. (2006). Discovering architectures from
running systems. IEEE	Transactions	on	Software	En-
gineering, 32(7), 454–466. doi:10.1109/TSE.2006.66

Senyard, A., & Michlmayr, M. (2004). How to have
a successful free software project. In Proceedings	of	
the	11th	Asia-Pacific	Software	Engineering	Confer-
ence (pp. 84-91).

Sojer, M., & Henkel, J. (2010). Code reuse in open
source software development: Quantitative evidence,
drivers, and impediments. Journal	of	the	Association	
for	Information	Systems, 11(12), 868–901.

Sommerville, I. (2004). Software	 engineering	
(International	Computer	Science	Series) (7th ed.).
Reading, MA: Addison-Wesley.

SourceForge. (2011). Email	client. Retrieved from
http://sourceforge.net/directory/?q=email%20client

Swanson, E. B. (1976). The dimensions of main-
tenance. In Proceedings	 of	 the	 2nd	 International	
Conference	on	Software	Engineering (pp. 492-497).

34 International Journal of Open Source Software and Processes, 3(3), 10-35, July-September 2011

Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Szyperski, C. (2002). Component	software:	Beyond	
object-oriented	 programming (2nd ed.). Reading,
MA: Addison-Wesley.

Torchiano, M., & Morisio, M. (2004). Overlooked
aspects of COTS-based development. IEEE	Software,
21(2), 88–93. doi:10.1109/MS.2004.1270770

Tran, J. B., Godfrey, M. W., Lee, E. H. S., & Holt,
R. C. (2000). Architectural repair of open source
software. In Proceedings	 of	 the	 8th	 International	
Workshop	on	Program	Comprehension (pp. 48-59).

Tran, J. B., & Holt, R. C. (1999). Forward and reverse
repair of software architecture. In Proceedings	of	the	
Conference	of	the	Centre	for	Advanced	Studies	on	
Collaborative	Research.

Troy, D. A., & Zweben, S. H. (1981). Measuring
the quality of structured designs. Journal	of	Systems	
and	 Software, 2(2), 113–120. doi:10.1016/0164-
1212(81)90031-5

Ven, K., & Mannaert, H. (2008). Challenges and
strategies in the use of open source software by inde-
pendent software vendors. Information	and	Software	
Technology, 50(9-10), 991–1002. doi:10.1016/j.
infsof.2007.09.001

Wheeler, D. A. (n.d.). SLOCCount. Retrieved from
http://www.dwheeler.com/sloccount/

Wikipedia. (n.d.). Lamp	(software	bundle). Retrieved
from http://en.wikipedia.org/wiki/LAMP_(soft-
ware_bundle)

Yin, R. K. (2003). Case	study	research:	Design	and	
methods (3rd ed.). Thousand Oaks, CA: Sage.

ENDNOTES
1 Of course, a full structural evaluation of these

128 projects should be performed before argu-
ing that no features are reused among these
projects

2 A list of OSS and commercial projects inte-
grating the libavcodec is given and maintained
under http://ffmpeg.org/projects.html

3 The term “connection” is not intended to cover
the term “dependency” between packages in
a distribution, since this paper only analyses
the internal architecture of components.

Andrea	Capiluppi	is	a	Lecturer	in	Software	Engineering	at	University	Brunel	since	May	2012.	
Before	that,	he	was	a	Senior	Lecturer	at	the	University	of	East	London,	from	February	2009	to	
April	2012,	and	a	Senior	Lecturer	at	University	of	Lincoln,	UK,	for	three	years,	from	January	
2006	to	February	2009.	He	has	gained	a	PhD	from	Politecnico	di	Torino,	Italy,	in	May	2005,	
and	has	held	a	Researcher	position	and	a	Consultant	position	at	the	Open	University	in	UK.	In	
November	2003	he	was	a	Visiting	Researcher	in	the	GSyC	group	at	the	University	of	Rey	Juan	
Carlos	de	Madrid,	Spain,	one	of	the	partners	of	the	project	proposal.	His	publications	include	
some	50	papers,	published	in	leading	international	conferences	and	journals,	mostly	devoted	to	
the	Open	Source	Software	topic.	He	has	been	a	consultant	to	several	industrial	companies	and	
has	published	works	where	results	on	FLOSS	research	have	been	disseminated	in	commercial	
sites.	He	has	taken	part	in	one	of	the	packages	of	the	CALIBRE	project,	a	€1.5	million	pan-
European	EU	research	project	focused	on	the	use	of	FLOSS	in	industry.

Klaas-Jan	Stol	is	a	researcher	at	Lero,	the	Irish	Software	Engineering	Research	Centre,	where	
he	has	worked	since	2008.	He	holds	a	PhD	in	Software	Engineering	 from	the	University	of	
Limerick,	Ireland,	and	a	MSc	in	Software	Engineering	from	the	University	of	Groningen,	the	
Netherlands.	His	research	interests	are	in	Open	Source	Software	(OSS),	software	development	
methods	(including	OSS	development	practices),	software	architecture,	component-based	soft-
ware	development,	software	reuse	and	empirical	software	engineering.

International Journal of Open Source Software and Processes, 3(3), 10-35, July-September 2011 35

Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Cornelia	Boldyreff	is	the	Associate	Dean	(Research	and	Enterprise)	at	the	School	of	Architecture,	
Computing	and	Engineering	at	the	University	of	East	London.	She	gained	her	PhD	in	Software	
Engineering	from	the	University	of	Durham.	In	2004	she	moved	to	the	University	of	Lincoln	to	
become	the	first	Professor	of	Software	Engineering	at	the	university,	where	she	co-founded	and	
directed	the	Centre	for	Research	in	Open	Source	Software.	She	has	over	25	years	experience	in	
software	engineering	research	and	has	published	extensively	on	her	research	in	the	field.	She	is	
a	Fellow	of	the	British	Computer	Society	and	a	founding	committee	member	of	the	BCSWomen	
Specialist	Group.	She	has	been	actively	campaigning	for	more	women	in	SET	throughout	her	career.

