
The Journal of Systems and Software 159 (2020) 110452

Contents lists available at ScienceDirect

The Journal of Systems and Software

journal homepage: www.elsevier.com/locate/jss

Maintaining interoperability in open source software: A case study of

the Apache PDFBox project

Simon Butler a , ∗, Jonas Gamalielsson

a , ∗, Björn Lundell a , ∗, Christoffer Brax

b ,
Anders Mattsson

c , Tomas Gustavsson

d , Jonas Feist e , Erik Lönroth

f

a University of Skövde, Skövde, Sweden
b Combitech AB, Linköping, Sweden
c Husqvarna AB, Huskvarna, Sweden
d PrimeKey Solutions AB, Stockholm, Sweden
e RedBridge AB, Stockholm, Sweden
f Scania IT AB, Södertälje, Sweden

a r t i c l e i n f o

Article history:

Received 28 June 2019

Revised 10 October 2019

Accepted 21 October 2019

Available online 22 October 2019

Keywords:

Standards

Software implementation

Software interoperability

Community open source software

Portable document format

a b s t r a c t

Software interoperability is commonly achieved through the implementation of standards for commu-

nication protocols or data representation formats. Standards documents are often complex, difficult to

interpret, and may contain errors and inconsistencies, which can lead to differing interpretations and im-

plementations that inhibit interoperability. Through a case study of two years of activity in the Apache

PDFBox project we examine day-to-day decisions made concerning implementation of the PDF specifi-

cations and standards in a community open source software (OSS) project. Thematic analysis is used to

identify semantic themes describing the context of observed decisions concerning interoperability. Fun-

damental decision types are identified including emulation of the behaviour of dominant implementa-

tions and the extent to which to implement the PDF standards. Many factors influencing the decisions

are related to the sustainability of the project itself, while other influences result from decisions made

by external actors, including the developers of dependencies of PDFBox. This article contributes a fine

grained perspective of decision-making about software interoperability by contributors to a community

OSS project. The study identifies how decisions made support the continuing technical relevance of the

software, and factors that motivate and constrain project activity.

© 2019 The Authors. Published by Elsevier Inc.

This is an open access article under the CC BY license. (http://creativecommons.org/licenses/by/4.0/)

1

d

i

p

s

s

c

l

j

c

j

u

d

t

e

a

t

w

t

t

l

m

h

0

. Introduction

Many software projects seek to implement one or more stan-

ards to support interoperability with other software. For example,

nterconnected systems implement standardised communications

rotocols, such as the open systems interconnect stack, and web

tandards, including the hypertext transfer protocol (HTTP) and the

ecure sockets layer (SSL), to support information exchange and

ommercial activities (Wilson, 1998; Treese, 1999; Ko et al., 2011).

As businesses and civil society — governments at national and

ocal level, and the legal system — move away from paper doc-
∗ Corresponding authors.

E-mail addresses: simon.butler@his.se (S. Butler),

onas.gamalielsson@his.se (J. Gamalielsson), bjorn.lundell@his.se (B. Lundell),

hristoffer.brax@combitech.se (C. Brax), anders.mattsson@husqvarnagroup.com

(A. Mattsson), tomas.gustavsson@primekey.com (T. Gustavsson),

onas.feist@redbridge.se (J. Feist), erik.lonroth@scania.com (E. Lönroth).

w

s

u

s

a

s

ttps://doi.org/10.1016/j.jss.2019.110452

164-1212/© 2019 The Authors. Published by Elsevier Inc. This is an open access article u
ments (Lundell, 2011; Rossi et al., 2008) to rely increasingly on

igitised systems, the implementation of both communication pro-

ocols and document standards becomes ever more crucial (Rossi

t al., 2008; Wilson et al., 2017; Lehtonen et al., 2018). Standards

re written by humans, and despite the care taken in their creation

hey are imperfect, vague, ambiguous and open to interpretation

hen implemented in software (Allman, 2011; Egyedi, 2007). Fur-

hermore, practice evolves so that implementations, often seen as

he de facto reference for a standard, can diverge from the pub-

ished standard as has been the case with the JPEG image for-

at (Richter and Clark, 2018). Indeed, practice can, for example

ith HTML, CSS and JavaScript, repeatedly deviate from standards,

ometimes with the intention of locking users in to specific prod-

cts (W3C, 2019a; Bouvier, 1995; Phillips, 1998) and with the con-

equence that web content becomes challenging to implement and

ccess (Phillips, 1998), and to archive (Kelly et al., 2014).

While software interoperability relies on standards, different

oftware implementations of a given standard are interpretations
nder the CC BY license. (http://creativecommons.org/licenses/by/4.0/)

https://doi.org/10.1016/j.jss.2019.110452
http://www.ScienceDirect.com
http://www.elsevier.com/locate/jss
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jss.2019.110452&domain=pdf
http://creativecommons.org/licenses/by/4.0/
mailto:simon.butler@his.se
mailto:jonas.gamalielsson@his.se
mailto:bjorn.lundell@his.se
mailto:christoffer.brax@combitech.se
mailto:anders.mattsson@husqvarnagroup.com
mailto:tomas.gustavsson@primekey.com
mailto:jonas.feist@redbridge.se
mailto:erik.lonroth@scania.com
https://doi.org/10.1016/j.jss.2019.110452
http://creativecommons.org/licenses/by/4.0/

2 S. Butler, J. Gamalielsson and B. Lundell et al. / The Journal of Systems and Software 159 (2020) 110452

2

d

o

i

i

t

t

B

s

i

v

s

a

a

p

d

c

s

c

s

2

2

t

s

i

p

s

s

t

g

r

t

d

g

d

m

s

d

c

t

s

w

s

m

i

c

f

a

i

p

c

i

t

v

s

a

p
of the standard that may not be fully interoperable (Egyedi, 2007).

Consequently, the developers of software implementations will

become involved in a discourse to find a common understanding

of the standard that supports interoperability, as illustrated by

Allman (2011) , Lehtonen et al. (2018) , and Watteyne et al. (2016) .

The means by which interoperability is achieved varies. The Inter-

net Engineering Task Force (IETF) (IETF, 2019a), for example, uses

a process, often summarised as “Rough consensus and running

code” (Davies and Hoffmann, 2004), that requires interoperability

between independent implementations is achieved early in the

standardisation process (Wilson, 1998). An increasing proportion

of software that implements communication and data standards,

particularly where it is non-differentiating, is developed through

collaboration by companies working in community open source

software (OSS) projects (Lundell et al., 2017; Butler et al., 2019). By

community OSS project we mean OSS projects managed by foun-

dations or are collectively organised (Riehle, 2011), where many of

the developers are directed by companies and other organisations,

and collaborate to create high quality software (Fitzgerald, 2006).

Examples of this process include OSS projects under the umbrella

of the Eclipse Internet of Things Working Group (Eclipse IoT

Working Group, 2019), and LibreOffice (The Document Foundation,

2019). In many cases and domains both OSS and proprietary solu-

tions are available for the same standard and need to interoperate

to remain relevant products. While the literature documents the

process of standardisation, and the technical challenges of im-

plementing standards compliant software, there is little research

that focuses on how participants in OSS projects decide how to

implement a standard, and how to revise their implementation

to correct or improve its behaviour. To explicate the challenges

facing community OSS projects developing standards compliant

software and the day-to-day decisions made by contributors this

study investigates the following research question:

How does a community OSS project maintain software interop-
erability?

We address the research question through a case study

(Gerring, 2017; Walsham, 2006) of two years of contributions to

the Apache PDFBox R ©1 OSS project. The PDFBox project is governed

by the Apache Software Foundation (ASF) (ASF, 2019a) and devel-

ops and maintains a mature (Black Duck, 2019) Java library and

tools to create and process Portable Document Format (PDF) docu-

ments (Lehmkühler, 2010). PDFBox is used in other OSS projects

(Apache Tika, 2019; CEF Digital, 2019; Khudairi, 2017), and as a

component in proprietary products and services. PDFBox is de-

scribed further in Section 3.2 .

Developed in the 1990s, PDF is a widely-used file format for

distributing documents, which are created, processed and read by

many different applications on multiple platforms. Versions of PDF

are defined in a number of specifications and standards docu-

ments, including formal (ISO) standards, that implementers need

to follow to ensure the interoperability of their software. There

is evidence that the PDF standards are challenging to implement

(Bogk and Schöpl, 2014; Endignoux et al., 2016), that the quality of

PDF documents varies (Lehtonen et al., 2018; Lindlar et al., 2017),

and that the dominance of Adobe’s software products creates user

expectations that need to be met by the developers of other PDF

software (Gamalielsson and Lundell, 2013; Endignoux et al., 2016;

Amiouny, 2017; 2016). In the following section we provide a back-

ground description of PDF, and also review the related academic

literature.
1 PDFBox is a registered trademark of the Apache Software Foundation.

e

p
Section 3 details reasons for the purposeful sampling (Patton,

015) of PDFBox as the case study subject. We also identify the

ata sources investigated for the case study and give an account

f the application of thematic analysis (Braun and Clarke, 2006) to

dentify semantic themes in the types of decisions concerning the

nteroperability of PDFBox made by contributors to the project and

he factors influencing those decisions.

Through the analysis of the data we identified four fundamen-

al types of decision made concerning the interoperability of PDF-

ox related to compliance with published PDF specifications and

tandards. The types of decision and the technical circumstances

n which they are made are described in Section 4 . We also pro-

ide an account of the factors identified that influence those deci-

ions including resources, knowledge, and the influence of external

ctors, such as the developers of other PDF software, and the cre-

tors of documents. We discuss the challenges faced by the PDFBox

roject in Section 5 including the technical challenges faced by the

evelopers of PDF software, and potential solutions. Thereafter, we

onsider how the behaviour of contributors to the PDFBox project

ustains the project in the long term. Lastly, we present the con-

lusions in Section 6 and identify the contributions made by this

tudy.

. Background and related work

.1. Standards development and interoperability

The development of standards for information and communica-

ions technologies is undertaken by companies and other organi-

ations using a range of approaches, e.g. whether the technology

s implemented before the standard is developed, and the working

ractices of the standards body involved. One perspective is that

tandards have two different types of origin. Some standards are

pecified by standards bodies, e.g. ISO and ITU. While others arise

hrough extensive or widespread use of a particular technology, re-

ardless of whether it was developed by one company or collabo-

atively (Treese, 1999). Another perspective is that standards are ei-

her requirement-led or implementation-led (Phipps, 2019). Phipps, a

irector (and sometime President) of the Open Source Initiative, ar-

ues the primary use of the requirement-led model is where stan-

ardisation is used to create a market, for example the develop-

ent of 5G (Nikolich et al., 2017). In contrast, implementation-led

tandards are developed to support an innovation in software or

ata format that has been adopted by a wider audience than the

reating company and standardisation is necessary to support in-

eroperability. A third view is provided by Lundell and Gamaliels-

on (2017) who identify standards that are developed before soft-

are, software that is implemented and then forms the basis of a

tandardisation process (including that of PDF), and the develop-

ent of standards in parallel with software. The latter process is

dentified as being of increasing importance in the telecommuni-

ations industry (Wright and Druta, 2014), and examples can be

ound in the standardisation process for internet protocols man-

ged by the IETF (IETF, 2019a). The IETF emphasises interoperabil-

ty at an early stage of protocol development, rather than technical

erfection (Bradner, 1996; Wilson, 1998; Bradner, 1999). The pro-

ess of developing interoperability between low powered devices

n the IoT domain is described by Ko et al. (2011) . They record

he development of the internet protocol (IP) in 6LoWPAN to pro-

ide interoperable communications stacks for two IoT operating

ystems Contiki-OS and TinyOS. The interoperable implementations

re then used to determine whether the solutions achieved are

racticable for the types of IoT devices expected to use them (Ko

t al., 2011).

A further approach to interoperability is the development of im-

lementations of standards, particularly communication protocols,

S. Butler, J. Gamalielsson and B. Lundell et al. / The Journal of Systems and Software 159 (2020) 110452 3

Table 1

Selected PDF versions and ISO standards.

Version ISO Standard Year Comment

PDF v1.0 1993 First published PDF specification.

PDF v1.4 2001 Improved encryption, added XML metadata, and pre-defined CMaps.

PDF v1.5 2003 Added JPEG 2000 images and improved encryption.

PDF/A-1 ISO 19005-1:2005 2005 An archive format for standalone PDF documents based on PDF v1.4.

PDF v1.7 2006 Extended range of support for encryption.

ISO 32000-1:2008 2008 ISO standardised version of PDF based on Adobe’s PDF v1.7 specification.

PDF/A-2 ISO 19005-2:2011 2011 An archive format for standalone PDF documents based on ISO 32000-1:2008.

PDF/A-3 ISO 19005-3:2012 2012 An extension of PDF/A-2 to support file embedding.

PDF v2.0 ISO 32000-2:2017 2017 Revision of ISO 32000-1:2008.

i

i

p

m

t

m

m

d

c

i

t

t

2

2

t

d

fi

o

T

a

i

t

a

t

t

C

a

l

w

F

m

(

p

a

t

n

r

p

t

i

t

a

p

t

t

t

d

l

w

m

s

d

i

1

f

e

t

e

J

1

d

t

a

a

P

i

c

o

t

w

A

e

t

(

c

a

s

b

o

w

b

u

2

d

s

t

b

p

m

t

v

p

h

t

t

h

o
n OSS projects. Companies participating in the Eclipse IoT Work-

ng Group (2019) , for example, collaborate, sometimes with com-

etitors, in OSS projects to develop implementations of open com-

unications standards used in the IoT domain that then support

heir products (Butler et al., 2019). Examples include the imple-

entation of the Open Mobile Alliance’s (OMA, 2019) lightweight

achine to machine (LWM2M) protocol in Leshan (Eclipse Foun-

ation, 2019b) and Wakaama (Eclipse Foundation, 2019c), and the

onstrained application protocol (CoAP) (Shelby et al., 2014) in Cal-

fornium (Eclipse Foundation, 2019a). Additionally, the collabora-

ive OSS project serves to identify and document cogent misin-

erpretations and misunderstandings of the standard (Butler et al.,

019).

.2. PDF standards and interoperability

Adobe Systems developed PDF as a platform-independent, in-

erchange format for documents that can preserve presentation in-

ependently of the application and operating system. In 1993, the

rst PDF specification was made freely available and a number

f revisions of the specification have been published since (see

able 1). Some versions of the specification have been published

s ISO standards (e.g. ISO 320 0 0-1:20 08 and ISO 320 0 0-2:2017),

ncluding specialised subsets of the PDF format for the print indus-

ry (e.g. ISO 15929:2002 and ISO 15930-1:2001), and engineering

pplications (e.g. ISO 24517-1:2008).

PDF documents vary in size and complexity from single page

ickets, receipts and order summaries, through academic papers,

o very large documents, such as Government reports, and books.

onsequently, PDF documents may have short lifespans, or have

 significantly longer life as business and legal records, particu-

arly as organisations move away from paper. Many different soft-

are packages exist to create, display, edit and process PDF files.

urther, a significant problem for long-term use of PDF is that

any documents will outlive the software used to create them

 Gamalielsson and Lundell, 2013), so will require standards com-

liant software that can faithfully reproduce the documents to be

vailable at some arbitrary point in the future.

PDF software, therefore, does not work in isolation; it must in-

eroperate with other software to the extent that implementations

eed to be able to process documents created by other software,

egardless of how long ago, and to create documents that other im-

lementations can read. Furthermore there is the requirement that

hose documents be readable many years in the future, particularly

n the case of documents such as contracts and official documenta-

ion issued by governmental agencies. These requirements are not

 theoretical exercise, they are practical requirements that already

ose problems for organisations and businesses. For example, in

he dataset examined for this article there is evidence that con-

ractors for the Government of the Netherlands have created many

housands of official academic transcripts as PDF documents that

o not comply with the PDF specifications and are, at best, prob-

ematic to process (see mailing list thread Users-1, Table 5 on p 8).
PDF is a complex file format that is used to create documents

ith a rich variety of content including text, images, internal docu-

ent links, indexes, fillable forms, and digital signatures. Each ver-

ion of the PDF standard cites normative references — other stan-

ards — that form part of the standard and are described as “...

ndispensable for the application of this document” in ISO 320 0 0-

:2008 (ISO, 2008). The normative references include standards for

onts, image formats, and character encodings. In addition, sev-

ral normatively referenced standards include normative references

hemselves (and so on). For example, among the normative ref-

rences of ISO 320 0 0-2:2017 is part 1 of an early revision of the

PEG 20 0 0 ISO standard (ISO/IEC 154 4 4-1:2004) which in turn has

3 normative references, including 10 IEC, ISO and ISO/IEC stan-

ards. The specifications and standards also define the declara-

ive programming language that describes PDF documents, as well

s the expected behaviours and capabilities of programs that cre-

te and process PDF documents. The size and complexity of the

DF specifications and ISO standards themselves pose a daunt-

ng challenge for software developers implementing them. The re-

ently published ISO 320 0 0-2:2017 standard, for example, consists

f 984 pages and has 90 normative references (ISO, 2017). Fur-

her challenges complicate the development of software that works

ith PDF files. A key challenge is the common perception that the

dobe Reader family of software applications are the de facto ref-

rence implementations of the PDF specifications and standards

o which the performance of other implementations is compared

 Amiouny, 2016; Lehtonen et al., 2018). Another source of diffi-

ulty is the Robustness Principle (Allman, 2011), otherwise known

s Postel’s Law , which is applied in Adobe’s Reader products, and

tated by Postel, in the context of communication protocols, as, “...

e conservative in what you do, be liberal in what you accept from

thers.” (Postel, 1981). In practice, PDF reading and processing soft-

are implements repair mechanisms to allow malformed files to

e read, within limitations. The limitations, however, are only doc-

mented in the behaviour of Adobe’s products.

.3. Related work

A key aspect of software interoperability is the agreement and

ocumentation of data formats and communication protocols in

pecifications and standards. There are many practical challenges

o the standardisation process, and a number of approaches have

een tried. Ahlgren et al. (2016) argue that open standardisation

rocesses are needed to support interoperability in the IoT do-

ain. An example can be found in the development of implemen-

ations of the 6TiSCH communications protocol for low-power de-

ices (Watteyne et al., 2016). Watteyne et al. describe an iterative

rocess of interoperability testing between implementations and

ow the lessons learnt through testing inform further iterations of

he standardisation process. Another example is the standardisa-

ion of the QUIC protocol. Originally implemented by Google, QUIC

as been in use for some 6 years and a standard is being devel-

ped by an IETF committee (IETF, 2019b; 2019c; Piraux et al., 2018).

4 S. Butler, J. Gamalielsson and B. Lundell et al. / The Journal of Systems and Software 159 (2020) 110452

m

P

P

d

r

W

i

t

J

s

t

T

f

s

c

d

s

a

o

t

s

s

m

3

s

t

m

s

3

s

f

r

fi

a

a

t

a

e

t

t

i

t

c

t

s

q

c

l

O

i

k

3

m

r

u
Piraux et al. (2018) evaluated the interoperability of fifteen imple-

mentations of QUIC finding some shortcomings in all. The tests de-

veloped by Piraux et al have since been incorporated in the test

suites of some of the implementations tested (Piraux et al., 2018).

Standardisation processes can take a long time, and conse-

quently may be seen by some as an inhibitor of innovation. De

Coninck et al. (2019) , for example, cite the slowness of the QUIC

standardisation process as motivation for a proposed plugin mech-

anism to extend QUIC. They have proposed, implemented and in-

vestigated a flexible approach where applications communicating

with QUIC negotiate which extensions to QUIC to use during con-

nection set-up (De Coninck et al., 2019).

Standards are also long-lived, and require review and revision

in response to developments in both practice and technology. The

Joint Photographic Expert Group (JPEG) have initiated a number of

standardisation efforts to update the 25 year old JPEG standards

for image files, including the JPEG XT project (JPEG, 2019). Richter

and Clark (2018) identify how JPEG implementations differ from

the standard, and the difficulties of applying the JPEG conformance

testing protocol published in ISO 10918-5:2013 (ISO, 2013) to cur-

rent implementations. Richter et al. identify two key issues. Firstly,

the evolution of a body of practice building on the standard dur-

ing the 25 years since it was made available, which motivates the

standardisation review. Secondly, parts of the current standard are

not used in practice, and may no longer need to be part of any

revised standard (Richter and Clark, 2018).

The standardisation of HTML and CSS, and other web tech-

nologies followed a different path. Standards for both HTML and

CSS have been developed by the World Wide Web Consortium

(W3C) (W3C, 2019b) since the 1990s (W3C, 2019a), initially un-

der the auspices of the IETF (Bouvier, 1995). During the browser

wars (Bouvier, 1995) companies would add functionality to their

browsers to extend the standard, and encourage web site develop-

ers to create content specifically for innovative features found in

one browser. The process of developing websites to support varia-

tions in HTML became so onerous for developers that practitioners

campaigned for Microsoft and Netscape to adhere to W3C stan-

dards (Phillips, 1998; WaSP, 2019).

Previous research on the development of PDF software in two

OSS projects found developers adopted specific strategies to sup-

port interoperability (Gamalielsson and Lundell, 2013). Specifically,

developers would exceed the specification, and mimic a dominant

implementation so that their software complied with that imple-

mentation. In addition, the study illuminated difficulties develop-

ers had interpreting the PDF standard. One issue identified was the

lack of detail in parts of the specification that made software im-

plementation imprecise, and unreliable. Another concern expressed

was that the complexity of the specification inhibited implemen-

tation (Gamalielsson and Lundell, 2013). Indeed, analyses of PDF

from the perspective of creating parsers have found the task to

be challenging (Bogk and Schöpl, 2014; Endignoux et al., 2016).

As part of their investigation of PDF, Endignoux et al. (2016) iden-

tify ambiguities in the file structures that were used to discover

bugs in a number of PDF readers. Bogk and Schöpl (2014) de-

scribe the experience of trying to create a formally verified parser

for PDF. They advise that the creators of future file format defini-

tions should ensure that the format is “... complete, unambiguous

and doesn’t allow unparseable constructions.” (Bogk and Schöpl,

2014) In practice, the complexity of PDF specifications can lead

to significant security vulnerabilities in software implementations

(Mladenov et al., 2018a; 2018b).

The PDF/A standards (see Table 1) are used in document preser-

vation. An area of concern is the management of documents

that do not comply with the PDF/A standards. Lehtonen et al.

(2018) identify the complexity of the problems faced by those han-

dling documents, and explore mechanisms through which docu-
ents might be repaired so that they are “well-formed and valid

DF/A files.” The team behind the development of veraPDF, a

DF/A validator, identify difficulties interpreting the PDF/A stan-

ard (Wilson et al., 2017) to be able to create validation tests

epresenting a clear understanding of the standards. Additionally,

ilson et al. (2017) record the need to limit the scope of the val-

dation tests implemented in veraPDF because of the scale of the

ask, particularly in the validation of normative references such as

PEG 20 0 0. Lindlar et al. (2017) record the development of a test

et of PDF documents to test the conformance of PDF files with

he structural and syntactic requirements of ISO 320 0 0-1:20 08.

he authors argue that a test set used to examine basic well-

ormedness requirements is helpful in digital preservation, as it

implifies the detection of specific problems as a precursor appli-

ation of document repair techniques (Lindlar et al., 2017).

In summary, previous research shows the necessity of stan-

ardisation for software interoperability, and details approaches to

tandardisation. Research has also identified how practice can devi-

te from standards, and in the case of PDF the practical difficulties

f developing software, and the challenges of creating mechanisms

o evaluate standards compliance. The challenges of implementing

tandards have also been recorded. However, there is a lack of re-

earch that examines the nature of day-to-day practical decision-

aking of software developers when implementing a standard.

. Research approach

We undertake a case study (Gerring, 2017; Walsham, 2006) of a

ingle, purposefully-sampled (Patton, 2015) community OSS project

hat focuses on the challenges contributors face when creating and

aintaining interoperable software and how they collaborate to re-

olve problems.

.1. Case selection

Apache PDFBox was selected as a relevant subject for the case

tudy for several reasons. Firstly, for PDFBox to have any value

or users it must be able to interoperate with other software that

eads and writes PDF documents. As such, it must implement suf-

cient of the PDF specifications and standards to be perceived as

 viable solution. Secondly, the PDF specifications and standards

re complex and documented as challenging to implement, with

he additional requirement that implementations need to process

 wide variety of conforming and non-conforming documents to

mulate the functionality of a dominant implementation. Thirdly,

hough the software produced by the OSS project is most likely

o be used in a business setting, PDFBox is an ASF project and is

ndependent of direct company control. Consequently, contributors

o PDFBox are obliged to rely on cooperation with others in the

ommunity to achieve their goals. Fourthly, the PDFBox project ac-

ively develops and maintains software, responds to reports of is-

ues with the software, and releases revisions of the software fre-

uently.

The scope of the investigation is the publicly documented work

ontributing to nine releases of Apache PDFBox between the re-

ease of v2.0.3 in September 2016 and the release of v2.0.12 in

ctober 2018. The period investigated was specifically chosen to

nclude the publication of the ISO 320 0 0-2:2017 standard, also

nown as PDF v2.0, in August 2017.

.2. Case description

The Apache PDFBox project develops a Java library and com-

and line tools that can create and process PDF files. The library is

elatively low level and can be used to create and process PDF doc-

ments conforming to different versions of the PDF specifications

S. Butler, J. Gamalielsson and B. Lundell et al. / The Journal of Systems and Software 159 (2020) 110452 5

Table 2

Data sources used in the case study.

Data Source Location

Commits Mailing List http://mail-archives.apache.org/mod _ mbox/pdfbox-commits/

Developers Mailing List http://mail-archives.apache.org/mod _ mbox/pdfbox-dev/

Users Mailing List http://mail-archives.apache.org/mod _ mbox/pdfbox-users/

GitHub Mirror https://github.com/apache/pdfbox

Jira Issue Tracker https://issues.apache.org/jira/projects/PDFBOX/

a

2

t

n

p

p

S

m

w

P

e

t

B

l

m

v

o

p

m

3

o

(

a

u

c

J

t

t

b

s

m

n

c

c

w

m

a

J

r

P

s

3

t

c

e

m

o

a

e

c

o

D

o

t

w

d

a

n

t

t

w

a

t

d

e

w

o

p

t

m

t

a

h

l

P

t

s

a

m

o

t

i

f

d

f

f

e

4

t

t

d
nd ISO standards (see Table 1 for examples). In development since

002, and an ASF governed project since 2008, PDFBox is main-

ained by a small group of core developers and an active commu-

ity of contributors. PDFBox is a dependency of some other ASF

rojects, including Apache Tika (Apache Tika, 2019), and other OSS

rojects, including the European Union funded Digital Signature

ervices project (CEF Digital, 2019). PDFBox is used to parse docu-

ents in one version of the veraPDF validator (veraPDF, 2019), as

ell as being used in proprietary software products and services.

DFBox was also part of the software suite used by journalists to

xtract information from PDF files amongst the documents collec-

ively known as the Panama Papers (Khudairi, 2017; ICIJ, 2019).

At the time of the study, the most recent major revision of PDF-

ox, v2.0.0, had been released in March 2016 and maintenance re-

eases have generally been made approximately every two to three

onths since. In addition, the project maintains an older version,

1.8, in which bugs are fixed, and releases made less often. The

verwhelming majority of bug fixes for the 1.8.x series are back-

orted from the 2.0.x series. The project is also working towards a

ajor revision in v3.0.

.3. Data collection

The core data for the case study consists of the online archives

f activity in the PDFBox project. Using the PDFBox website

 Apache PDFBox, 2019) we identified the communication channels

vailable for making contributions, and the resources available for

sers of the software and contributors (see Table 2). Three public

ommunication channels can be used to make contributions: the

ira issue tracker, and developers and users mailing lists. In addi-

ion there is a commits mailing list that reports the commits made

o the PDFBox source code repository through messages generated

y the version control system. A read-only mirror of the PDFBox

ource code is also provided on GitHub.

Mailing list archives identified were downloaded from the ASF

ail archives (ASF, 2019b) and the GrimoireLab Perceval compo-

ent (Bitergia, 2019) was used to parse the Mbox format files and

onvert them into JSON format files. The JSON files were then pro-

essed using Python scripts to reconstruct the email threads and

rite the threads out in emacs org-mode files for analysis (org-

ode 2 is a plain text format for emacs that supports text folding

nd annotation). The Jira issue tracker tickets were retrieved in

SON format using the Jira REST API (Atlassian, 2019). The JSON

ecords for each ticket were then aggregated and processed by

ython scripts to create org-mode files containing the problem de-

cription and the comments on the ticket.

.4. Data analysis

The data gathered from the PDFBox project was analysed using

he thematic analysis framework (Braun and Clarke, 2006).

Initially, the first author worked systematically through all the

ollected data to identify the email threads and issue tracker tick-

ts that address the topic of interoperability in any regard. The
2 https://orgmode.org/ . t
ailing list threads and issue tracker tickets cover a wide range

f topics including project administration as well as help requests,

nd potential bug reports. Key factors considered included refer-

nce to the capabilities of PDFBox in comparison to other PDF pro-

essing software and mention of any PDF specification or standard

r any of its normative references, such as font and image formats.

uring this phase, email threads were reconstructed where parts

f conversations with the same subject line had been recorded in

he archives as separate threads. 3

The set of candidate email threads and issue tracker tickets

ere then examined in more detail to identify discussions in which

ecisions were made concerning the implementation of function-

lity related to the PDF specifications and standards, and their

ormative references in PDFBox and other software. Mailing list

hreads and issue tracker tickets where no clear decision was ar-

iculated were ignored for analytical purposes, as were discussions

here it was judged there was insufficient information given for

ny decisions made to be clearly understood.

The conversations recorded in mailing list threads and issue

racker tickets contain the technical opinions and judgements of

omain experts, including the core developers, and often contain

xplicit reference to PDF specifications and standards. Where there

as no specific reference to a standard in a conversation, the topic

f the discussion was used to determine relevance through com-

arison with other conversations on the topic explicitly linked to

he PDF standards by contributors. At the end of the process, 111

ailing list threads and 394 issue tracker tickets had been iden-

ified for further analysis. Coding was also used at this stage to

nnotate the discussions, and particularly the decisions made, to

elp identify the nature of the problems being addressed, the re-

ationship between the problems and the PDF standards and other

DF software, and the outcome of the decision-making process.

The corpus of 505 mailing list and issue tracker discussions was

hen analysed in depth by the first author to identify candidate

emantic themes to describe the types of decision being made,

nd to identify candidate thematic factors influencing the decisions

ade. The coding from the previous phase supported the grouping

f decision types and the development of semantic themes. Addi-

ional coding undertaken at this stage was used to identify factors

nfluencing decisions and to develop a set of candidate thematic

actors.

In the subsequent phase, all authors discussed the candidate

ecision types and factors alongside illustrative discussions taken

rom the corpus. A set of four semantic themes and seven thematic

actors was agreed, and their consistency with the larger body of

vidence reviewed by the first author.

. Findings

This section describes the semantic themes identified through

hematic analysis that categorise the decisions made by contribu-

ors to PDFBox regarding maintenance of its interoperability. Each

ecision type is illustrated with examples. Thereafter we provide
3 Each email header contains a reference to the message it replies to. Sometimes

he reference can be omitted when replying to a mailing list message.

http://mail-archives.apache.org/mod_mbox/pdfbox-commits/
http://mail-archives.apache.org/mod_mbox/pdfbox-dev/
http://mail-archives.apache.org/mod_mbox/pdfbox-users/
https://github.com/apache/pdfbox
https://issues.apache.org/jira/projects/PDFBOX/
https://orgmode.org/

6 S. Butler, J. Gamalielsson and B. Lundell et al. / The Journal of Systems and Software 159 (2020) 110452

Table 3

Types of software development decisions related to the PDF specifications and standards in the Apache PDFBox project.

Decision Type Description

Improve to match de facto reference implementation A decision taken in the context of improving or correcting PDFBox

to match the de facto reference implementation.

Degrade to match de facto reference implementation A decision taken in the context of degrading the compliance of

PDFBox with a PDF specification or standard so that the behaviour

matches that of an Adobe implementation.

Improve to match standard A decision taken in the context of improving or correcting the

behaviour of PDFBox to meet a PDF specification or standard.

Scope of implementation A decision taken about the extent of the PDFBox implementation.

Table 4

Apache PDFBox Jira issue tracker tickets referenced in Section 4.1 .

Decision type Issue tracker ticket

Improve to match de facto reference implementation PDFBOX-3513

PDFBOX-3589

PDFBOX-3654

PDFBOX-3687

PDFBOX-3738

PDFBOX-3745

PDFBOX-3752

PDFBOX-3781

PDFBOX-3789

PDFBOX-3874

PDFBOX-3875

PDFBOX-3913

PDFBOX-3946

PDFBOX-3958

Degrade to match de facto reference implementation PDFBOX-3929

PDFBOX-3983

Improve to Match Standard PDFBOX-3914

PDFBOX-3920

PDFBOX-3992

PDFBOX-4276

Scope of implementation PDFBOX-3293

PDFBOX-4045

PDFBOX-4189

fi

P

p

p

t

w

u

i

a

b

s

u

A

p

d

s

(

s

b

e

o

r

“

m

t

n

o

r

“

r

m

i

c

j

s

p

2

j

t

r

t

an account of the main factors that motivate and constrain the out-

comes of the types of decision made.

4.1. Decision types

We identified four major types of decision related to the im-

plementation of the PDF specification and standards in the PDFBox

project (see Table 3), each of which is described below with illus-

trative examples. We also provide descriptions of the thematic fac-

tors identified that, in combination, influence the decisions made.

4.1.1. Improve to match de facto reference implementation

Much of the work of PDFBox contributors is focused on trying

to match the behaviour of Adobe’s PDF software. The PDFBox core

developers and many contributors treat the Adobe PDF readers as

de facto reference implementations of the PDF specifications and

standards (e.g. PDFBOX-3738 4 and PDFBOX-3745 — PDFBox Jira

issue tracker tickets referred to in Section 4.1 are listed in Table 4),

and use the maxim that PDFBox should be able to process any doc-

ument the Adobe PDF readers can. As one core developer explains:

“There is the PDF spec and there are real world PDFs. Not all

real world PDFs are correct with regards to the spec. Acrobat,

PDFBox and many other libraries try to do their best to pro-
4 The PDFBox Jira issue tracker tickets referenced have URLs of the form

https//issues.apache.org/jira/browse/PDFBOX-NNNN where ‘NNNN’

is the four digit number of the ticket. For example, PDFBOX-3738 has the URL

https://issues.apache.org/jira/browse/PDFBOX-3738 .

t

o

vide workarounds for that. We typically try to match Acrobat

...” (PDFBOX-3687).

The ISO 320 0 0-2:2017 standard (ISO, 2017 , pp. 18-19) identi-

es two classifications of PDF processing software: PDF readers and

DF writers. Accordingly, developers trying to match the Adobe im-

lementations face two major challenges. The first is to be able to

rocess the same input that Adobe software does. The second is

o create output of similar quality to that produced by Adobe soft-

are. There are also two types of output of PDF software: the doc-

ment created, and how given document is rendered on screen or

n print. To “try to match Acrobat” (PDFBOX-3687), documents cre-

ted by PDFBox should, insofar as is possible match those output

y Adobe software so that they are rendered consistently by other

oftware, and the expectation is that PDFBox, and software created

sing it, should also render documents with similar quality to the

dobe implementations (e.g. PDFBOX-3589 & PDFBOX-3752).

The convention in software that reads PDF files is to ap-

ly the Robustness Principle (Allman, 2011; Postel, 1981) so that

ocuments that are not compliant with PDF specifications and

tandards can be processed and rendered, insofar as is possible

e.g. PDFBOX-3789). Exactly what incorrect and malformed content

hould, or can, be parsed into a working document is not specified

y the PDF specifications and standards. The exemplar for develop-

rs is the behaviour of the Adobe Readers, as well as the behaviour

f other PDF software.

PDF documents consist of four parts: a header, a body, a cross

eference table, and a trailer. The header consists of the string

%PDF- ” and a version number, followed, on a second line, by a

inimum of four bytes with a value of 128 or greater so that any

ool trying to determine what the file contains will treat it as bi-

ary data, and not text. The trailer consists of the string “%%EOF ”
n a separate line, immediately preceded by a number on one line

epresenting the offset of the cross-reference table and the string

startxref ” on the line before that (see Fig. 1). A PDF parser 5

eads the first line of a file and then searches for the “%%EOF ”
arker and works backwards to find the cross-reference table us-

ng the offset on the preceding line, and to read the trailer that

onfirms the number of objects referenced in the table, and the ob-

ect reference of the root object of the document tree. The parser

hould then be able to read all the objects in the PDF file.

Where the cross-reference table is missing or damaged, PDF

arsers may , according to the ISO 320 0 0-1:20 08 standard (ISO,

008 , p. 650), try to reconstruct the table by searching for ob-

ects in the file 6 (see Fig. 2). In practice, Adobe software appears

o apply the Principle of Robustness more widely so that a wide

ange of problems, for example with fonts, are also tolerated by

he parser.
5 There are also ‘linearised’ PDF files intended for network transmission where

he trailer and cross-reference tables precede the body.
6 The repair mechanism is why, sometimes, Adobe software applications offer the

pportunity for the user to save a newly opened document.

https://issues.apache.org/jira/browse/PDFBOX-3513
https://issues.apache.org/jira/browse/PDFBOX-3589
https://issues.apache.org/jira/browse/PDFBOX-3654
https://issues.apache.org/jira/browse/PDFBOX-3687
https://issues.apache.org/jira/browse/PDFBOX-3738
https://issues.apache.org/jira/browse/PDFBOX-3745
https://issues.apache.org/jira/browse/PDFBOX-3752
https://issues.apache.org/jira/browse/PDFBOX-3781
https://issues.apache.org/jira/browse/PDFBOX-3789
https://issues.apache.org/jira/browse/PDFBOX-3874
https://issues.apache.org/jira/browse/PDFBOX-3875
https://issues.apache.org/jira/browse/PDFBOX-3913
https://issues.apache.org/jira/browse/PDFBOX-3946
https://issues.apache.org/jira/browse/PDFBOX-3958
https://issues.apache.org/jira/browse/PDFBOX-3929
https://issues.apache.org/jira/browse/PDFBOX-3983
https://issues.apache.org/jira/browse/PDFBOX-3914
https://issues.apache.org/jira/browse/PDFBOX-3920
https://issues.apache.org/jira/browse/PDFBOX-3992
https://issues.apache.org/jira/browse/PDFBOX-4276
https://issues.apache.org/jira/browse/PDFBOX-3293
https://issues.apache.org/jira/browse/PDFBOX-4045
https://issues.apache.org/jira/browse/PDFBOX-4189
https://issues.apache.org/jira/browse/PDFBOX-3738
https://issues.apache.org/jira/browse/PDFBOX-3745
https://issues.apache.org/jira/browse/PDFBOX-3738
https://issues.apache.org/jira/browse/PDFBOX-3687
https://issues.apache.org/jira/browse/PDFBOX-3687
https://issues.apache.org/jira/browse/PDFBOX-3589
https://issues.apache.org/jira/browse/PDFBOX-3752
https://issues.apache.org/jira/browse/PDFBOX-3789

S. Butler, J. Gamalielsson and B. Lundell et al. / The Journal of Systems and Software 159 (2020) 110452 7

Fig. 1. An example PDF file cross-reference table and trailer.

Fig. 2. An example PDF document catalogue object.

s

s

m

a

n

s

o

u

u

t

p

m

u

r

n

o

s

a

i

n

a

p

t

t

p

t

c

a

t

t

a

e

i

a

2

b

U

t

a

a

s

a

w

i

p

s

I

o

p

c

t

i

f

t

i

u

t

p

t

b

b

l

A

t

u

s

n

4

P

t

n

w

c

t

o

A

i

P

7 PDF.js is a widely used open source PDF reader implemented in JavaScript, see

https://mozilla.github.io/pdf.js/ .
The work required to resolve issues of this nature varies in

cope. Sometimes the source code revision is relatively trivial; a

imple change to make the parser more lenient because the docu-

ent author’s intention is clear. For example, PDFBOX-3874 where

 small change is made to a font parser so that it will accept field

ames in the font metadata that are capitalised differently to the

pecification. Similarly, in PDFBOX-3513 , the PDFBox core devel-

pers identify an error in the ISO 320 0 0-1:20 08 standard as the

nderlying cause of an observed problem with PDFBox. One col-

mn of a table specifies two types (a name and a dictionary) for

he value of an encoding dictionary for Type 3 fonts (ISO, 2008 ,

 259), the next column of the table clearly specifies that the field

ust be a dictionary. The contributor who encountered the doc-

ment, proposes a revision to the parser to accommodate the er-

or (PDFBOX-3513). One core developer comments that “... we’ve

ever encountered a file with the problem you’ve presented.” An-

ther core developer points out that there is no guidance in the

pecification on how to treat a Type 3 font that does not have

n encoding dictionary. Instead of improvising a fallback encod-

ng, the core developers argue that there may be a case to ig-

ore the font specified in the document as it cannot be reli-

bly used, and the parser is not revised given the rarity of the

roblem.

Adobe and other PDF software sometimes exceed the specifica-

ions and standards. In PDFBOX-3654 , for example, a file is found

hat renders in many other applications, but not in PDFBox. The

roblem is a font that is encoded in a hexadecimal format, and

he standard is unequivocal on the subject:

“Although the encrypted portion of a standard Type 1 font may

be in binary or ASCII hexadecimal format, PDF supports only

the binary format.” (ISO, 2017 , p. 351)
The source code is revised to support the font encoding and the

ore developer processing the issue observes:

“So the font is incorrectly stored. But obviously, Adobe supports

both, so we should too.” (PDFBOX-3654)

In some cases the Adobe software extends the specifications

nd standards through the implementation of additional func-

ionality that reflects wider practice. Often the only documen-

ation of the additional functionality is in the implementation,

nd other implementers only discover the change when differ-

nces in behaviour are reported to them. For example, a report

n PDFBOX-3913 shows that Adobe software and PDF.js 7 process

nd render a Japanese URI, which PDFBox can not. The ISO 320 0 0-

:2017 standard specifies that the targets of URIs (links) should

e encoded in UTF-8. In both applications the URI is encoded in

TF-16, which is necessary to represent some Japanese charac-

ers used in domain names, but exceeds the standard. Revisions

re made to PDFBox (documented in PDFBOX-3913 , PDFBOX-3946 ,

nd PDFBOX-3958) to support UTF-16 for URIs and implement the

ame functionality as both Adobe and PDF.js.

PDFBox contributors also find instances where documents cre-

ted by the software are not rendered as expected by Adobe’s soft-

are. In these cases, typically, there is a difference in the model

n documents created by PDFBox and the model that Adobe ex-

ects. In some cases a great deal of work is required to under-

tand how Adobe and other readers interpret the PDF document.

n PDFBOX-3738 work is undertaken to understand how the output

f digitally signed files is interpreted by Adobe and other reader

roducts. The acquired knowledge is then applied so that PDFBox

an create documents that can be read and rendered with digi-

al signature displayed by other PDF software. The developers also

dentify a related problem, documented in PDFBOX-3781 , that af-

ects documents with forms and digital signatures.

Merging PDF files can be a difficult problem for implementers

o solve. PDFBOX-3875 records the challenges faced when merg-

ng two documents where the internal bookmarks are structured

sing slightly different representations in the document model. In

he merged document some of the bookmarks do not work as ex-

ected. The initial assessment by one of the core developers is that

he cause is within the PDFBox source code and is “... probably a

ug. Not the kind that will be fixed quickly ...”. One approach used

y the core developers to evaluate how best to solve the prob-

em is to merge the documents using other applications, including

dobe software, and to examine the document created following

he merge. Work is started to try to create a viable solution by em-

lating the document resulting from merging the files using Adobe

oftware, but further problems are encountered and the work is

ot completed.

.1.2. Degrade to match de facto reference implementation

As noted already, developers of PDF software, including the

DFBox developers, tend to view Adobe PDF software implementa-

ions as a gold standard. However, Adobe’s software developers do

ot always implement the PDF specifications and standards in the

ay that others might, and on occasions, implement solutions that

an be seen as incorrect. Consequently, developers of PDF software

hen need to determine how they might degrade the adherence

f their software to the PDF specifications and standards to match

dobe’s implementations.

PDFBOX-3929 begins in a discussion on the PDFBox users mail-

ng list where a user observes that PDF documents created by

DFBox with floating point numbers used for field widget border

https://issues.apache.org/jira/browse/PDFBOX-3874
https://issues.apache.org/jira/browse/PDFBOX-3513
https://issues.apache.org/jira/browse/PDFBOX-3513
https://issues.apache.org/jira/browse/PDFBOX-3654
https://issues.apache.org/jira/browse/PDFBOX-3654
https://issues.apache.org/jira/browse/PDFBOX-3913
https://issues.apache.org/jira/browse/PDFBOX-3913
https://issues.apache.org/jira/browse/PDFBOX-3946
https://issues.apache.org/jira/browse/PDFBOX-3958
https://issues.apache.org/jira/browse/PDFBOX-3738
https://issues.apache.org/jira/browse/PDFBOX-3781
https://issues.apache.org/jira/browse/PDFBOX-3875
https://issues.apache.org/jira/browse/PDFBOX-3929
https://mozilla.github.io/pdf.js/

8 S. Butler, J. Gamalielsson and B. Lundell et al. / The Journal of Systems and Software 159 (2020) 110452

Table 5

Apache PDFBox mailing list threads referenced.

Reference Mailing list archive URL

Users-1 http://mail-archives.apache.org/mod _ mbox/pdfbox-users/201804.mbox/ 〈 DB5PR01MB18629047633DB004EEFE111E85880@DB5PR01MB1862.eurprd01.

prod.exchangelabs.com 〉
Users-2 http://mail-archives.apache.org/mod _ mbox/pdfbox-users/201709.mbox/ 〈 CY1PR04MB226578FDD86270ED2F4A835882970@CY1PR04MB2265.namprd04.

prod.outlook.com 〉
Users-3 http://mail-archives.apache.org/mod _ mbox/pdfbox-users/201709.mbox/ 〈 CY1PR04MB2265E98C627098CDBA44DB2F82940@CY1PR04MB2265.namprd04.

prod.outlook.com 〉
Users-4 http://mail-archives.apache.org/mod _ mbox/pdfbox-users/201711.mbox/ 〈 CAKLHnLzfzvtUtxM-Kj2a1EbNa _ YMG5qHnUy55PQeqoAV6KBLsQ@mail.

gmail.com 〉
Users-5 http://mail-archives.apache.org/mod _ mbox/pdfbox-users/201710.mbox/ 〈 3723506D-D663-4EB6-832F-AC052EDC230B@madlon-kay.com 〉

t

i

n

a

w

a

a

t

4

m

d

c

i

i

a

i

b

P

m

o

t

a

I

T

a

g

c

c

P

B

a

d

v

d

t

t

P

B

(

t

m

a

c

n

s

8 https://github.com/danfickle/openhtmltopdf/issues/135.
widths, are rendered by Adobe XI and Adobe DC without a border

(Users-2 and Users-3 in Table 5). The borders of other annotation

types are unaffected.

The width of borders drawn around annotations, such as form

fields, are defined in PDF documents in two ways: a border array

holding three or four values, or in some cases a border style dictio-

nary (an associative array) that includes a value for the width of

the border in points. In both cases the value to specify the width

is defined as a number . PDF specifications and standards define

two numeric types integer objects and real objects . The ISO 320 0 0

standards then say “... the term number refers to an object whose

type may be integer or real.” ISO, 2008 , p. 14; ISO, 2017 , p. 24).

ISO 320 0 0-2:2017, for example, is explicit where fields are required

to hold integer values, and uses the term number for other nu-

meric fields.

Both versions of the ISO 320 0 0 standard define the border array

using the following sentence:

“The array consists of three numbers defining the horizontal

corner radius, the vertical corner radius, and border width,

all in default user space units.” (ISO, 2008 , p. 384; ISO, 2017 ,

p. 465)

Accordingly, the interpretation of the standards used in PDF-

Box agrees with the standard; border width can be specified with

a floating point number. However, the Adobe reader software ex-

pects an integer, and ignores non-integer values, such as 3.0, by

treating them as having a value of zero. Consequently, the PDFBox

implementation was revised so that annotations in documents cre-

ated by PDFBox will be rendered with borders by Adobe DC. A bug

report was also made to Adobe support, saying that the standard

had been interpreted incorrectly.

A closely related issue is found in a thread on the users mailing

list (Users-4) where a developer reports that that the Adobe reader

implementations behave in an unexpected way. This time the con-

cern is the border drawn around a URI action annotation, or a link.

The border is defined in the standard as described above, but the

Adobe reader implementations interpret the values 1, 2, and 3 as

meaning a thin, medium and thick border respectively. The PDFBox

API documentation is updated to describe how the Adobe reader

implementations interpret the border width value.

A contributor reports in PDFBOX-3983 that Acrobat Reader fails

to display some outlines and borders where the miter limit is set

to a value of zero or less. The miter limit indicates how junctions

between lines should be drawn. The ISO 320 0 0-1:20 08 standard

states:

Parameters that are numeric values, such as the current colour,

line width, and miter limit, shall be forced into valid range, if

necessary. (ISO, 2008 , p124)

The statement was revised in ISO 320 0 0-2:2017 by the replace-

ment of “forced” with “clipped” (ISO, 2017 , p. 157).

Accordingly, one interpretation might be that a compliant PDF

reader would be able to display a document correctly regardless of
he value of the miter limit recorded because it would automat-

cally correct the value. However, Adobe implementations appear

ot to correct the value. The user reporting the problem supplies

 patch so that the miter limit in documents created by PDFBox

ill contain miter limit values that are positive, and the simple fix

llows Adobe software to display the document. OpenPDFtoHTML,

nother OSS project, has also encountered the same problem and

akes similar action. 8

.1.3. Improve to match standard

The PDFBox implementation is also revised to meet the require-

ents of the PDF standards and normative references, indepen-

ently of the need to match the performance of Adobe products.

The use of multi-byte representations of characters in Unicode

haracter encodings such as UTF-16 require some careful process-

ng by PDF parsers because some single byte values can be mis-

nterpreted. The single byte value 0x20 represents the space char-

cter in fonts encoded in one byte. In multi-byte character encod-

ngs the byte 0x20 may be part of a character and so should not

e treated as a single byte. Two kinds of operator can be used in

DF documents to position text, one of which should be used with

ulti-byte font encodings so that single byte values that form part

f multi-byte characters are not mis-interpreted. A patch is con-

ributed in PDFBOX-3992 so that PDFBox fully supports the oper-

tor used to justify multi-byte encoded text to comply with the

SO 320 0 0-1:20 08 standard.

The PDF/A group of standards define an archive format for PDF.

he demands of the standards are high, and compliance requires

 great deal of attention to detail during document preparation. In

eneral, the PDF/A standards constrain the types of content that

an be present in compliant files, and sometimes make very pre-

ise demands on the quality of embedded resources. The veraPDF

roject develops a freely available validator for PDF/A files. PDF-

ox also implements ‘preflight’ functionality to validate documents

gainst the requirements of PDF/A-1b (the ISO 190 05-1:20 05 stan-

ard) and there are examples where the implementation is re-

ised to match the performance of the veraPDF validator when

ifferences are found. For example, a bug in the preflight valida-

or is found in PDFBOX-4276 and the functionality corrected so

hat the incorrect output is now detected as veraPDF would. In

DFBOX-3920 a user reports that font subsets created by PDF-

ox do not include all the data required by the PDF/A-2 standard

ISO 19005-2:2011). The PDFBox source code is modified so that

he output meets the standard.

The number of revisions to the PDF specifications and standards

ean that occasionally it is found that PDFBox does not implement

 particular feature or capture all the data in a PDF document. A

ontributor reports a problem with PDFBox where a field is ig-

ored during parsing that leads to content being rendered that is

upposed to be hidden. The user provides a patch in PDFBOX-3914

http://mail-archives.apache.org/mod_mbox/pdfbox-users/201804.mbox/%3CDB5PR01MB18629047633DB004EEFE111E85880@DB5PR01MB1862.eurprd01.prod.exchangelabs.com%3E
http://mail-archives.apache.org/mod_mbox/pdfbox-users/201709.mbox/%3CCY1PR04MB226578FDD86270ED2F4A835882970@CY1PR04MB2265.namprd04.prod.outlook.com%3E
http://mail-archives.apache.org/mod_mbox/pdfbox-users/201709.mbox/%3CCY1PR04MB2265E98C627098CDBA44DB2F82940@CY1PR04MB2265.namprd04.prod.outlook.com%3E
http://mail-archives.apache.org/mod_mbox/pdfbox-users/201711.mbox/%3CCAKLHnLzfzvtUtxM-Kj2a1EbNa_YMG5qHnUy55PQeqoAV6KBLsQ@mail.gmail.com%3E
http://mail-archives.apache.org/mod_mbox/pdfbox-users/201710.mbox/%3C3723506D-D663-4EB6-832F-AC052EDC230B@madlon-kay.com%3E
https://issues.apache.org/jira/browse/PDFBOX-3983
https://issues.apache.org/jira/browse/PDFBOX-3992
https://issues.apache.org/jira/browse/PDFBOX-4276
https://issues.apache.org/jira/browse/PDFBOX-3920
https://issues.apache.org/jira/browse/PDFBOX-3914

S. Butler, J. Gamalielsson and B. Lundell et al. / The Journal of Systems and Software 159 (2020) 110452 9

w

fi

4

t

w

a

d

a

o

i

f

t

p

a

J

i

p

f

i

J

P

M

c

c

i

n

U

c

i

m

c

u

o

p

c

w

B

a

r

t

u

A

i

t

d

b

t

c

t

Table 6

Thematic factors influencing software development decisions in the Apache PDF-

Box project.

Factor Description

Workforce The availability of contributors to do work.

Maintenance Risk The maintenance burden for the project of

a feature implementation.

Expertise The collective expertise of the contributors

to the project.

Sustainable Solution The long-term viability of a technical

solution.

Capability The ability to make relevant and

meaningful changes in a given context.

Intellectual Property Rights Matters pertaining to copyright, patents

and licensing.

Java Interoperability The consequences for interoperability of

revisions to Java.

4

t

p

4

p

t

B

t

c

o

i

m

p

a

a

d

w

c

v

u

A

r

4

e

o

e

p
hich forms the basis of an update to the source code so that the

eld is imported and the document rendered correctly.

.1.4. Scope of implementation

The core developers also make decisions about the scope of

he software implemented by the PDFBox project. The question of

hat functionality forms the scope of the PDFBox implementation

rises in some bug reports and feature requests, and has multiple

imensions.

PDFBox is not intended to be a comprehensive solution for cre-

ting, processing or rendering PDF documents. The project charter,

r mission statement says:

“The Apache PDFBox library is an open source Java tool for

working with PDF documents. This project allows creation of

new PDF documents, manipulation of existing documents and

the ability to extract content from documents. Apache PDF-

Box also includes several command-line utilities. Apache PDF-

Box is published under the Apache License v2.0.” (Apache PDF-

Box, 2019)

PDFBox relies on some external libraries to provide functional-

ty, especially in the area of image processing. There is no need

or the PDFBox project to reimplement the wheel, particularly in

echnically demanding domains. A further difficulty is that image

rocessing provision within the core Java libraries is incomplete,

nd varies between Java versions. Some functionality, such as the

PEG 20 0 0 codec, is no longer maintained and is difficult for OSS

mplementers to adopt because of the licence used and potential

atent issues (discussed further in Section 4.2.6). Java provision

or image processing is changing and, with Java v9, functional-

ty is gradually being returned to the core libraries. However, the

PEG 20 0 0 codec remains outside the main Java libraries. Further,

DFBox core developers often recommend the use of the Twelve

onkeys plugin

9 for image processing, in particular because it pro-

esses CMYK images that PDFBox does not.

Some areas of work are outside the current scope of PDFBox, in-

luding the implementation of rendering for complex scripts. There

s some provision, and some developers have contributed code for

on-European languages where they have expertise (for example

sers-5). In some cases the layout of the languages is sufficiently

lose to Latin scripts that there is no need for additional provision,

f the fonts are correct as shown in PDFBOX-3293 . However, for

any languages including Arabic and those from the Indian sub-

ontinent there is a need to implement code to position the glyphs

sing GSUB and GPOS tables. In PDFBOX-4189 a user provides a lot

f the functionality to support GSUB tables for Bengali. The com-

lexity of the task is clear from the discussions reviewing and ac-

epting the source code.

Decisions are also made about the cause of observations and

hether what is observed is the result of a problem with PDF-

ox. Where the issue lies with PDFBox, decisions are then made

bout resolving the problem. Sometimes the erroneous observation

esults from other software. A user reports a difference between

he assessments by Adobe preflight and PDFBox concerning a doc-

ment’s compliance with the PDF/A-1b standard in PDFBOX-4045 .

dobe XI identifies inconsistencies in the glyph widths for one font

n the document. After investigation the core developers determine

hat there is no error in PDFBox and that Adobe X agrees that the

ocument is compliant. Given the inconsistent assessments made

y Adobe X and XI, and that inspection of the font does not show

he issue reported by Adobe XI, the PDFBox core developers con-

lude there is a problem with the implementation of preflight in

he particular version of Adobe XI used.
9 https://github.com/haraldk/TwelveMonkeys .
.2. Factors influencing decision-making

Common to the decision types observed is a set of considera-

ions or factors that influence the outcome of the decision-making

rocess (see Table 6).

.2.1. Workforce

Companies choose to use the PDFBox software and, where ap-

ropriate for their needs, contribute to its improvement through

he work of their developers. As noted, the core developers of PDF-

ox are few in number and are, as they emphasise, not paid for

heir work on PDFBox:

“The project is a volunteer effort and were always looking for

interested people to help us improve PDFBox. There are a mul-

titude of ways that you can help us depending on your skills.”

(Apache PDFBox, 2019)

With limited time available to them (Targett, 2019), the PDFBox

ore developers concentrate their efforts (Khudairi, 2019) in areas

f the software where work is a priority, unless other developers

n the community are able to contribute.

The example given previously of work on a solution for a docu-

ent merging problem (PDFBOX-3875 10) that halts may be ex-

lained by the limited workforce being focused on other, more

chievable tasks, as illustrated by a core developers’ comment on

nother task:

“I had hoped to implement that but given current commitments

I have it is unlikely that I’m able to do it in the short term (I’m

trying to concentrate on resolving AcroForms related stuff in my

spare time for the momen[t]).” (PDFBOX-3550)

Another example of the influence of the available workforce on

ecision making can be found in PDFBOX-3875 where a developer

orking for a company wants a problem resolved. The problem is

hallenging and will take time to understand and resolve. The de-

eloper reporting the problem is given three choices: to adopt and

se another OSS application, and, implicitly, to buy a licence for

dobe professional, or to contribute the fix themselves either di-

ectly or by commissioning other developers to do the work.

.2.2. Maintenance risk

The notion of a maintenance risk can be related to the factors of

xpertise and workforce. Core developers will sometimes express

r imply a concern that they are unwilling to accept a solution. For

xample, PDFBOX-3962 where a user proposes a solution that re-

airs the unicode mappings in one PDF document so that it can be
10 Issue tracker tickets referenced in Section 4.2 are given in Table 7 .

https://issues.apache.org/jira/browse/PDFBOX-3293
https://issues.apache.org/jira/browse/PDFBOX-4189
https://issues.apache.org/jira/browse/PDFBOX-4045
https://github.com/haraldk/TwelveMonkeys
https://issues.apache.org/jira/browse/PDFBOX-3875
https://issues.apache.org/jira/browse/PDFBOX-3550
https://issues.apache.org/jira/browse/PDFBOX-3875
https://issues.apache.org/jira/browse/PDFBOX-3962

10 S. Butler, J. Gamalielsson and B. Lundell et al. / The Journal of Systems and Software 159 (2020) 110452

Table 7

Apache PDFBox Jira issue tracker tickets referenced in

Section 4.2 .

Factor Issue tracker ticket

Workforce PDFBOX-3550

PDFBOX-3875

Maintenance risk PDFBOX-3550

PDFBOX-3962

Expertise PDFBOX-3550

PDFBOX-3844

PDFBOX-4024

PDFBOX-4095

PDFBOX-4189

PDFBOX-4267

Sustainable solution PDFBOX-3300

Capability PDFBOX-3641

Intellectual property rights PDFBOX-3618

PDFBOX-4320

Java interoperability PDFBOX-3549

fi

t

4

s

t

a

p

p

o

l

p

a

s

l

4

t

e

w

o

t

v

a

I

t

o

d

a

P

i

4

u

P

m

(

t

i

t

i

T

n

a

c

t

t

d

i

b

C

b

11 A CMap is a table in a font file that maps character encodings to the glyphs

that represent them.
12 https://bugs.openjdk.java.net/browse/JDK-8175984 .
13 For example the opinion expressed at: https://github.com/jai-imageio/

jai- imageio- jpeg20 0 0 .
14 https://github.com/jai-imageio/jai-imageio-jpeg20 0 0.
rendered. The core developers identify that the solution resolves a

special case, and that further work would be required to develop

a viable solution for the Java 9 libraries. Another concern articu-

lated in some requests for support for complex scripts is that the

core developers do not have the skills to maintain the functional-

ity. A lengthy discussion of the issue can be found in PDFBOX-3550

where the core developers identify some central challenges to cre-

ating a solution. The main concern in both cases is that by pro-

viding additional functionality that cannot be maintained or is a

challenge to maintain, either in terms of the effort required or the

necessary expertise, there is a risk to the utility of the software,

and, perhaps, the viability of the project.

4.2.3. Expertise

The implementation of PDF software requires expertise in a

wide range of areas in addition to PDF itself. Limitations to the

available expertise help determine what work can be done by con-

tributors. One implication, already noted, is the reluctance to main-

tain source code in areas where there is no or limited expertise

amongst the core developers. Another is that some areas of func-

tionality cannot be developed. For example, a user asks about com-

pressing CMYK JPEG images in PDFBOX-3844 . The core developer

responds by saying:

“There is no JPEG compression from CMYK BufferedImage ob-

jects out of the box, i.e. Java ImageIO doesn’t support it, and

we don’t have the skills, so that I’ll have to close as “won’t fix”

this time.” (PDFBOX-3844)

The alternative suggested in PDFBOX-3844 is to investigate the

Twelve Monkeys project that builds on the Java ImageIO function-

ality.

There is also a great deal of expertise within the PDFBox com-

munity which can enable the implementation of solutions. In

PDFBOX-4095 one contributor provides a proposed solution to a

challenging problem. After some work evaluating the proposed

change, which isn’t going well, another contributor suggests a sim-

ple revision that resolves the problems. Similarly a complex im-

age rendering problem is solved with the help of advice from a

contributor in PDFBOX-4267 , and another contributor implements

code to process YCbCr CMYK JPEG images in PDFBOX-4024 .

Expertise alone, however, is not sufficient to provide a solution

to a problem in all cases. The discussion in PDFBOX-4189 shows

there is considerable expertise within the user community and the

core developers about fonts and how to render complex scripts.

Key factors that have prevented the work being done previously

have been not only a shortage of available workforce, but also a

lack of expertise in the target language that would provide suf-
cient understanding to distinguish between good and bad solu-

ions:

“Many complex scripts (such as Arabic) require shaping engines

which require deep knowledge of the languages in order to fol-

low the rules in the OpenType tables.” (PDFBOX-3550)

.2.4. Sustainable solution

There are often implementation choices to be made when re-

olving a problem. The better long-term solution is more viable

han the short-term fix, or workaround. In PDFBOX-3300 concerns

re reported about the way that a font subset has been created

rior to embedding it in a document. A specific solution is pro-

osed that provides a way of resolving the problem. Another devel-

per identifies that the optimal solution is to resolve some prob-

ems in the CMap

11 parser. It is a more sustainable solution than a

atch to provide a specific workaround. In this case the developers

re able to create a generic solution that better addresses the font

tandards, and thereby the PDF standards, and provides a longer-

ived solution.

.2.5. Capability

A key factor in decisions concerns whether the project is able

o correct the problem that is causing the observed behaviour. The

xamples given in Section 4.1.2 where the PDFBox implementation

as degraded from meeting the standard to match the behaviour

f Adobe’s software illustrate one aspect of capability as a fac-

or. In those cases the ‘incorrect’ implementation could not be re-

ised, and only a revision to PDFBox could ensure documents cre-

ted would be rendered as expected by Adobe’s implementations.

n other cases bugs are found in external libraries or infrastructure

hat have an impact on PDFBox. Often a workaround will be found,

r an alternative library recommended. For example, PDFBOX-3641

escribes a situation in which PDFBox uses a core Java library in

 way that triggers a bug in the Java implementation. The code in

DFBox is revised to prevent the bug being triggered. The Java bug

s also reported

12 .

.2.6. Intellectual property rights

PDF documents can include technologies and artifacts where

se is constrained by copyright, patents or licences. In addition,

DFBox is implemented in Java which during its lifetime has

oved from closed source, to largely open source, to some variants

e.g. OpenJDK and derivatives like Amazon Corretto) that are en-

irely open source. An implementation of the JPEG 20 0 0 codec was

ncluded in extensions to the Java libraries. During Sun Microsys-

ems’ process to make Java open source the codec along with other

mage codecs was released as a separate library known as ImageIO.

he licence used for the implementation of the JPEG 20 0 0 codec is

ot an Open Software Initiative (OSI) approved open source licence

nd some consider the licence used is incompatible with OSS li-

ences such as the GPL v3 and the Apache Licence v2.0. 13 In addi-

ion there are concerns amongst OSS developers about the poten-

ial of patent claims related to JPEG 20 0 0, though the concerns are

iminishing with the passage of time. Most of the image codecs

n the ImageIO library have been reincorporated into the Java li-

raries in OpenJDK since v9, but the JPEG 20 0 0 codec has not.

onsequently, JPEG 20 0 0 support in PDFBox, where it is required

y users, relies on the jai-imageio 14 implementation of the codec,

https://issues.apache.org/jira/browse/PDFBOX-3550
https://issues.apache.org/jira/browse/PDFBOX-3875
https://issues.apache.org/jira/browse/PDFBOX-3550
https://issues.apache.org/jira/browse/PDFBOX-3962
https://issues.apache.org/jira/browse/PDFBOX-3550
https://issues.apache.org/jira/browse/PDFBOX-3844
https://issues.apache.org/jira/browse/PDFBOX-4024
https://issues.apache.org/jira/browse/PDFBOX-4095
https://issues.apache.org/jira/browse/PDFBOX-4189
https://issues.apache.org/jira/browse/PDFBOX-4267
https://issues.apache.org/jira/browse/PDFBOX-3300
https://issues.apache.org/jira/browse/PDFBOX-3641
https://issues.apache.org/jira/browse/PDFBOX-3618
https://issues.apache.org/jira/browse/PDFBOX-4320
https://issues.apache.org/jira/browse/PDFBOX-3549
https://issues.apache.org/jira/browse/PDFBOX-3550
https://issues.apache.org/jira/browse/PDFBOX-3844
https://issues.apache.org/jira/browse/PDFBOX-3844
https://issues.apache.org/jira/browse/PDFBOX-3844
https://issues.apache.org/jira/browse/PDFBOX-4095
https://issues.apache.org/jira/browse/PDFBOX-4267
https://issues.apache.org/jira/browse/PDFBOX-4024
https://issues.apache.org/jira/browse/PDFBOX-4189
https://issues.apache.org/jira/browse/PDFBOX-3550
https://issues.apache.org/jira/browse/PDFBOX-3300
https://issues.apache.org/jira/browse/PDFBOX-3641
https://bugs.openjdk.java.net/browse/JDK-8175984
https://github.com/jai-imageio/jai-imageio-jpeg2000

S. Butler, J. Gamalielsson and B. Lundell et al. / The Journal of Systems and Software 159 (2020) 110452 11

w

J

O

a

d

b

p

P

s

m

m

f

T

c

P

b

d

f

4

a

m

J

b

v

i

c

t

s

m

w

4

r

w

t

s

t

t

T

v

w

5

t

r

t

l

c

e

m

5

m

c

i

w

a

n

s

r

c

t

w

i

n

p

p

f

i

c

l

s

c

a

i

o

p

t

s

t

I

m

t

P

t

s

b

o

c

u

a

F

c

i

t

p

p

n

p

r

m

i

m

t

fi

t
hich is no longer maintained. A user reports using the Open-

PEG

15 implementation of JPEG 20 0 0 in PDFBOX-4320 . However,

penJPEG is implemented in C and can only be used as native code

nd which may not be suitable for some deployment contexts. The

evelopment of a replacement OSS JPEG 20 0 0 codec is inhibited

y the resources, including expertise and finance, required to im-

lement a large and complex standard. 16

The ISO 190 05-1:20 05 standard (ISO, 20 05 , p. 11) for archival

DF documents mandates the embedding of fonts, including the

tandard 14 fonts, 17 , or substitute fonts, in files so that the docu-

ent contains all the resources required to render it. The require-

ent is stated as: “Only fonts that are legally embeddable in a file

or unlimited, universal rendering shall be used.” (ISO, 2005 , p. 10).

he requirement can be problematic because many fonts have li-

ences that do not permit redistribution. The matter is discussed in

DFBOX-3618 . The legality of the embedded fonts is the responsi-

ility of the document creator. Both the PDF/A-1 and PDF/A-2 stan-

ards include a note that clarifies the need for the legal use of any

ont to be clearly and verifiably stated:

“This part of ISO 19005 precludes the embedding of font pro-

grams whose legality depends upon special agreement with

the copyright holder. Such an allowance places unacceptable

burdens on an archive to verify the existence, validity and

longevity of such claims.” (ISO, 2005 , p. 11; ISO, 2011 , p. 15).

.2.7. Java interoperability

In addition there are a set of problems concerning interoper-

bility with Java that are an influence on the solutions imple-

ented in PDFBox. Some are related to the PDF standards where

ava is used to provide support such as image processing required

y the standards. An example is found in PDFBOX-3549 where Java

ersions have differing capability to process ICC colour spaces, and

n some versions there are bugs that affect the handling of ICC

olour spaces. During the period of PDFBox activity investigated

hree new major versions of Java were released, and many revi-

ions made to each version. There is also some evidence in the

ailing lists and Jira tickets that some users are still using Java 5,

hich was already obsolete at the start of the period investigated.

.3. Summary

Through analysis of two years of activity in the PDFBox project

elated to implementation of the PDF specifications and standards,

e have identified four decision types related to development of

he project software and seven factors that influence those deci-

ions. The four decision types are related to adapting the software

o emulate the behaviour of Adobe’s PDF software, implementing

he PDF standards, and the scope of the PDFBox implementation.

he seven factors act in combination to facilitate and constrain de-

elopment activity, especially the interplay between expertise and

orkforce.

. Analysis

Much of the work of PDFBox contributors consists of trying

o match the implementation of Adobe PDF reader software. The

easons for matching Adobe implementations are mostly clear, yet

rying to emulate Adobe’s software is clearly challenging, and so-

utions, including validators, that might reduce the extent of the

hallenges, and the risks, are themselves challenging to create.
15 http://www.openjpeg.org/ .
16 JPEG 20 0 0 is defined in ISO/IEC 154 4 4 which consists of 14 parts (see Lundell

t al., 2018).
17 PDF specifications require 14 fonts to be present on systems that render docu-

ents, e.g. ISO 320 0 0-1:20 08 (ISO, 2008 , p. 256).

m

f

h
.1. The challenges of developing PDF parsers

The PDF specifications and standards specify that PDF software

ay try to reconstruct files where the cross reference table is in-

orrect or has been omitted. In practice the Principle of Robustness

s applied in Adobe’s PDF software so that PDF files that are not

ell-formed can often be rendered. The developers of other PDF

pplications are obliged to follow Adobe’s lead. If the developers of

on-Adobe PDF software did not implement parsers that behaved

imilarly to Adobe’s then their products would quickly become ir-

elevant because PDF users often believe that because documents

an be read and rendered by Adobe software that they must meet

he standard (Amiouny, 2016; Lehtonen et al., 2018). The extent to

hich PDF applications and libraries are expected to tolerate errors

n documents is documented by Adobe’s software, which creates a

umber of challenges for developers of PDF software.

Firstly, non-Adobe developers are left with the time-consuming

uzzle of trying to match the Adobe implementations. Indeed, the

uzzle includes an element of chance because differences in per-

ormance are discovered when a PDF document including a trigger-

ng problem is processed. Secondly, there are clearly security con-

erns in this approach. Parsing is arguably one of the more chal-

enging software engineering tasks. In the case of PDF, the core

pecifications and standards are extensive and complex, and in-

lude a large number of normative references for component file

nd media types, all of which need to be parsed by either a PDF

mplementation or its dependencies. PDFBox has been the subject

f Common Vulnerabilities and Exposures (CVE) notices related to

arser implementation

18 , as have other PDF software implemen-

ations. The core developers are therefore making decisions about

ecurity as part of those around the viability of the software when

rying to match the behaviour of Adobe’s software.

Some practitioners argue that a small revision made in the

SO 320 0 0-2:2017 standard concerning the structure of the file that

ore precisely defines the relationship between the header and

he end of file marker largely put an end to the need to apply the

rinciple of Robustness in PDF parsing (Amiouny, 2017). However,

hough the changes in the standard are important and may ease

ome of the burden on developers, we do not share the optimism

ecause the changes only apply to structure of documents that are

r claim to be PDF v2.0 compliant. Of course, there remain in cir-

ulation all the documents created during some 25 years of PDF

sage, as well as those documents that will continue to be cre-

ted which are compliant with earlier specifications and standards.

urther, the Principle of Robustness is applied to tolerate non-

onformance with normative standards of PDF, such as fonts and

mages, as well as minor PDF implementation errors. Given the his-

ory of malformed PDF files and the challenges of standards com-

liance, the fact that a document claims to be PDF v2.0 and com-

lies with the structural requirements of ISO 320 0 0-2:2017 does

ot guarantee that either the document or its components com-

ly with the standard. Consequently, the need for tolerant parsing

emains.

One improvement might be the creation of reference imple-

entations and validation tools; practices that have been adopted

n the development of open standards, for example in the IoT do-

ain as noted in Section 2.3 (e.g. Watteyne et al., 2016). Valida-

ion tools for fonts could help ensure that font creators build font

les that contain sufficient, accurate information for other software

o use the font file, and that implementers of font parsers have a

eans by which to evaluate their software. Further, validation tools

or PDF documents and a reference implementation for PDF would

elp the developers of PDF software create more interoperable ap-
18 For example CVE-2018-8036 and CVE-2018-117979.

https://issues.apache.org/jira/browse/PDFBOX-4320
https://issues.apache.org/jira/browse/PDFBOX-3618
https://issues.apache.org/jira/browse/PDFBOX-3549
http://www.openjpeg.org/

12 S. Butler, J. Gamalielsson and B. Lundell et al. / The Journal of Systems and Software 159 (2020) 110452

t

o

a

w

i

t

t

l

e

c

s

w

p

t

u

u

r

p

d

c

g

i

v

P

5

t

t

W

i

j

f

b

i

d

i

c

o

6

d

r

(

w

f

l

t

i

o

s

e

i

c

t

t

c
plications, with less effort and, possibly, reduce the security risks

arising from the need to parse malformed documents. However, in

practice PDF validators are difficult and expensive to implement.

The veraPDF (veraPDF, 2019) PDF/A validator, for example, was cre-

ated during a European Union funded project, and the PDFTools

validator is proprietary licenced software. 19 The problem remains,

also, that solutions such as validators are forward looking, and can

not address the challenge of processing non-compliant PDF files

created during the last 25 years that still need to be read. There

is, though, a case for introducing validators and reference imple-

mentations to help ensure that PDF files created in the future pose

fewer problems for software developers (Lundell and Gamaliels-

son, 2018). Furthermore, tools such as validators provide a refer-

ence point against which to try to improve the quality of existing

documents, exemplified by the work of Lehtonen et al. (2018) with

applications in PDF file preservation.

5.2. Practice vs standard

Other challenges for PDFBox contributors arise from the devel-

opment of practice, particularly by Adobe, and where that moves

away from the standards. PDFBOX-3913 records the discovery that

Adobe’s PDF software and PDF.js exceed the ISO 320 0 0-1:20 08

standard by implementing UTF-16 encoding for destination URIs in

links. The bug report dates from August 2017 and is contempo-

rary with the publication of ISO 320 0 0-2:2017, which specifies the

use of UTF-8 encoding (ISO, 2017 , p. 515). Given the use of UTF-

16 encoded URIs, which have been part of HTML 5 since 2011, 20 ,

it is outwardly reasonable for Adobe and others to follow practice.

However, it remains an open question why UTF-16 encoding for

URIs was not part of the ISO 320 0 0-2:2017 standard.

A further issue found in some PDFBox Jira issue tickets is a grey

area between the standard and how a document is presented. The

PDF specifications and standards apply to the quality of the docu-

ment, and the manner in which some parts of the document are

to be rendered (for example character spacing). However, the stan-

dard does not specify how software might render all of the docu-

ment. The examples given above to illustrate degradation of com-

pliance with the standard to match Adobe’s implementation are of

particular interest. The ISO 320 0 0-1:20 08 and ISO 320 0 0-2:2017

standards are clear on how the value of the border width should

be represented in a compliant PDF document. As the PDFBox core

developers identified, the representation of the values of border

widths within the document does not comply with the PDF spec-

ifications and standards because valid non-integer values are not

accepted by Adobe software. However, the presentation on screen

by Adobe software of border widths defined in the document is an

interpretation of the values in the document, and one that may not

need to be followed slavishly.

5.3. Project sustainability

The PDFBox core developers generally act to improve the func-

tionality of the project software. However, there are times when

their actions appear to be constrained by the long-term interests

of the project. Some decisions, for example around the support

for complex scripts and graphics processing, have ready explana-

tions in that the core developers do not always have the necessary

skills, or time, to implement the required solutions. There are also

some activities where there may not be a clear decision stated, but

the core developers, and some other contributors, do not complete
19 PDFTools 3-Heights Validator: https://www.pdf-tools.com/pdf20/en/products/

pdf- converter- validation/pdf- validator/ .
20 https://www.w3.org/TR/2011/WD- html5- 20110525/urls.html .

l

p

a

e

p

asks because they have run out of time, or have other, higher pri-

rity, tasks to attend to. It may be inferred that the developers

re acting in the long-term interests of the project to create soft-

are that works and can be maintained. The concern being that

f the project contributors overreach their collective abilities and

heir capacity to develop and maintain good quality software, then

here is a risk the project may cease to be viable. There are paral-

els to be drawn between the decision-making of the core develop-

rs where they reflect their capacity to make and maintain specific

hanges and the decisions made within a business to maintain it-

elf as a going concern. Implicit is the idea that the PDFBox soft-

are remains marketable, i.e. that the software is sufficiently com-

liant with the PDF specifications and standards that it is useful

o many users, and the project will therefore continue to attract

sers and contributors without the need to take risks by making

nsustainable changes.

It should be recognised that this observed process of self-

egulation is precisely that. There is no company or group of com-

anies driving the development of PDFBox and making strategic

ecisions. There are no dedicated managers making strategic de-

isions. Instead, what appear to be sensible, level-headed strate-

ic decisions that might be made by a business are being made

n the small by a small collective of individuals and company de-

elopers collaborating on the development and maintenance of

DFBox.

.4. Limitations

The case study reported in this article describes and analyses

he activity of practitioners collaborating in an OSS community

o develop software that can create and process PDF documents.

e acknowledge the limitations to the transferability of our find-

ngs that arise from the nature of the study. However, we con-

ecture that the findings may be representative of the challenges

aced and decision types made in other OSS projects and, perhaps

usinesses, implementing standards-based interoperable software,

n particular where a dominant implementation contributes to the

iscourse on the meaning of interoperability. Further, the factors

nforming the decisions made relate to technical and resource

oncerns that appear to be relevant for other businesses and

rganisations.

. Conclusions

The study reports findings from an investigation of the practical

ecisions concerning interoperability made during a two year pe-

iod by contributors to a community open source software project

Apache PDFBox). The PDFBox project develops and maintains soft-

are that can be used to create and process documents that con-

orm to multiple PDF specifications, some of which have been pub-

ished as ISO standards. Four types of decision made by contribu-

ors to maintain the interoperability of the PDFBox software were

dentified through thematic analysis. Decisions on software inter-

perability concern compliance with the PDF specifications and ISO

tandards, and to match or mimic the behaviour of the de facto ref-

rence implementation, where that is unrelated to the standards or

n conflict with them. In conjunction, contributors also make de-

isions about the scope of the PDFBox implementation. Contribu-

ors to the PDFBox project are able to deliver high quality software

hrough a careful, and at times, conservative, decision-making pro-

ess that allows an often agile response to the discovery of prob-

ems with the project’s software and to changes in the dominant

roprietary implementation. At the same time, the decisions made

re informed by factors including resource and technical consid-

rations which contribute towards the longer term viability of the

roject and the software created.

https://issues.apache.org/jira/browse/PDFBOX-3913
https://www.pdf-tools.com/pdf20/en/products/pdf-converter-validation/pdf-validator/
https://www.w3.org/TR/2011/WD-html5-20110525/urls.html

S. Butler, J. Gamalielsson and B. Lundell et al. / The Journal of Systems and Software 159 (2020) 110452 13

e

l

m

s

c

a

m

s

t

f

a

d

—

p

D

A

K

g

s

o

R

A

A

A

A

A

A

A

A

A

B

B

B

B

B

B

B

B

C

D

D

E

E

E

E

E

E

F

G

G

I

I

I

I

I

I

I

I

I

J

K

K

K

K

L

L

L

In summary, the study makes the following contributions to the

xisting body of knowledge in this area:

• A rich and detailed account of types of decisions made within

a community OSS project to maintain software interoperability;
• An account of technical and non-technical factors that motivate

and constrain software development activity in the project and

support project sustainability.

This study provides a rich illustration and analysis of the chal-

enges faced by contributors to a community OSS project to imple-

ent and maintain interoperable, standards-based software. The

tudy has shown how the contributors to PDFBox are able to meet

hallenges arising from the demands of the technical specifications

nd standards, and the performance of a de facto reference imple-

entation. The study also finds that through awareness of the re-

ources available to the project, the project is able to maintain in-

eroperable software of continuing technical relevance. A topic for

uture research is to understand the extent to which the challenges

nd the decision-types identified, and the factors influencing those

ecisions are representative of those faced by other organisations

businesses and OSS projects — developing standards-based im-

lementations.

eclaration of competing interest

None.

cknowledgements

This research has been financially supported by the Swedish

nowledge Foundation (KK-stiftelsen) and participating partner or-

anisations in the LIM-IT project. The authors are grateful for the

timulating collaboration and support from colleagues and partner

rganisations.

eferences

hlgren, B., Hidell, M., Ngai, E.C.H., 2016. Internet of things for smart cities: interop-

erability and open data. IEEE Internet Comput. 20, 52–56. doi: 10.1109/MIC.2016.
124 .

llman, E., 2011. The robustness principle reconsidered. Commun. ACM 54, 40–45.
doi: 10.1145/1978542.1978557 .

miouny, D., 2016. Buggy PDF Files, Should We Try to Fix Them?. Amyuni Technolo-
gies Inc.. http://blog.amyuni.com/?p=1627 . Accessed: 2019-05-15.

miouny, D., 2017. PDF 2.0 and the Future of PDF: Takeways from PDF Days

Europe 2017. Amyuni Technologies Inc.. http://blog.amyuni.com/?p=1702 . Ac-
cessed: 2019-05-14.

pache PDFBox, 2019. Apache PDFBox: a Java PDF Library. The Apache Software
Foundation. https://pdfbox.apache.org/ . Accessed: 2019-09-17.

pache Tika, 2019. Apache Tika — a Content Analysis Toolkit. Apache Software
Foundation. https://tika.apache.org/ . Accessed: 2019-06-05.

SF, 2019. The Apache Software Foundation. The Apache Software Foundation. http:

//apache.org/ . Accessed: 2019-06-05.
SF, 2019. Apache Software Foundation Public Mailing List Archives. Apache Soft-

ware Foundation. http://mail-archives.apache.org/ . Accessed: 2019-06-05.
tlassian, 2019. Jira REST APIs. Atlassian. https://developer.atlassian.com/jiradev/

jira-apis/jira-rest-apis . Accessed: 2019-04-15.
itergia, 2019. GrimoireLab. Bitergia. https://chaoss.github.io/grimoirelab/ . Accessed:

2019-06-03.

lack Duck, 2019. Apache PDFBox. Black Duck Software Inc.. https://www.openhub.
net/p/pdfbox/ . Accessed: 2019-03-08.

ogk, A., Schöpl, M., 2014. The pitfalls of protocol design: attempting to write
a formally verified PDF parser. In: 2014 IEEE Security and Privacy Workshops,

pp. 198–203. doi: 10.1109/SPW.2014.36 .
ouvier, D.J., 1995. Versions and standards of HTML. SIGAPP Appl. Comput. Rev. 3,

9–15. doi: 10.1145/228228.228232 .

radner, S., 1996. The internet standards process — revision 3. Internet En-
gineering Task Force. https://www.rfc-editor.org/rfc/rfc2026.html . Accessed:

2019-09-19.
radner, S. , 1999. The internet engineering task force. In: DiBona, C., Ockman, S.,

Stone, M. (Eds.), Opensources: Voices from the Open Source Revolution. O’Reilly
& Associates, pp. 28–30 .

raun, V., Clarke, V., 2006. Using thematic analysis in psychology. Qual. Res. Psychol.

3, 77–101. doi: 10.1191/1478088706qp063oa .
utler, S., Gamalielsson, J., Lundell, B., Brax, C., Sjöberg, J., Mattsson, A., Gustavs-
son, T., Feist, J., Lönroth, E., 2019. On company contributions to community OSS

projects. IEEE Trans. Softw. Eng. (early access) doi: 10.1109/TSE.2019.2919305 . 1–
1.

EF Digital, 2019. Start Using Digital Signature Services (DSS). CEF Digital. https://
ec.europa.eu/cefdigital/wiki/pages/viewpage.action?pageId=71776034 . Accessed:

2019-04-29.
avies, E.B., Hoffmann, J., 2004. IETF Problem Resolution Process. Internet Engineer-

ing Task Force. https://www.rfc-editor.org/rfc/rfc3844.html . Accessed: 2019-09-

19.
e Coninck, Q., Michel, F., Piraux, M., Rochet, F., Given-Wilson, T., Legay, A.,

Pereira, O., Bonaventure, O., 2019. Pluginizing QUIC. In: Proceedings of the
ACM Special Interest Group on Data Communication. ACM, New York, NY, USA,

pp. 59–74. doi: 10.1145/3341302.3342078 .
clipse Foundation, 2019. Californium (Cf) CoAP framework. Eclipse Foundation.

https://www.eclipse.org/californium/ . Accessed: 2019-10-03.

clipse Foundation, 2019. Eclipse Leshan. The Eclipse Foundation. https://www.
eclipse.org/leshan/ . Accessed: 2019-10-03.

clipse Foundation, 2019. Eclipse Wakaama. The Eclipse Foundation. https://www.
eclipse.org/wakaama/ . Accessed: 2019-10-03.

clipse IoT Working Group, 2019. Open Source for IoT. Eclipse IoT Working Group.
https://iot.eclipse.org/ . Accessed: 2018-08-29.

gyedi, T.M., 2007. Standard-compliant, but incompatible?!. Comput. Standards In-

terfaces 29, 605–613. doi: 10.1016/j.csi.20 07.04.0 01 .
ndignoux, G., Levillain, O., Migeon, J.Y., 2016. Caradoc: A pragmatic approach to

PDF parsing and validation. In: 2016 IEEE Security and Privacy Workshops
(SPW), pp. 126–139. doi: 10.1109/SPW.2016.39 .

itzgerald, B. , 2006. The transformation of open source software. Manage. Inf. Syst.
Q. 30, 587–598 .

amalielsson, J., Lundell, B., 2013. Experiences from implementing PDF in

open source: Challenges and opportunities for standardisation processes. In:
Proceedings of the 8th International Conference on Standardization and Inno-

vation in Information Technology (SIIT) 2013, pp. 1–11. doi: 10.1109/SIIT.2013.
6774572 .

erring, J. , 2017. Case Study Research: Principles and Practices, second ed. Cambrige
University Press, Cambridge, UK .

CIJ, 2019. The Panama Papers: Exposing the Rogue Offshore Finance Industry. https:

//www.icij.org/investigations/panama-papers/ . Accessed: 2019-05-29.
ETF, 2019. Internet Engineering Task Force. Internet Engineering Task Force. https:

//www.ietf.org/ . Accessed: 2019-09-27.
ETF, 2019. QUIC (quic) – about. Internet Engineering Task Force. https://datatracker.

ietf.org/wg/quic/about/ . Accessed: 2019-09-24.
ETF, 2019. QUIC (quic) – documents. Internet Engineering Task Force. https://

datatracker.ietf.org/wg/quic/documents/ . Accessed: 2019-09-24.

SO , 2005. Document management – Electronic Document File Format for
Long-Term Preservation – Part 1: Use of PDF 1.4 (PDF/A-1) (ISO 190 05-1:20 05),

first ed. International Organization for Standardisation, Geneva, Switzerland .
SO , 2008. Document Management – Portable Document Format – Part 1: PDF

1.7 (ISO 320 0 0-1:20 08), first ed. International Organization for Standardisation,
Geneva, Switzerland .

SO , 2011. Document Management – Electronic Document File Format for Long-Term
Preservation – Part 2: Use of ISO 320 0 0-1 (PDF/A-2) (ISO 19005-2:2011), first

ed. International Organization for Standardisation, Geneva, Switzerland .

SO , 2013. Digital Compression and Coding of Continuous-Tone Still Images: JPEG
File Interchange Format (JFIF) (ISO/IEC 10918-5:2013), first ed. International Or-

ganization for Standardisation, Geneva, Switzerland .
SO , 2017. Document Management – Portable document format – Part 2: PDF

2.0 (ISO 320 0 0-2:2017), first ed. International Organization for Standardisation,
Geneva, Switzerland .

PEG, 2019. Overview of JPEG XT. International Standards Organisation. https://jpeg.

org/jpegxt/ . Accessed: 2019-04-01.
elly, M., Nelson, M.L., Weigle, M.C., 2014. The archival acid test: Evaluating archive

performance on advanced HTML and JavaScript. In: IEEE/ACM Joint Conference
on Digital Libraries, pp. 25–28. doi: 10.1109/JCDL.2014.6970146 .

hudairi, S., 2017. The Apache Software Foundation Recognizes Apache In-
novations Integral to the Pulitzer Prize-winning Panama Papers investiga-

tion. Apache Software Foundation. https://blogs.apache.org/foundation/entry/

the- apache- software- foundation- recognizes . Accessed: 2019-02-14.
hudairi, S., 2019. Apache in 2018 — by the Digits. Apache Software Foun-

dation. https://blogs.apache.org/foundation/entry/apache- in- 2018- by-the . Ac-
cessed: 2019-01-02.

o, J., Eriksson, J., Tsiftes, N., Dawson-Haggerty, S., Vasseur, J., Durvy, M., Terzis, A.,
Dunkels, A., Culler, D., 2011. Industry: Beyond Interoperability: Pushing the Per-

formance of Sensor Network IP Stacks. In: Proceedings of the 9th ACM Confer-

ence on Embedded Networked Sensor Systems. ACM, New York, NY, USA, pp. 1–
11. doi: 10.1145/2070942.2070944 .

ehmkühler, A., 2010. Apache PDFBox — Working with PDFs for Dummies.
The Apache Software Foundation. https://people.apache.org/lehmi/apachecon/

ApacheConPDFBox.pdf . Accessed: 2019-06-04.
ehtonen, J., Helin, H., Kylander, J., Koivunen, K., 2018. PDF mayhem: is broken really

broken? In: Proceedings of the 15th International Conference on Digital Preser-

vation (iPRES 2018) doi: 10.17605/OSF.IO/FZXC9 .
indlar, M., Tunnat, Y., Wilson, C., 2017. A test-set for well-formedness validation

in JHOVE — the good, the bad and the ugly. In: Proceedings of the 15th In-
ternational Conference on Digital Preservation (iPRES 2017) doi: 10.5281/zenodo.

1228649 .

https://doi.org/10.1109/MIC.2016.124
https://doi.org/10.1145/1978542.1978557
http://blog.amyuni.com/?p=1627
http://blog.amyuni.com/?p=1702
https://pdfbox.apache.org/
https://tika.apache.org/
http://apache.org/
http://mail-archives.apache.org/
https://developer.atlassian.com/jiradev/jira-apis/jira-rest-apis
https://chaoss.github.io/grimoirelab/
https://www.openhub.net/p/pdfbox/
https://doi.org/10.1109/SPW.2014.36
https://doi.org/10.1145/228228.228232
https://www.rfc-editor.org/rfc/rfc2026.html
http://refhub.elsevier.com/S0164-1212(19)30226-2/sbref0012
http://refhub.elsevier.com/S0164-1212(19)30226-2/sbref0012
https://doi.org/10.1191/1478088706qp063oa
https://doi.org/10.1109/TSE.2019.2919305
https://ec.europa.eu/cefdigital/wiki/pages/viewpage.action?pageId=71776034
https://www.rfc-editor.org/rfc/rfc3844.html
https://doi.org/10.1145/3341302.3342078
https://www.eclipse.org/californium/
https://www.eclipse.org/leshan/
https://www.eclipse.org/wakaama/
https://iot.eclipse.org/
https://doi.org/10.1016/j.csi.2007.04.001
https://doi.org/10.1109/SPW.2016.39
http://refhub.elsevier.com/S0164-1212(19)30226-2/sbref0021
http://refhub.elsevier.com/S0164-1212(19)30226-2/sbref0021
https://doi.org/10.1109/SIIT.2013.6774572
http://refhub.elsevier.com/S0164-1212(19)30226-2/sbref0027
http://refhub.elsevier.com/S0164-1212(19)30226-2/sbref0027
https://www.icij.org/investigations/panama-papers/
https://www.ietf.org/
https://datatracker.ietf.org/wg/quic/about/
https://datatracker.ietf.org/wg/quic/documents/
http://refhub.elsevier.com/S0164-1212(19)30226-2/sbref0032
http://refhub.elsevier.com/S0164-1212(19)30226-2/sbref0032
http://refhub.elsevier.com/S0164-1212(19)30226-2/sbref0033
http://refhub.elsevier.com/S0164-1212(19)30226-2/sbref0033
http://refhub.elsevier.com/S0164-1212(19)30226-2/sbref0034
http://refhub.elsevier.com/S0164-1212(19)30226-2/sbref0034
http://refhub.elsevier.com/S0164-1212(19)30226-2/sbref0035
http://refhub.elsevier.com/S0164-1212(19)30226-2/sbref0035
http://refhub.elsevier.com/S0164-1212(19)30226-2/sbref0036
http://refhub.elsevier.com/S0164-1212(19)30226-2/sbref0036
https://jpeg.org/jpegxt/
https://doi.org/10.1109/JCDL.2014.6970146
https://blogs.apache.org/foundation/entry/the-apache-software-foundation-recognizes
https://blogs.apache.org/foundation/entry/apache-in-2018-by-the
https://doi.org/10.1145/2070942.2070944
https://people.apache.org/lehmi/apachecon/ApacheConPDFBox.pdf
https://doi.org/10.17605/OSF.IO/FZXC9
https://doi.org/10.5281/zenodo.1228649

14 S. Butler, J. Gamalielsson and B. Lundell et al. / The Journal of Systems and Software 159 (2020) 110452

W

W

W

W

W

W

S

i

H

c

n

J

s

s

l

L

m

u

c

a

r

l

C

a

w

c

n

A

o

L

n

s

i

i

b

T

i

a

p

S

e

J

T

o

E

f

t

a

c

l

Lundell, B., 2011. e-Governance in public sector ICT procurement: what is
shaping practice in Sweden? Eur. J. ePractice 12, 66–78. https://joinup.ec.

europa.eu/sites/default/files/document/2014- 06/ePractice%20Journal- %20Vol.
%2012-March _ April%202011.pdf .

Lundell, B. , Gamalielsson, J. , 2017. On the potential for improved standardisation
through use of open source work practices in different standardisation organisa-

tions: how can open source-projects contribute to development of IT-standards?
In: Blind, K., Jakobs, K. (Eds.) Digitalisation: Challenge and Opportunity for Stan-

dardisation. Proceedings of the 22nd EURAS Annual Standardisation Conference,

EURAS Contributions to Standardisation Research, Vol. 12. Verlag Mainz, Aachen,
pp. 137–155 .

Lundell, B., Gamalielsson, J., 2018. Sustainable digitalisation through different di-
mensions of openness: How can lock-in, interoperability, and long-term mainte-

nance of IT systems be addressed? In: Proceedings of OpenSym ’18. ACM, New
York, NY, USA doi: 10.1145/3233391.3233527 .

Lundell, B., Gamalielsson, J., Katz, A., 2018. On challenges for implementing ISO

standards in software: Can both open and closed standards be implemented in
open source software? In: Jakobs, K. (Ed.) Corporate and Global Standardization

Initiatives in Contemporary Society. IGI Global, Hershey, PA , USA , pp. 219–251.
doi: 10.4018/978- 1- 5225- 5320- 5 .

Lundell, B., Gamalielsson, J., Tengblad, S., Yousefi, B.H., Fischer, T., Johansson, G., Ro-
dung, B., Mattsson, A., Oppmark, J., Gustavsson, T., Feist, J., Landemoo, S., Lön-

roth, E., 2017. Addressing lock-in, interoperability, and long-term maintenance

challenges through open source: How can companies strategically use open
source? In: Open Source Systems: Towards Robust Practices - Proceedings of

the 13th IFIP WG 2.13 International Conference on Open Source Systems, OSS
2017. Springer, pp. 80–88. doi: 10.1007/978- 3- 319- 57735-7 _ 9 .

Mladenov, V., Mainka, C., Meyer zu Selhausen, K., Grothe, M., Schwenk, J.,
2018a. 1 Trillion dollar refund — how to spoof PDF signatures. https://www.

pdf-insecurity.org/download/paper.pdf . Accessed: 2019-05-09.

Mladenov, V., Mainka, C., Meyer zu Selhausen, K., Grothe, M., Schwenk, J., 2018b.
How to break PDF signatures. https://pdf-insecurity.org/ . Accessed: 2019-05-14.

Nikolich, P., I, C. L., Korhonen, J., Marks, R., Tye, B., Li, G., Ni, J., Zhang, S.,
2017. Standards for 5G and beyond: their use cases and applications. https:

//futurenetworks.ieee.org/tech- focus/june- 2017/standards- for- 5g- and- beyond .
Accessed: 2019-10-03.

OMA, 2019. OMA SpecWorks. Open Mobile Alliance. https://www.omaspecworks.

org/ . Accessed: 2019-10-03.
Patton, M.Q. , 2015. Qualitative Research and Evaluation Methods, fourth ed. Sage

Publications Inc., Thousand Oaks, California, USA .
Phillips, B., 1998. Designers: the browser war casualties. Computer 31, 14–16. doi: 10.

1109/2.722269 .
Phipps, S., 2019. Open Source and FRAND: Why Legal Issues are the Wrong

Lens. Open Forum Academy. http://www.openforumeurope.org/wp-content/

uploads/2019/03/OFA _ - _ Opinion _ Paper _ - _ Simon _ Phipps _ - _ OSS _ and _ FRAND.pdf .
Accessed: 2019-10-03.

Piraux, M., De Coninck, Q., Bonaventure, O., 2018. Observing the evolution of QUIC
implementations. In: Proceedings of the Workshop on the Evolution, Perfor-

mance, and Interoperability of QUIC. ACM, New York, NY, USA, pp. 8–14. doi: 10.
1145/3284 850.3284 852 .

Postel, J., 1981. RFC 793: Transmission Control Protocol. Internet Engineering Task
Force. https://tools.ietf.org/html/rfc793 . Accessed: 2019-04-15.

Richter, T., Clark, R., 2018. Why JPEG is not JPEG — testing a 25 years old stan-

dard. In: 2018 Picture Coding Symposium (PCS), pp. 1–5. doi: 10.1109/PCS.2018.
8456260 .

Riehle, D., 2011. Controlling and steering open source projects. IEEE Comput. 44,
93–96. doi: 10.1109/MC.2011.206 .

Rossi, B., Russo, B., Succi, G., 2008. Analysis about the diffusion of data standards
inside European public organizations. In: 2008 3rd International Conference

on Information and Communication Technologies: From Theory to Applications,

pp. 1–6. doi: 10.1109/ICTTA.2008.4529953 .
Shelby, Z., Hartke, K., Bormann, C., 2014. The Constrained Application Protocol

(CoAP). Internet Engineering Task Force. https://www.rfc-editor.org/rfc/rfc7252.
html . Accessed: 2019-10-03.

Targett, E., 2019. Meet the Apache Software Foundations Top 5 code Committers.
Computer Business Review. https://www.cbronline.com/feature/apache-top-5 .

Accessed: 2019-10-04.

The Document Foundation, 2019. LibreOffice. The Document Foundation. https://
www.libreoffice.org/ . Accessed: 2019-09-26.

Treese, W., 1999. Putting it together: Engineering the Net: The IETF. netWorker 3,
13–19. doi: 10.1145/294626.294634 .

veraPDF, 2019. Industry supported PDF/A validation. veraPDF Consortium. http:
//verapdf.org/ . Accessed: 2019-06-03.

W3C, 2019. The history of the web. World Wide Web Consortium. https://www.w3.

org/wiki/The _ history _ of _ the _ Web . Accessed: 2019-09-18.
W3C, 2019. World wide web consortium (W3C). World Wide Web Consortium.

https://www.w3.org/ . Accessed: 2019-09-18.
alsham, G., 2006. Doing interpretive research. Eur. J. Inf. Syst. 15, 320–330. doi: 10.
1057/palgrave.ejis.30 0 0589 .

aSP, 2019. History of the Web Standards Project. The Web Standards Project.
https://www.webstandards.org/about/history/ . Accessed: 2019-09-27.

atteyne, T., Handziski, V., Vilajosana, X., Duquennoy, S., Hahm, O., Baccelli, E.,
Wolisz, A., 2016. Industrial wireless IP-based cyber-physical systems. Proc. IEEE

104, 1025–1038. doi: 10.1109/JPROC.2015.2509186 .
ilson, C. , McGuinness, R. , Jung, J. , 2017. veraPDF: Building an open source, industry

supported PDF/A validator for cultural heritage institutions. Digital Lib. Perspect.

33, 156–165 .
ilson, J., 1998. The IETF: Laying the Net’s asphalt. Computer 31, 116–117. doi: 10.

1109/2.707624 .
right, S.A., Druta, D., 2014. Open source and standards: the role of open source

in the dialogue between research and standardization. In: 2014 IEEE Globecom
Workshops (GC Wkshps), pp. 650–655. doi: 10.1109/GLOCOMW.2014.7063506 .

imon Butler received a Ph.D. from The Open University in 2016. He is a researcher

n the Software Systems Research Group at the University of Skövde in Sweden.

is research interests include software engineering, open source software, program
omprehension, software development tools and practices, and software mainte-

ance.

onas Gamalielsson received a Ph.D. from Heriot Watt University in 2009. He is a

enior lecturer at the University of Skövde and is a member of the Software Sys-

tems Research Group. He has conducted research related to free and open source
oftware in a number of projects, and his research is reported in publications in a

variety of international journals and conferences.

Professor Björn Lundell received a Ph.D. from the University of Exeter in 2001, and

eads the Software Systems Research Group at the University of Skövde. Professor

undell’s research contributes to theory and practice in the software systems do-
ain, in the area of open source and open standards related to the development,

se, and procurement of software systems. His research addresses socio-technical
hallenges concerning software systems, and focuses on lock-in, interoperability,

nd longevity of systems. Professor Lundell is active in international and national
esearch projects, and has contributed to guidelines and policies at national and EU

evels.

hristoffer Brax received the M.Sc. degree from the University of Skövde in 20 0 0,
nd a Ph.D. from Örebro University in 2011. He is a consultant with Combitech AB

orking in systems engineering, requirements management, systems design and ar-
hitecture, and IT security. Christoffer has 18 years experience as a systems engi-

eer.

nders Mattsson received the M.Sc. degree from Chalmers University of Technol-
gy, Sweden, in 1989 and a Ph.D. in software engineering from the University of

imerick, Ireland in 2012. He has almost 30 years experience in software engi-

eering and is currently R&D manager for Information Products and owner of the
oftware development process at Husqvarna AB. Anders is particularly interested

n strengthening software engineering practices in organizations. Special interests
nclude software architecture and model-driven development in the context of em-

edded real-time systems.

omas Gustavsson received the M.Sc. degree in Electrical and Computer Engineer-

ng from KTH Royal Institute of Technology in Stockholm in 1994. He is co-founder
nd current CTO of PrimeKey Solutions AB. Tomas has been researching and im-

lementing public key infrastructure (PKI) systems for more than 24 years, and is
founder and developer of the open source enterprise PKI project EJBCA, contribu-

tor to numerous open source projects, and a member of the board of Open Source
weden. His goal is to enhance Internet and corporate security by introducing cost

ffective, efficient PKI.

onas Feist received the M.Sc. degree in Computer Science from the Institute of
echnology at Linköping University in 1988. He is senior executive and co-founder

f RedBridge AB, a computer consultancy business in Stockholm.

rik Lönroth holds an M.Sc. in Computer Science and is the Technical Responsible

or the high performance computing area at Scania IT AB. He has been leading the

echnical development of four generations of super computing initiatives at Scania
nd their supporting subsystems. Erik frequently lectures on development of super

omputer environments for industry, open source software governance and HPC re-
ated topics.

https://joinup.ec.europa.eu/sites/default/files/document/2014-06/ePractice%20Journal-%20Vol.%2012-March_April%202011.pdf
http://refhub.elsevier.com/S0164-1212(19)30226-2/sbref0046
http://refhub.elsevier.com/S0164-1212(19)30226-2/sbref0046
http://refhub.elsevier.com/S0164-1212(19)30226-2/sbref0046
https://doi.org/10.1145/3233391.3233527
https://doi.org/10.4018/978-1-5225-5320-5
https://doi.org/10.1007/978-3-319-57735-7_9
https://www.pdf-insecurity.org/download/paper.pdf
https://pdf-insecurity.org/
https://futurenetworks.ieee.org/tech-focus/june-2017/standards-for-5g-and-beyond
https://www.omaspecworks.org/
http://refhub.elsevier.com/S0164-1212(19)30226-2/sbref0051
http://refhub.elsevier.com/S0164-1212(19)30226-2/sbref0051
https://doi.org/10.1109/2.722269
http://www.openforumeurope.org/wp-content/uploads/2019/03/OFA_-_Opinion_Paper_-_Simon_Phipps_-_OSS_and_FRAND.pdf
https://doi.org/10.1145/3284850.3284852
https://tools.ietf.org/html/rfc793
https://doi.org/10.1109/PCS.2018.8456260
https://doi.org/10.1109/MC.2011.206
https://doi.org/10.1109/ICTTA.2008.4529953
https://www.rfc-editor.org/rfc/rfc7252.html
https://www.cbronline.com/feature/apache-top-5
https://www.libreoffice.org/
https://doi.org/10.1145/294626.294634
http://verapdf.org/
https://www.w3.org/wiki/The_history_of_the_Web
https://www.w3.org/
https://doi.org/10.1057/palgrave.ejis.3000589
https://www.webstandards.org/about/history/
https://doi.org/10.1109/JPROC.2015.2509186
http://refhub.elsevier.com/S0164-1212(19)30226-2/sbref0070
http://refhub.elsevier.com/S0164-1212(19)30226-2/sbref0070
http://refhub.elsevier.com/S0164-1212(19)30226-2/sbref0070
http://refhub.elsevier.com/S0164-1212(19)30226-2/sbref0070
https://doi.org/10.1109/2.707624
https://doi.org/10.1109/GLOCOMW.2014.7063506

	Maintaining interoperability in open source software: A case study of the Apache PDFBox project
	1 Introduction
	2 Background and related work
	2.1 Standards development and interoperability
	2.2 PDF standards and interoperability
	2.3 Related work

	3 Research approach
	3.1 Case selection
	3.2 Case description
	3.3 Data collection
	3.4 Data analysis

	4 Findings
	4.1 Decision types
	4.1.1 Improve to match de facto reference implementation
	4.1.2 Degrade to match de facto reference implementation
	4.1.3 Improve to match standard
	4.1.4 Scope of implementation

	4.2 Factors influencing decision-making
	4.2.1 Workforce
	4.2.2 Maintenance risk
	4.2.3 Expertise
	4.2.4 Sustainable solution
	4.2.5 Capability
	4.2.6 Intellectual property rights
	4.2.7 Java interoperability

	4.3 Summary

	5 Analysis
	5.1 The challenges of developing PDF parsers
	5.2 Practice vs standard
	5.3 Project sustainability
	5.4 Limitations

	6 Conclusions
	Declaration of competing interest
	Acknowledgements
	References

