Check for
Updates

Beyond Dependencies: The Role of Copy-Based Reuse in Open Source
Software Development

MAHMOUD JAHANSHAHI, DAVID REID, and AUDRIS MOCKUS, University of Tennessee, USA

In Open Source Software, resources of any project are open for reuse by introducing dependencies or copying the resource
itself. In contrast to dependency-based reuse, the infrastructure to systematically support copy-based reuse appears to be
entirely missing. Our aim is to enable future research and tool development to increase efficiency and reduce the risks of
copy-based reuse. We seek a better understanding of such reuse by measuring its prevalence and identifying factors affecting
the propensity to reuse. To identify reused artifacts and trace their origins, our method exploits World of Code infrastructure.
We begin with a set of theory-derived factors related to the propensity to reuse, sample instances of different reuse types,
and survey developers to better understand their intentions. Our results indicate that copy-based reuse is common, with
many developers being aware of it when writing code. The propensity for a file to be reused varies greatly among languages
and between source code and binary files, consistently decreasing over time. Files introduced by popular projects are more
likely to be reused, but at least half of reused resources originate from “small” and “medium” projects. Developers had various
reasons for reuse but were generally positive about using a package manager.

CCS Concepts: » Software and its engineering — Software creation and management; - General and reference —
Empirical studies.

Additional Key Words and Phrases: Reuse, Open Source Software, Software Development, Copy-based Reuse, Software Supply
Chain, World of Code

1 INTRODUCTION

Software reuse refers to the practice of developing software systems from existing software rather than creating
them from scratch [55]. Starting from scratch may demand more time and effort than reusing pre-existing, high-
quality code that fits the required task. Developers, therefore, opportunistically and frequently reuse code [48].
Programming for clearly defined problems often starts with a search in code repositories, typically followed by
careful copying and pasting of the relevant code [85].

The fundamental principle of Open Source Software (OSS) lies in its “openness”, which enables anyone to
access, inspect, and reuse any artifact of a project. This could significantly enhance the efficiency of the software
development process. Platforms such as GitHub increase reuse opportunities by enabling the community of
developers to curate software projects and by promoting and improving the process of opportunistic discovery
and reuse of artifacts [46]. A significant portion of OSS is intentionally built to be reused, offering resources or
functionality to other software projects [39], thus such reuse can be categorized as one of the building blocks of
OSS. Indeed, developers in the open source community not only seek opportunities to reuse existing high-quality
code, butalso actively promote their own well-crafted artifacts for others to utilize [33]. Being widely reused

Authors’ address: Mahmoud Jahanshahi, mjahansh@vols.utk.edu; David Reid, dreid6@vols.utk.edu; Audris Mockus, audris@utk.edu, Depart-
ment of Electrical Engineering and Computer Science, University of Tennessee, Knoxville, TN, USA.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page.
Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy
otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from
permissions@acm.org.

© 2025 Copyright held by the owner/author(s).

ACM 1557-7392/2025/1-ART

https://doi.org/10.1145/3715907

ACM Trans. Softw. Eng. Methodol.

https://orcid.org/0000-0003-4408-1183
https://orcid.org/0000-0002-0973-7127
https://orcid.org/0000-0002-7987-7598
https://orcid.org/0000-0003-4408-1183
https://orcid.org/0000-0002-0973-7127
https://orcid.org/0000-0002-7987-7598
https://doi.org/10.1145/3715907
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3715907&domain=pdf&date_stamp=2025-01-31

2 « Mahmoud Jahanshahi, David Reid, and Audris Mockus

not only increases the popularity of the software project and its maintainers while providing them with job
prospects [79], but also may bring new maintainers as well as corporate support [46].

Most commonly, code reuse refers to the introduction of explicit dependencies on the functionality provided by
ready-made packages, libraries, frameworks, or platforms maintained by other projects (referred to as dependency-
based or black-box reuse). Such external code is not modified by the developer and, generally, not committed into
the project’s repository but relied upon via a package manager. Copy-based reuse (or white-box reuse), on the
other hand, refers to the case where source code (or other reusable artifacts) is reused by copying the original
code and committing the duplicate code into a new repository. It may remain the same or be modified by the
developer after reuse. We specifically focus on copy-based reuse in this study.

While it is generally accepted that programs should be modular [75], with internal implementation details
not exposed outside the module, copy-based reuse does exactly the opposite. OSS’s copy-based reuse, where
any source code file or even a code snippet can be reused in another project, may result in multiple, possibly
modified instances of the same source code replicated across various files and repositories. These copies may
undergo further changes during maintenance, leading to multiple different versions of the originally identical
code existing in the latest releases of corresponding projects. Unifying such multiplicity of versions in copy-based
reuse to refactor it into a single package that all these projects could depend upon may not always be a tractable
problem.

Moreover, as this reuse process continues across various projects, possibly with some modifications, data
related to the initial design, authorship, copyright status, and licensing could be lost [76]. This loss could impede
future enhancements and bug-fixing efforts. It might also diminish the motivation for original authors who seek
recognition for their work and lead to legal complications for downstream users. These issues impact not only
those who reuse the code but also the software dependent onat least one package that involves reused code [20].

As the landscape of Open Source Software (OSS) expands, tracing the origins of source code, identifying
high-quality code suitable for reuse, and deciphering the simultaneous progression of code across numerous
projects become increasingly challenging. This can pose risks, such as the spread of potentially low-quality or
vulnerable code [46] (e.g, orphan vulnerabilities [78]).

Despite the sustained attention and potential benefits and risks associated with reuse, the exact scale, prevalent
practices, and possible negative impacts related to OSS-wide reuse have not been thoroughly explored. This is
primarily due to the formidable task of tracking code throughout the entirety of OSS [46].

Gaining a more comprehensive understanding of reuse practices could guide future research towards developing
methods or tools that enhance‘productivity while mitigating the inherent risks associated with reuse. Specifically,
we aim to quantify several aspects concerning the extent and nature of reuse in OSS, providing information
necessary to investigate approaches that support this common activity, making it more efficient and safer.

We use a measurement framework created by Jahanshahi and Mockus [46] that tracks all versions of project
artifacts, referred to as blobs!, across all repositories. In this approach, the first time each blob is committed
to a repository is identified. The (repository, blob) tuples are then sorted based on the commit time of the first
appearance of that unique blob in the repository. The repository with the earliest commit time is identified as the
originating repository, and the person who made that commit is recognized as the creator of the blob. Reuse
instances are then identified by pairing the originating repository with any subsequent repositories that commit
the same blob.

Our work investigates how much and what kind of the whole-file reuse happens at the scale of OSS, with
findings that could help guide future research and tool development to support this common but potentially risky
activity. First, we show how the existing studies, by ignoring “small” and inactive projects, miss almost half of
the code reused even by the “largest” and most active projects. There is a necessity for more in-depth study to

In alignment with the terminology used in the Git version control system, we use the term “blob” to refer to a single version of a file.

ACM Trans. Softw. Eng. Methodol.

Beyond Dependencies: The Role of Copy-Based Reuse in Open Source Software Development « 3

fully comprehend how these abundant yet unseen “dark matter” projects contribute to reuse activity. Second, we
theorize about and investigate empirically the properties of artifacts and originating projects that influence the
likelihood of file reuse, addressing a key question that previous work, which has predominantly focused on copy
detection techniques, has missed. To investigate historic reuse trends, we also introduce a time-limited measure
of reuse. Our findings reveal several surprising patterns showing how copying varies with the programming
language, properties of a blob, and originating projects. These insights could help prioritize and articulate further
research and tool development that supports the most common reuse patterns. Third, we obtain responses from
374 developers about the code they have reused or originated. Most respondents write code with an explicit
expectation that it will be reused. Developers reuse code for several reasons and are not concerned with bugs
in the reused code, but they are willing to use package managers for reused code if such tools were provided.
Overall, we find that despite its questionable reputation due to inherent risks, code copying is common, useful,
and many developers keep it in mind when writing code.
In summary we ask the following research questions:

RQ1 How much copy-based reuse occurs? What factors affect the propensity to reuse?
(a) How extensive is copying in the entire OSS landscape?
(b) Is copy-based reuse limited to a particular group of projects?
(c) Do characteristics of the blob affect the probability of reuse?
(d) Do characteristics of the originating project affect the probability of reuse?
RQ2 How do developers perceive and engage with copy-based reuse?

To foster reproducibility, we have made the replication package for this study, including datasets creation
scripts and analysis notebooks, publicly available at https://zenodo:org/records/14743941.

2 BACKGROUND

This section is structured to provide a comprehensive understanding of the context and foundation for our
research. It begins with an exploration of the types of reuse in software supply chains. Following this, we delve
into the associated risks, discussing potential vulnerabilities, legal issues, and other challenges that can arise from
software reuse. The third subsection introduces the social contagion theory (SCT) which helps select factors likely
to affect the diffusion and adoption of reuse practices within the open source software development community.

2.1 Reuse in Software Supply Chains

A software supply chain comprises various components, libraries, tools, and processes used to develop, build, and
publish software artifacts. It covers all stages from initial development to final deployment, including proprietary
and open source code, configurations, binaries, plugins, container dependencies, and the infrastructure required
to integrate these elements. The software supply chain ensures that the right components are delivered to the
right places and at the right times to create functioning software products. Software reuse is one form of the
software supply chain that enhances efficiency, reduces costs, and mitigates the risks associated with developing
new software from scratch.

In the context of open source software, reuse in software supply chains can be categorized based on how the
open source components are integrated and utilized within software projects [69-71].

2.1.1 Dependency-based Reuse. Dependency-based reuse involves using open source libraries and packages as
dependencies in a project. These dependencies are typically managed through package managers such as NPM for
JavaScript, pip for Python, or Maven for Java. The reliance on these dependencies can introduce vulnerabilities
and risks if not properly managed [98]. A web application using the React library, which in turn depends on
numerous other libraries is an example of reuse in this kind of supply chain.

ACM Trans. Softw. Eng. Methodol.

https://zenodo.org/records/14743941

4 « Mahmoud Jahanshahi, David Reid, and Audris Mockus

2.1.2 Copy-based Reuse. Copy-based reuse is the type of reuse investigated in this work. In copy-based reuse,
code from open source projects is copied directly into a project. For example, a developer might copy a utility
function from an open source repository and integrate it into their own project. While this approach is quick, it
can lead to challenges in maintaining and updating the copied code. It is essential to track and manage these
copies to ensure they are secure and up-to-date [56].

2.1.3 Knowledge-based Reuse. Knowledge-based reuse involves using knowledge and practices derived from
open source projects without directly copying code or using dependencies. It includes the adoption of devel-
opment methodologies, architectural patterns, and best practices from open source communities. For example,
implementing a microservices architecture inspired by successful open source projects. While not explicitly
detailed by many researchers, the concept of knowledge-based supply chains is inferred from broader discussions
of open source influence on software development practices [100].

2.2 Associated Risks

While reuse can potentially reduce development costs, it is not always beneficial. It could introduce certain risks
that might eventually escalate the overall costs of a project. These risks include, but are not limited to, security
vulnerabilities, compliance, and the spread of bugs or low-quality code [31; 46].

2.2.1 Security. The relationship between security and reuse can possess a dual-nature: a system can become
more secure by leveraging mature dependencies, but it can also’become more vulnerable by creating a larger
attack surface through exploitable dependencies [35].

In the context of copy-based reuse, extensive code copying can lead to the widespread dissemination of
potentially vulnerable code. These artifacts may reside not only in inactive projects (that are still publicly
available for others to reuse and potentially spread the vulnerability further), but also in highly popular and
active projects [78].

Understanding the copy-based supply chain helps in identifying potential security risks and implementing
appropriate safeguards [73]. Therefore, detecting reused code aids in identifying and consistently patching these
vulnerabilities across all affected systems [56].

2.2.2 Compliance. Many open source licenses come with specific requirements that must be met. Unintentional
reuse of code that is subject to intellectual property (IP) rights or licensing restrictions can lead to legal com-
plications. Understanding the supply chain and detecting reused artifacts ensures compliance with licensing
agreements and protects against IP infringements [59, 100].

As software systems evolve, their licenses evolve as well. This evolution can be driven by various factors such
as changes in the legal environment, commercial code being licensed as free and open source, or code that has
been reused from other open source systems. The evolution of licensing can impact how a system or its parts can
be subsequently reused [46]. Therefore, monitoring this evolution is important [19]. However, keeping track of
the vast amount of data across the entire OSS landscape is a challenging task, and as a result, many developers
fail to adhere to licensing requirements [2, 32].

For example, investigating a subset of codes reused in the Stack Overflow environment revealed an extensive
number of potential license violations [2]. Even when all license requirements are known, the challenge of
combining software components with different and possibly incompatible licenses to create a software application
that complies with all licenses, while potentially having its own, persists and is of great importance [32]. When
individual files are reused, licensing information may be lost, and the findings of our study might suggest
approaches to identify and remediate such problems.

ACM Trans. Softw. Eng. Methodol.

Beyond Dependencies: The Role of Copy-Based Reuse in Open Source Software Development « 5

2.2.3 Quality. Ensuring that all components of the supply chain meet quality standards is essential for the
reliability and performance of the final product [9]. Copied code that has not been thoroughly vetted and tested
can introduce bugs and defects. By identifying and evaluating such reused code, organizations can ensure that it
meets their quality standards [69].

Code reuse is not only assumed to escalate maintenance costs under specific conditions, but it is also seen
as prone to defects. This is because inconsistent modifications to duplicated code can result in unpredictable
behavior [48]. Additionally, failure to consistently modify identifiers (such as variables, functions, types, etc.)
throughout the reused code can lead to errors that often bypass compile-time checks and transform into hidden
bugs that are extremely challenging to detect [58].

Apart from the bugs introduced through code reuse, the source code itself could have inherent bugs or be of
low quality. These issues can propagate similarly to how security vulnerabilities spread. The patterns of reuse
identified in this study could potentially suggest strategies to leverage information gathered from multiple
projects with reused code, thereby reducing such risks.

2.3 Social Contagion Theory

Reusing code is an instance of technology adoption. One of the key questions we want to ask is what may affect
the propensity of adopting (copying) a blob. Social Contagion Theory (SCT) [14] is a widely used theory for
examining dynamic social networks and human behavior in the context of technology adoption [3, 84]. In the
field of software engineering, it has been used to explain how developers select software packages [64].

We are using SCT to theorize about the dynamics of code reuse by conceptualizing it in terms of exposure,
infectiousness, and susceptibility. SCT helps us frame our research questions by providing a structured way to
analyze how code reuse spreads within the open source community. Specifically, we explore how developers
become aware of reusable code, the inherent qualities of the code that make it more likely to be reused, and the
characteristics of projects or developers that make them more likely to adopt reusable code. These dimensions
guide the formation of our research questions, enabling us;to systematically investigate the factors influencing
reuse activity in open source software. The key value of SCT in our case is to help articulate factors affecting
copy propensity via three dimensions:

(1) Exposure. Exposure is an intuitive notion that in order to copy an artifact, you first have to learn about
and find it.

(2) Infectiousness. Infectiousness is the property of the artifact that affects its propensity to be reused.

(3) Susceptibility. Susceptibility is the property of the destination project or developer that reflects how much
benefit they would (or believe they would) derive by reusing the artifact.

First, for a blob (infectious agent) to be reused, a developer needs to become aware of it. In other words, it
needs to be exposed to the open source community (population). Social coding platforms such as GitHub provide
various crowd-sourced signals of project popularity. Developers may consider these characteristics of project
popularity or health when choosing what resource to use [23, 61]. These considerations suggest that developers
are more likely to be exposed to code in more popular or active projects. Therefore, we used project properties as
a proxy for the likelihood of awareness. This primarily addresses RQ1-b and RQ1-d in our study.

The second concept of SCT, infectiousness, means that a highly virulent infectious agent is more likely to
spread. In our context, this can be measured by the characteristics of the blob itself, corresponding to RQ1-c.
Most of the literature on reuse has primarily focused on this aspect of the reused resource.

The final concept in our theory is susceptibility, which refers to the vulnerability of the target population to
the infectious agent. In our case, this can be approximated by the characteristics of the target project (or author)
that reuses the blob. For example, the use value, or how much the blob is needed in the project that copies it.

ACM Trans. Softw. Eng. Methodol.

6 + Mahmoud Jahanshahi, David Reid, and Audris Mockus

These characteristics are, by definition, highly specific to the target project, making them more challenging to
measure. We aim to shed more light on this aspect in RQ2.

3 RELATED WORK AND CONTRIBUTIONS

While the benefits and risks associated with code reuse seem tangible, the extent and types of reuse across
the entirety of OSS remain unclear. To prioritize these risks and benefits, and explore methods to minimize or
maximize them respectively, we employ the approach introduced in our previous work [46]. This method allows
us to track copy-based reuse on a scale commensurate with the vast size of OSS. The scope of copying activity
is not fully encompassed by previous studies based on convenience samples, as we will illustrate in the results
section.

We are not aware of any other curation system that operates at the level of a blob or finer granularity, nor is
there an easy way to determine the extent of OSS-wide copy-based reuse at that level. Methods for identifying
reuse, such as the one introduced by Kawamitsu et al. [50], are designed to find reuse between specific input
projects and do not easily scale to detect reuse across all OSS repositories [46]. The methods we use to identify
and characterize reuse could, therefore, serve as a foundation for tools that expose this difficult-to-obtain yet
potentially important phenomenon [46]. We acknowledge that the actual extent of reuse is most likely much
higher than what we find at blob-level granularity. Nevertheless, we believe the results we present will still be
insightful, especially as the lower bound for the extent of copy-based reuse activity in the entirety of OSS.

We first differentiate copy-based reuse from related fields and then discuss our contributions.

3.1 Related Research Areas

To comprehensively understand copy-based reuse, it is essential to discuss two closely related fields: the clone
detection and the clone-and-own practice. Following discussion will focus on differentiating copy-based reuse
from dependency-based reuse, clone detection, and clone-and-own practices, situating these within the broader
context of code reuse literature.

3.1.1 Code Reuse Analysis. Code Reuse Analysis encompasses techniques and practices that aim to maximize
the efficiency and reliability of software development by leveraging existing code. Techniques such as static
analysis, dependency analysis, and repository mining help identify reusable components within a codebase [52].
Through these methods, code reuse analysis seeks to reduce redundancy and enhance maintainability. Frakes and
Kang [25] show that systematic code reuse can significantly reduce development time and costs while improving
software quality.

3.1.2 Clone Detection. Clone Detection is a technique within code reuse analysis for identifying similar or
identical code fragments in a codebase. This process involves using tools to detect exact or slightly modified
duplicates, which can then be refactored into reusable components. Techniques range from textual and token-
based methods to more advanced semantic and abstract syntax tree (AST) analyses [80, 91]. These methods
focus on identifying code clones within constrained contexts, often limited to small code snippets within a few
projects [92]. Clone detection helps in managing redundancy and maintaining code quality by highlighting areas
where code can be simplified and reused [80]. The effectiveness of clone detection tools has been validated in
various studies, showing significant improvements in software maintainability [49].

3.1.3 Clone and Own. Clone and Own is a practice where existing software components are copied and modified
to meet new requirements. This approach is often utilized in product line engineering and situations where rapid
development is important. Clone-and-own allows developers to quickly adapt existing solutions but can lead to
maintenance challenges due to the proliferation of similar, independently maintained code fragments [54, 82]. This

ACM Trans. Softw. Eng. Methodol.

Beyond Dependencies: The Role of Copy-Based Reuse in Open Source Software Development « 7

practice, common in open source development, involves significant modifications and independent maintenance,
often leading to divergent development paths [7, 30].

While clone detection focuses on technical identification of code snippets, the clone-and-own practice high-
lights the importance of customization and independent management of forked projects. As the clone-and-own
practice involves both technical customization and significant social factors, such as community engagement and
governance models, understanding these aspects is important for managing forked projects [7, 30]. Although
clone-and-own supports the purpose of code reuse by facilitating quick adaptation, it often results in code dupli-
cation, complicating long-term maintenance. Research has shown that clone-and-own is prevalent in practice
due to its simplicity and effectiveness in the short term [4].

3.1.4 Copy-based Reuse. Copy-based reuse, a form of code reuse, involves copying existing code and potentially
modifying it for use in new contexts. This method allows for rapid development but shares the maintenance
challenges associated with clone-and-own, as duplicated code must be managed across different parts of the
software. In summary, code reuse analysis encompasses techniques like clone detection to manage redundancy
and practices like clone-and-own to adapt existing code for new purposes. While clone detection and code reuse
analysis share the goal of improving code quality and maintainability by identifying and managing redundancy,
clone-and-own focuses on rapid adaptation rather than efficient redundancy management, despite serving a
similar purpose in promoting reuse. Both copy-based reuse and clone detection address code duplication but differ
significantly in their methodologies and scopes. Copy-based reuse research, as exemplified by our work, provides
a broader, ecosystem-level perspective, incorporating social aspects.and the characteristics of entire projects. In
contrast, clone detection focuses on the technical identification of code snippets within specific contexts, while
the clone-and-own practice emphasizes customization and independent maintenance of forked projects.

3.2 Contributions

Our contribution in this work has three aspects as follows.

3.2.1 Accuracy. Our study leverages the World of Code (WoC) infrastructure to analyze reuse of nearly the entire
open source software landscape. This allows the capture of the instances of copying that would be missed if only a
subset of public repositories were to be analyzed. In contrast, previous studies often focused on samples of mostly
“popular” repositories drawn from specific communities or subsets of programming languages. They either have
mostly concentrated on a specific community (e.g. Java language, Android apps, etc.) [21, 39, 40, 43, 68, 86]or
only sampled from a single hosting platform (e.g. GitHub) [33, 34]. This, consequently, prevented identification of
all inter-community or out-of-sample copies.

Even research with more comprehensive programming language coverage such as study by Lopes et al. [60] or
studies by Hata et al. [41, 42] analyze only a subset of programming languages and additionally use convenience
sampling methods by excluding less active or “unimportant” repositories. As our results demonstrate, even
inactive and “small” projects appear to provide many of the artifacts reused in OSS, even by the “largest” and
most active projects.

Existing literature on code cloning primarily focuses on empirical studies, case studies, and tool evaluations.
Empirical studies typically analyze code clones within specific projects or samples of open source software
repositories. These datasets are large but not exhaustive of the entire OSS ecosystem. For example, studies
by Juergens et al. [48], Roy et al. [81] examine hundreds to thousands of files or repositories, providing valuable
but partial insights. Case studies offer in-depth analysis of cloning practices within individual projects or
organizations, giving detailed context but limiting the scale to the specific cases under study. Tool evaluations
involve benchmark studies of clone detection tools, evaluating their performance on curated datasets. While these
studies contribute important information about tool effectiveness, they do not cover the entire OSS ecosystem.

ACM Trans. Softw. Eng. Methodol.

8 « Mahmoud Jahanshahi, David Reid, and Audris Mockus

Unlike studies that rely on selective sampling, our analysis encompasses nearly the entire open source software
ecosystem, providing a broad and necessary foundation for understanding code reuse. This is a fundamental
requirement for accurately tracking the origin of files within entire OSS, as it helps to uncover accurate trends
and patterns that would be biased in analyses based on the samples of such data, offering a more accurate
understanding of reuse practices.

3.2.2 Methodology and Focus. Copy-based reuse has not been explored as thoroughly as the dependency-
based reuse (e.g., [15, 26, 74]). For example, Mili et al. [66] have shown that dependency-based reuse can lead
to more sustainable software architectures by promoting component-based design and reducing redundancy.
Additionally, Brown and Wallnau [11] demonstrated that by leveraging well-defined interfaces and reusable
libraries, dependency-based reuse can significantly improve software maintainability and scalability. Nevertheless,
very few, if any, similar analyses exist regarding copy-based reuse. Copy-based reuse is potentially no less
important, but is a much less understood form of reuse [46]. Most studies in copy-based reuse domain focus on
clone detection tools and techniques [1, 40, 47, 81, 97] rather than on the characteristics of entire source code
files that possibly make reuse more or less likely.

Furthermore, almost all studies we reviewed focus solely on source code reuse, whereas we track all artifacts,
whether they are code or other reusable development resources [46]. By using the World of Code research
infrastructure, which encompasses nearly the entire OSS ecosystem, we identified and analyzed copying activity
at this scale for the very first time.

In contrast to clone detection, which primarily involves identifying similar code snippets within specific
directories or domains [45, 90], our research addresses the broader context of entire files and diverse artifacts
across the OSS ecosystem, providing a more comprehensive understanding of reuse. Our method bridges the
clone detection and clone-and-own approaches by detecting all instances of reuse, whether they are kept without
any changes or modified after reuse, thereby encompassing both the technical and managerial aspects of code
reuse.

In existing clone detection literature, several methods are employed to identify code clones. These methods
include text-based, token-based, tree-based, and graph-based techniques. Text-based methods detect clones by
comparing raw text, which is straightforward but can be less accurate due to variations in formatting. Token-based
methods improve on this by converting code into tokens and detecting similarities at this more abstract level,
enhancing accuracy but still being susceptible to variations in code structure. Tree-based methods parse the code
into abstract syntax trees (ASTs) and identify clones by comparing these trees, providing a more structured and
semantically meaningful detection. Graph-based methods further abstract code into control flow or data flow
graphs, allowing for the detection of more complex and semantic clones [81].

The clone and own literature primarily employs these detection methods to understand the broader landscape
of code cloning. For example, Juergens et al. [48] utilized a combination of these techniques to analyze cloning
practices in software projects. These methods are effective in identifying different types of clones, such as exact,
parameterized, and semantic clones, but they often focus on similarities and patterns rather than exact matches.

In contrast, our research employs a method focused on identifying reuse at the blob-level, specifically detecting
if the exact versions of code have been copied. While it misses instances where a single code snippet has been
copied, this approach does not rely on abstractions or patterns. This method involves obtaining hashes for all
versions of the entire open source software ecosystem to detect identical code segments, ensuring that every
version of code is tracked to its origin. This exhaustive and detailed approach allows for a comprehensive analysis
of copy-based supply chains at the OSS level. Since software supply chains form a network over the entire OSS,
it is not feasible to study them by sampling projects: representative samples from large graphs are notoriously
difficult to obtain (see, e.g., [57]).

ACM Trans. Softw. Eng. Methodol.

Beyond Dependencies: The Role of Copy-Based Reuse in Open Source Software Development « 9

In addition to ensuring that the entire file has been copied and committed, our method easily scales to the
entire OSS ecosystem as it avoids the need to look for similarities among tens of billions of versions by utilizing
hashes. Traditional clone detection techniques would need to be substantially modified to work at this scale. We
discuss some of the potential approaches in Section 8.1.

3.2.3 Influencing Factors and Social Aspects. Our study explores how the characteristics of OSS projects influence
the propensity for their artifacts to be reused, examining their social aspects. Previously, the focus has been
primarily on the desired functionality and the code itself [29, 87], but we also investigate the social aspects of
this phenomenon in the open source community.

The literature on clone detection and our research both explore the social aspects of code reuse, but they do so
from different perspectives and with varying emphases on social and technical factors. Existing literature on
clone detection primarily focuses on the technical aspects of identifying code clones and understanding their
impact on software maintenance and quality. For instance, studies by Juergens et al. [48], Roy and Cordy [80]
delve into the reasons for code cloning, such as improving productivity, learning, and avoiding reimplementation
of similar functionalities. These studies often highlight the technical motivations behind code cloning, such
as reusability and rapid prototyping, but they also touch upon social aspects like collaborative development
and knowledge sharing within teams. However, the primary emphasis remains on the technical detection and
management of code clones.

In contrast, our research takes a broader view by examining how the characteristics of open source software
projects influence the propensity for their artifacts to be reused. Thisincludes a detailed analysis of both social
and technical factors. Our study explores the diverse motivations and implications of reuse in the OSS community,
considering aspects such as project size, community engagement, and the collaborative nature of OSS development.
By doing so, we highlight the importance of social dynamics in code reuse, including factors like community
contributions, the reputation of projects, and the collaborative environment that fosters code sharing and reuse.

By examining these social and technical factors, our study provides a more comprehensive understanding
of the motivations behind code reuse in the OSS community. We draw parallels to other factors influencing
copy-based reuse, such as the ease of access to code, the open and collaborative nature of OSS projects, and the
role of community support and documentation. This broader perspective allows us to highlight the diverse and
sometimes conflicting motivations for code reuse, ranging from technical efficiency to social recognition and
collaborative learning.

4 METHODOLOGY

We begin by briefly describing the World of Code infrastructure utilized in our study, followed by presenting
the methods introduced in our previous work [46] to identify instances of copying. Next, we explain the time
complexity of our method and discuss the rationale behind our choice. In the second and third subsections, we
discuss methods used to answer each research question in more detail.

To make the subsequent discussion precise, we first introduce a few definitions. The time when each unique
blob b was first committed to each project P is denoted as f,(P). The first repository P, (b) = ArgMinp, £, (P) is
referred to as the originating repository for b (and the first author as the creator). Then project pairs consisting of
a project with the originating commit and the destination project with one of the subsequent commits producing
the same blob (P,(b), P;(b)) are identified as reuse instances. The reuse propensity (the likelihood that a blob
will be copied to at least one other project) is then modeled based on the type of the file represented by the blob
and the activity and popularity characteristics of the originating projects.

ACM Trans. Softw. Eng. Methodol.

10 « Mahmoud Jahanshahi, David Reid, and Audris Mockus

4.1 ldentification of Reused Blobs

4.1.1 World of Code Infrastructure. Finding duplicate pieces of code and tracking all revisions of that code across
all open source projects is a data- and computation-intensive task due to the vast number of OSS projects hosted
on numerous platforms [46]. Previous studies on reuse have consequently often focused on a relatively small
subset of open source software, potentially missing the full extent of reuse that could only be obtained with a
nearly complete collection [46]. World of Code (WoC) [62, 63] infrastructure aims to address these challenges by
regularly discovering, retrieving, indexing, and cross-referencing information from new and updated version
control repositories that are publicly available.

WoC operationalizes copy-based reuse by mapping blobs, which are versions of the source code, to all commits
and projects where they have been created. This means that copy-based reuse is detected only if an entire file is
duplicated without any alterations [46]. If the reuser commits the reused blob before making any modifications,
this method will find it; however, if they commit only after making alterations to the original file, it will not be
identified. Given this, our study focuses solely on whole-file copying activity. Consequently, different versions of
what was originally the same file will be treated as distinct entities since they are different blobs.

4.1.2 Project Deforking. To understand reuse across the entirety of open source software, it is important to
identify distinct software projects. Git commits are based on a Merkle Tree structure, uniquely identifying
modified blobs, and therefore, shared commits between repositories typically indicate forked repositories. As
a distributed version control system (VCS), Git facilitates cloning (via git clone or the GitHub fork button),
resulting in numerous repositories that serve as distributed copies of the same project. While this feature enables
distributed collaboration, it also leads to many clones of the original repository [72].

To differentiate copy-based reuse from forking, we use project deforking map p2P provided in WoC [72].
Using community detection algorithms, this map provides a clearer picture of distinct projects by linking forked
repositories p to a single deforked project P based onshared commits.

An advantage of this map over using the fork data from platforms like GitHub is that WoC’s p2P map is
based on shared commits, providing higher recall by not missing forks that did not occur through GitHub’s
forking option but rather through cloning the repository. Additionally, forks and clones hosted on different
platforms cannot be traced easily, but the WoC map is platform-independent and does not have this constraint.
Moreover, some forks may diverge significantly from the original repository but are still considered forks by
hosting platforms. WoC’s deforking algorithms use community detection via shared commits. If forks diverge
substantially via maintenance after forking, the community detection algorithm would recognize them as distinct
projects, which reduces false positives and increases precision.

Whenever we mention “project” in our paper, we are actually referring to a “deforked project” as defined here.
This ensures that our discussions about reuse are based on unique instances of software development projects
rather than duplicated efforts through forks.

4.1.3 Dataset Creation. To understand the identification of reused blobs, it is important to explain how the
dataset we used [46] was created. Despite the key relationships WoC offers, several obstacles had to be resolved.
The initial step was to pinpoint the first instance, denoted as ,(P), when each of the approximately 16 billion
blobs appeared in each of the almost 108 million projects. To this goal, first the c2fbb map? (which is the result of
diff on a commit: commit file, blob, old blob and lists all blobs created by each commit) was joined with the c2dat
map (full commit data) to obtain the date and time of each commit. The result was then joined with the c2P map
(commit to project) to identify all projects containing that commit.

2See https://github.com/woc-hack/tutorial for more information about WoC map naming convention

ACM Trans. Softw. Eng. Methodol.

https://github.com/woc-hack/tutorial

Beyond Dependencies: The Role of Copy-Based Reuse in Open Source Software Development « 11

The result is a new c2btP map (commit to blob,, time, and Project). To create the timeline for each blob, all that
data was sorted by blob, time, and project resulting in b2tP map (b, t, P) where we have only blob, time, and the
deforked project that contain our desired timeline #, (P).

Finally, the blob timelines® were used to identify instances of reuse (t,(P,), t;(P4)) or Ptb2Pt map, where
the first project is the originating project* and the second project is the destination project of the reused blob,
meaning the blob was created at a later time in this project. This resulting Ptb2Pt map contains all instances of
blob reuse. The data flow of reuse identification is shown in Figure 1.

4.1.4 Time Complexity Analysis. To evaluate the complexity and time requirements of our methodology for
identifying reuse, we analyze the time complexity of each step and provide a benchmark for execution time
on a typical computer setup. The overall time complexity is dominated by the sorting operations involved in
processing the large maps. Data preparation and joining involve merging the precalculated mapsin WoC, namely
the c2fbb, c2P, and c2dat maps. Since these maps are already sorted and split into 128 partitions, we can join
them with a complexity of 128 X O(l + m + n), where I, m, and n are the number of rows in the maps respectively.
We then drop the commit hashes and sort the joined b2tP map based on blob, time, and project, which is the most
computationally intensive step, with a complexity of O(nlogn), where n is the total number of rows in the b2tP
map. Identifying reuse instances, given that the data is already sorted by blob, has a complexity of O(n), where n
is the total number of copy instances.

Using a high-performance workstation as a benchmark (8-core processor at 3.5 GHz, 128 GB RAM, 2 TB SSD),
we calculate the execution time for each step. Data preparation and joining, with a linear-time merge, primarily
involve reading and writing large files. With a sequential read/write speed of approximately 500 MB/s for SSDs,
joining the maps (total size around 128 billion rows) is expected to take roughly 1-2 hours. Sorting the created
b2tP map, which requires external sorting of about 74 billion rows, necessitates multiple passes over the data.
Based on empirical data, a modern external sorting algorithm with 8 cores can handle around 0.5 billion rows per
hour. Hence, sorting this map would take approximately 148 hours. Identifying reuse instances, involving efficient
I/O operations, is estimated to take 4-6 hours. In total, the entire process is estimated to take approximately
153-156 hours, or about 6.5 days.

Detecting code reuse in finer granularity than blob-level, such as through syntax tree parsing or text similarity
techniques, would offer a more comprehensive view of code reuse. However, these methods involve several
computational challenges and resource constraints, making them impractical for our study.

Parsing the abstract syntax tree (AST) for each file to detect structural similarities involves several computational
steps. First, each file must be parsed into its AST representation, which itself is an O(n) operation where n is
the total number of unique blobs. For our dataset of 16 billion blobs, this parsing step alone would be extremely
resource-intensive. Following parsing, comparing each AST to identify potential reuse instances would require
pairwise comparisons. The pairwise comparison complexity is O(n?), resulting in an infeasible O((16 x 10%)?)
complexity.

Text similarity measures on the other hand, such as Levenshtein distance or cosine similarity, involve comparing
each blob’s contents with every other blob. These methods typically operate with a complexity of O(n?) for each
pair of files, again resulting in an infeasible O((16 x 10°)?) complexity. Even with optimizations like locality-
sensitive hashing or other approximation techniques, the scale of the data renders this approach impractical.

Given the significant computational complexity and resource requirements, detecting code reuse at a finer
granularity than blob-level is not feasible for our study. Instead, we have chosen to focus on blob-level reuse
detection, which provides a practical and scalable solution. While this approach is limited to detecting exact file

3All but the first commit time creating the blob for each project were dropped as a blob is often reused within a repository.
4See section 7 for the limitations in identifying the originating project.

ACM Trans. Softw. Eng. Methodol.

12« Mahmoud Jahanshahi, David Reid, and Audris Mockus

(7 N

full commit data commit to file, blob, old
blob

Shape Description

join

Tabular data maps)
an commit

key2value that have key and
description value in each line.

c2P c2bt

rocess
P Process performed. commit to project commit to blob, time

description

Data flow.

join
on commit

Abbreviations

b: blob hash c2btP

¢ commit hash commit to blob, time,

dat:full commit data project
fb: new blob hash (result of diff on a commit) l
ft: first time (after sort)

P: project name
t: commit timestamp

drop

commit

sort

on blob, time, project

sort

on blob,
project, time

b2tP

blob to time, project

find
first project for each blob (earliest

commit time and project in which it
was found for each blob)

b2Pt

blob to project, time:

1

find
first time for each (blob,project)

tuple (earliest time the blob was
committed to each project)

b2ftP

blob to first time, project

b2Pft join

blob to project, first time: on blob

Ptb2Pt

originating project, first commit time, blob
\ to destination project, first commit time in destination project //

Fig. 1. Reuse Identification Data Flow Diagram

ACM Trans. Softw. Eng. Methodol.

Beyond Dependencies: The Role of Copy-Based Reuse in Open Source Software Development « 13

copies, it ensures that the analysis remains within the bounds of available computational resources and time
constraints, thereby enabling a thorough and efficient examination of code reuse in the OSS landscape.

4.2 RQ1: How much copy-based reuse occurs? What factors affect the propensity to reuse?

4.2.1 RQT-a: How extensive is copying in the entire OSS landscape? To investigate how widespread whole-file
copying in OSS actually is, we first want to establish a baseline: what fraction of blobs were ever reused, and
if reused, to how many downstream projects? Specifically, in RQ1-a, we are showing the number of blobs,
originating as well as destination projects (deforked), and copy instances across the entire OSS ecosystem. These
numbers are not estimates but the actual numbers calculated over the complete dataset.

4.2.2 RQi-b: Is copy-based reuse limited to a particular group of projects? One may argue that the results in
RQ1-a are not necessarily important, as only “small” projects may reuse code in a copy-based manner. To see if
this is actually the case, we randomly sampled 5 million reuse instances from each of the 128 files into which the
data was divided, based on the first two bytes of the hash of blobs. This resulted in a total of 640 million instances
for the analysis. This approach ensured that our sample was distributed across the entire dataset, capturing a
diverse range of copy instances. The sample size of 640 million instances constitutes approximately 2.67% of
the entire dataset. Although this is a small fraction of the data, it is sufficiently large to ensure the statistical
reliability and representativeness of our analysis, as the large absolute size of the sample guarantees its statistical
reliability according to the Central Limit Theorem.

Before going further, we need to define the qualitative and, more importantly, subjective terms of “small” and
“big” projects with quantitative and justified measures. Crowston and Howison [17] and Koch and Schneider
[51] have shown that project activity, as measured by commit frequency, is a strong indicator of project health
and sustainability. Additionally, the use of stars as a metric is well-supported in the literature, as they represent
a form of user endorsement and are correlated with-project visibility and perceived quality [77]. We choose
these two metrics because both the number of commits and the number of stars are indicators of a project’s
activity and popularity. Commits reflect the ongoing development and maintenance efforts, which are important
for the sustainability and evolution of a project. Stars, on the other hand, reflect the community’s interest and
endorsement, indicating the project’s visibility and influence. These metrics are widely used in empirical software
engineering research to evaluate the health and impact of open source projects [8, 47].

We define projects with over 100 commits and 10 stars as “big” projects. The mean and 3rd quantile values for
the number of commits in our dataset are 46 and 12, respectively. This aligns with established practices in the
literature where thresholds are often set significantly above average to isolate highly active projects. By setting
the threshold at more than double the mean, we ensure that only the top-performing projects are classified as
big. Similarly, the threshold of 10 stars is set based on the mean of 2.33 and 3rd quantile value of 0 for stars.
This indicates that the majority of projects receive few or no stars, reflecting their popularity and community
engagement levels. By selecting projects with at least 10 stars, we focus on those with significant community
recognition, capturing less than 1% of the dataset but representing the most influential projects.

The thresholds chosen for “small” group, on the other hand, are projects with no stars and fewer than 10 commits
to ensure the projects are indeed small and inactive. This approach ensures that the small group, comprising
62% of projects, includes those with minimal activity and engagement, consistent with findings by Gousios and
Spinellis [37] that a large proportion of open source projects are relatively inactive. We consider all the other
projects that do not fall into either the big or small categories as the “medium” group. The medium group captures
the middle ground, excluding only the extremes, thus providing a balanced representation of the majority of
active projects.

Using this taxonomy, we counted the number of unique blobs involved in these copy instances between groups.
It should be mentioned that a blob can have several downstream projects that do not necessarily fall into the

ACM Trans. Softw. Eng. Methodol.

14 « Mahmoud Jahanshahi, David Reid, and Audris Mockus

same group. Therefore, we considered the biggest downstream project for our analysis purposes. For example,
if a blob originated in a medium project and was reused by both a big and a small project, we count it in the
“medium to big” category. Considering the biggest downstream project for each unique blob ensures that the
most significant reuse instances are captured. This approach is supported by research indicating that the impact
of code reuse is often determined by the size and activity of the downstream projects utilizing the code [68, 95].
By focusing on the largest downstream project, we ensure that our analysis reflects the most substantial and
influential reuse cases of a particular blob.

4.2.3 RQI-c: Do characteristics of the blob affect the probability of reuse? The third part of our research question
(RQ1) focuses on the properties of reused artifacts. To address this, we obtained a large random sample of blobs
comprising 1/128 of all blobs. We have to point out that unlike RQ1-b, where we randomly sampled copy instances
(meaning all the blobs involved were reused at least once), here we are sampling from the b2tP map that includes
all blobs, whether they have been reused or not. Our dataset is divided into 128 files based on the first two bytes
of the blob hash. Hash functions, by design, distribute input data evenly across the output space. The use of hash
functions to divide data ensures a uniform distribution across the resultant files [67]. By using one of these 128
files as our sample, and given the vast size of the dataset, we ensure that it is an unbiased representation of the
entire dataset and that this sample size is sufficient to achieve high statistical power and accuracy in our analyses.

We then employed a logistic regression model with the response variable being one for reused blobs and
zero for non-reused blobs. Logistic regression is a robust statistical method used to model the probability of a
binary outcome based on one or more predictor variables. It is widely used in empirical software engineering to
understand factors influencing software development practices [44]. By using logistic regression, we can quantify
the effect of various predictors on the likelihood of a blob being reused.

In this research question, we are concerned with infectiousness-based on our Social Contagion Theory.
Specifically, we are looking for properties of artifacts that affect their propensity to be reused. The first predictor
in our model is the programming language of the blob. Different programming languages are associated with
distinct package managers, development environments, and community cultures, which can influence reuse
practices [6]. For example, the ease of dependency management in languages like Python (via pip) or JavaScript
(via NPM) might facilitate reuse more than in languages with less mature package management systems. Thus,
including the programming language as a predictor helps capture these contextual differences. We anticipate that
source code for programming languages such as C, which lack package managers, is likely to be copied more
frequently than source code for languages with sophisticated package managers, such as JavaScript.

The second predictor is the time of blob creation. This factor helps account for temporal dynamics by indicating
the period during which‘a blob was created, reflecting different reuse practices over time. We hypothesize that
older blobs were more likely to be reused due to fewer available reusable artifacts in the OSS landscape at the
time. However, the time of creation inherently includes the effect of a blob’s availability duration (t, (Py) — 5 (P,)),
meaning older blobs have had more time to be discovered and reused. Previous research by Weiss and Lai [95]
indicates that the age and visibility of code artifacts influence their reuse.

To isolate and examine the influence of the creation period without the confounding effect of longer availability,
we introduce the concept of time-limited reuse. By focusing on copies occurring within specific time intervals
after the blob’s creation, we remove the advantage of longer visibility and can better assess how the creation
period itself influences reuse®. We evaluated both one-year and two-year intervals and found similar results. By
evaluating both intervals and finding similar results, we enhance the robustness of our conclusions. To maintain
conciseness and avoid repetition, we report the findings for the two-year interval. Reporting the two-year interval
results provides a balance between sufficient observation time for reuse events and the practical need for concise
reporting. Consequently, we excluded blobs created after May 1, 2020, ensuring that all blobs had at least two

>This definition is used solely for the purposes of our regression model and subsequent analysis. It is not applied in RQ1-a, RQ1-b, or RQ2.

ACM Trans. Softw. Eng. Methodol.

Beyond Dependencies: The Role of Copy-Based Reuse in Open Source Software Development « 15

years to be potentially reused, providing a consistent time frame for analysis [96]. This approach ensures that our
findings are not skewed by varying availability periods.

The third predictor is whether the blob is a source code or a binary. We hypothesize that binaries, identified
by their git treatment or file extensions like tar, jpeg, or zip, may exhibit different reuse patterns compared to
source code. We expect that binary files, such as images, might be copied more often because they are easy to
understand and reuse but difficult to recreate. Unlike other types of files, developers cannot easily extract specific
parts or functionalities from binary files. That is, source code blobs are directly reusable and modifiable, whereas
binaries might be reused as-is without modification. This distinction is important as it affects the ease or necessity
of reuse [27]. Therefore, when it comes to whole-file reuse, which is our definition of reuse in this work, we
anticipated that binary blobs are more likely to be copied.

The last factor we hypothesize might affect the propensity of a blob to be reused is its size. The size of a blob can
influence its reuse for several reasons. Larger blobs may contain more functionality, making them more attractive
for reuse. Conversely, smaller blobs may be simpler to integrate into existing projects. Previous research by
Capiluppi et al. [12] and Mockus [68] has indicated that the size of code artifacts can impact their maintainability,
comprehensibility, and ultimately their reuse.

To investigate whether a difference exists between the sizes of copied and non-copied blobs, we exclude binary
blobs from the analysis. The size of binary blobs is not comparable to the size of source code blobs due to their
fundamentally different nature. Binary blobs often include compiled code, media files; or compressed archives,
which do not provide a meaningful comparison to plain text source code in terms of size. Because of these
differences, we did not incorporate blob size as a predictor in ourlogistic regression model. Including binary
blobs could skew the results and lead to misleading conclusions. Instead, we perform a t-test to compare the sizes
of copied blobs and non-copied blobs. The t-test is a robust statistical method used to determine whether there is
a significant difference between the means of two groups [88]. By applying the t-test, we can rigorously assess
whether blob size influences the likelihood of reuse.

4.2.4 RQI-d: Do characteristics of the originating project affect the probability of reuse? The fourth part of RQ1
concerns the chances of finding or being aware of a blob-approximated by signals at the project level. This is the
exposure factor in the Social Contagion Theory. To conduct this study, we use WoC’s MongoDB project database
to randomly sample one million projects, comprising nearly 1% of all projects indexed by WoC, to achieve a
balance between statistical validity and computational feasibility. A sample size of one million is large enough to
provide a representative snapshot of the entire population.

We then search the reuse instances (#;(P,), tp(Py)) in our Ptb2Pt map to determine if the project originated
at least one reused blob: A logistic regression model with the response variable being one if the project has
introduced at least one reused blob (and zero otherwise) is then constructed. The predictors in the project-level
model include the number of commits, blobs, authors, forks, earliest commit time, the activity duration of the
project (the time between the first and the last commit in that project), the binary ratio (the ratio of binary blobs
to total blobs), and the programming language. We also use the number of GitHub stars for each project as a
predictor. This data in WoC (number of stars) is sourced from GHTorrent [36].

The choice of these predictors for our model is based on the current literature on relevant project properties.

o Number of Commits. Number of commits is a strong indicator of project activity and maintenance. Koch and
Schneider [51] show that projects with higher commit frequencies tend to have more active development
and are more likely to be reused due to their perceived reliability and continuous improvement.

e Number of Blobs. Number of blobs represents the volume of content and potential reusable components.
Larger projects with more blobs are likely to offer more opportunities for reuse [68]. It can also indicate
the project’s complexity and modularity. Projects with more files may be more modular and provide more
reusable components.

ACM Trans. Softw. Eng. Methodol.

16 « Mahmoud Jahanshahi, David Reid, and Audris Mockus

o Number of Authors. Number of authors reflects the collaborative nature of a project. Projects with more
contributors tend to have diverse expertise, which supports innovation and decentralized communication,
improving the development process [17], and potentially increasing the likelihood of reuse.

e Number of Forks. Number of forks is a proxy for the project’s popularity and community engagement.
Projects with more forks are often viewed as valuable and trustworthy [93], increasing their reuse potential.

e Earliest Commit Time and the Activity Duration. Earliest commit time and the activity duration provide
insights into the project’s maturity and stability. Older and long-active projects are more likely to be
well-established and reused [28].

o GitHub Stars. GitHub stars is a form of social endorsement, indicating community approval and interest.
Projects with more stars are likely to be considered high-quality and reliable, making them more attractive
for reuse [8].

e Binary Ratio. Binary ratio, defined as the ratio of binary blobs to total blobs, can impact the reuse potential
of a project. Binary blobs, such as compiled code or media files, often indicate pre-packaged functionalities
or resources that are ready for use. A higher binary ratio may suggest that a project provides ready-to-use
components, which can facilitate reuse [68].

Regarding language assignment, at the blob-level, WoC’s b2sl map was used for blob language detection based
on file extensions. This method is straightforward and effective for identifying the programming languages
of individual blobs. Nevertheless, assigning a primary language to a project is more complex due to the use
of multiple languages in most projects. WoC’s MongoDB project database provides counts of files with each
language extension, allowing us to pick the most frequent extension as the project’s main language. For our
study, we considered only a subset of blobs, specifically originating blobs (blobs first seen in OSS within the
project), and assumed the most common language among these blobs as the project’s primary language. This
approach aligns with the practice of determining the dominant language based on primary contributions [94].

4.3 RQ2: How do developers perceive and engage with copy-based reuse?

The second research question in our study aims to triangulate the quantitative results and understand how
developers perceive and engage with copy-based reuse. While quantitative research often focuses on metrics
such as frequency, intensity, or duration of behavior, qualitative methods are better suited to explore the beliefs,
values, and motives underlying these behaviors [13].

Using a questionnaire for triangulation allows us to obtain self-reported data, which can confirm or challenge
the quantitative findings. This method helps identify any discrepancies and provides a deeper understanding of
participant behavior [18]. In our study, the questionnaire included a direct question (“Did you create or copy this
file?”) to gather self-reported data on whether participants copied the blob, offering a direct measure to compare
against the quantitative results.

Additionally, based on the Social Contagion Theory (SCT), we hypothesize that the characteristics of the
destination project and/or author influence reuse activity. However, treating all reusers the same could be
problematic, as developers may have fundamentally different reasons for reuse. Motivations for reuse can vary
widely based on individual needs, project requirements, and perceived benefits from the reused code [24, 68]. Our
primary focus was to understand these motivations to categorize different types of reuse, potentially providing
more insight into measuring susceptibility for future research. By categorizing motivations, we aim to identify
distinct patterns and factors influencing reuse behavior, facilitating the development of targeted strategies to
enhance code reuse practices. This approach aligns with qualitative research methods that seek to explore complex
phenomena through detailed, contextualized analysis [16].

ACM Trans. Softw. Eng. Methodol.

Beyond Dependencies: The Role of Copy-Based Reuse in Open Source Software Development « 17

To gain insights into the motivations behind copy-based reuse, we conducted an online survey targeting both

the authors of commits introducing reused blobs and the authors of commits in the originating repositories. The
survey aimed to capture a range of experiences and perceptions related to copy-based reuse®.
4.3.1 Survey Content and Questions. The survey included questions about the nature of the file, why it was
needed, how it was chosen, and whether developers would use tools to manage reused files. General questions
about the repositories and developers’ expertise were also included. Notably, the question about the reason for
needing the file was open-ended to capture unbiased and detailed responses about the motivations for reuse. All
the questions were optional, except for the very first one, which asked if the respondent had created or reused
the file. We chose not to directly ask why did developers choose to copy to avoid provoking legal and ethical
concerns about copy-based reuse. For this reason, instead, we asked: “Why was this file needed? How did it help
your project?””.

Furthermore, we asked developers if the project in which the file resides was intended to be used by other
people. Understanding whether creators intend for their resources to be reused helps assess the cultural and
strategic aspects of OSS development. If a significant portion of creators design their code with reuse in mind, it
indicates a collaborative ecosystem where resources are shared and built upon.

We also asked a series of Likert scale (on a scale from 1 to 5) questions as follows.

e “To what extent did this file help you?” - Gauging how helpful creators and reusers find the reused
blobs provides quantitative data on the perceived value of the reused code. Comparing the ratings between
creators and reusers highlights any discrepancies or alignment in perceived usefulness.

¢ “To what extent were you concerned about potential bugs in this file?” - Investigating reusers’
concerns about bugs in reused code sheds light on the perceived risks associated with this practice.
Understanding the level of concern can indicate how much trust reusers place in the original code’s
quality.

¢ “How important is it for you to know if the original file has been changed?” - Understanding
reusers’ concerns about changes in the original files helps identify potential issues related to the stability
and continuity of reused code. Frequent changes can disrupt the functionality of dependent projects.

o “How likely would you use a package manager which could handle changes to this file if there
was one?” - Understanding the likelihood of reusers adopting a package manager if available provides
insights into the demand for tools that can streamline and manage code reuse.

4.3.2 Sampling Strategy. To ensure a representative and comprehensive sample, we stratified the data along sev-
eral dimensions. Stratified sampling ensures that all relevant subgroups are adequately represented in the survey,
enhancing the generalizability of the findings [16]. By considering multiple dimensions such as productivity,
popularity, copying patterns; file types, and temporal aspects, we ensure a comprehensive analysis that captures
the diversity of reuse behaviors in the OSS community:

e Productivity and Popularity: Based on the number of commits and stars, we differentiated between
high and low productivity/popularity projects (similar to RQ1-b).

e Copying Patterns: We distinguished between instances where only a few files were copied versus
multiple files, as these might indicate different reuse behaviors.

o File Extension: We included various file types and programming languages to capture a diverse range of
reuse scenarios.

The survey and its procedure was approved by our institutional review board, ensuring that it adhered to ethical guidelines for research
involving human subjects.
7See online appendix for survey questions.

ACM Trans. Softw. Eng. Methodol.

18 « Mahmoud Jahanshahi, David Reid, and Audris Mockus

e Temporal Dimensions: We considered the blob creation time and the delay from creation to reuse to
understand temporal patterns in reuse behavior.

4.3.3 Survey Design. For each copy instance, we targeted the author of the commit introducing the blob into the
destination repository and the author of the commit in the originating repository®. This dual perspective allowed
us to capture both the originator’s and the reuser’s viewpoints, offering a more comprehensive understanding of
the reuse dynamics.

We conducted three rounds of surveys, progressively expanding the sample size and refining the questions
based on feedback and preliminary results. We chose to conduct our survey in three steps to ensure a thorough
and iterative approach to understanding developer motivations behind copy-based reuse.

(1) We handpicked 24 developers (12 creators and 12 reusers) for an initial survey with open-ended questions.
This round aimed to gather in-depth qualitative data and identify key themes. This small, purposive
sample size allows for deep, exploratory insights, which are important for the initial stages of qualitative
research [38].

(2) The survey was sent to 724 subjects (329 creators and 395 reusers) with a mix of open-ended and multiple-
choice questions. This round helped validate and refine the themes identified in the first round. The
increased sample size in this round provides more data to ensure that the themes and patterns observed
are not idiosyncratic but rather indicative of broader trends. This intermediate sample size balances the
need for more extensive data while still allowing for qualitative depth [65].

(3) The survey was expanded to 8734 subjects (2803 creators and 5931 reusers), with most questions being
multiple-choice to facilitate quantitative analysis, except for the open-ended question about the reason
for needing the file. The large sample size in this final round ensures that the findings are statistically
significant and generalizable across the broader population of developers involved in copy-based reuse. This
sample size aligns with recommendations for achieving sufficient statistical power in survey research [53].

The reason behind the seemingly random numbers of survey subjects in the three rounds is that after sampling
our data, we had to perform data cleansing and preparation to reach the survey target audience. This process
normally caused some samples to be removed. Initially, we chose sample sizes of 30, 1,000, and 10,000 respondents
for the three rounds respectively, but after the data cleansing process, the actual numbers were lower.

4.3.4 Thematic Analysis. The thematic analysis allows us to systematically identify patterns and themes within
qualitative data, providing deep insights into the reasons behind copy-based reuse [10]. To analyze the survey
responses, we followed a structured thematic analysis process as outlined by Yin [99]:

(1) Compiling: First author compiled all responses.

(2) Disassembling: Each author individually analyzed and coded the responses to identify ideas, concepts,
similarities, and differences [5, 89].

(3) Reassembling: The coded responses were organized into meaningful themes by each author indepen-
dently; focusing on identifying different types of reuse [10].

(4) Interpreting and Concluding: The authors discussed and compared the themes, clarifying and organizing
them to ensure a coherent and comprehensive understanding. The final themes were then used to reclassify
and interpret all survey responses.

5 RESULTS & DISCUSSIONS

The numbers presented in this section are derived from version U of WoC, which was the most recent version
available at the time of this analysis.

80nly if they had explicitly disclosed their email address on their public profile.
*https://bitbucket.com/swsc/overview

ACM Trans. Softw. Eng. Methodol.

https://bitbucket.com/swsc/overview

Beyond Dependencies: The Role of Copy-Based Reuse in Open Source Software Development « 19

5.1 RQ1: How much copy-based reuse occurs? What factors affect the propensity to reuse?

5.1.1 RQI-a: How extensive is copying in the entire OSS landscape? We identified nearly 24 billion copy instances
(unique tuples containing the blob and originating and destination projects) encompassing more than 1 billion
distinct blobs. With approximately 16 billion blobs in the entire OSS landscape (as approximated by WoC), 6.9%
of the blobs have been reused at least once, and each reused blob is copied to an average of 24 other projects (see
Table 1).

Table 1. Basic Statistics of Reuse Instances

Count Total %
Reuse instances 23,914,332,270 - -
Blobs 1,084,211,945 15,698,467,337 6.9%
Originating projects 31,706,416 107,936,842 29.4%
Destination projects 86,483,266 107,936,842 80.1%

Nearly 32 million projects (about 30% of the nearly 108 million deforked OSS projects indexed by WoC)
originated at least one reused blob. Over 86 million projects have copied these blobs, meaning 80% of OSS projects
have reused blobs from another project at least once.

RQ1-a Key Findings:
(1) We identified nearly 24 billion copy instances encompassing more than 1 billion distinct blobs.
(2) 6.9% of all the blobs in the entire OSS have been reused at least once.
(3) About 30% of all OSS projects originated at least one reused blob, and 80% of projects have reused
blobs at least once.

The extensive reuse observed highlights the efficiency gains in OSS development, as projects benefit from
existing code to accelerate development cycles and reduce costs. The widespread reuse also raises security
concerns, as vulnerabilities in copied code can propagate across numerous projects. This necessitates improved
vulnerability detection and management practices to ensure the integrity of reused code. Additionally, License
violations due to improper code reuse can lead to legal challenges and compliance issues, underscoring the
importance of clear licensing and adherence to open source policies. Furthermore, our identification of blob-level
reuse, which only accounts for exact matches and not slight modifications, suggests that the actual extent of
code reuse might be even higher. The findings advocate for the development of better tools and infrastructure to
manage copy-based reuse, including automated detection of security and legal risks, and tools for maintaining
code quality in reused components.

5.1.2 RQi-b: Is copy-based reuse limited to a particular group of projects? The numbers already demonstrate
the prevalence of copy-based reuse in the OSS community. To understand how this reuse activity is distributed
across different groups of projects, we constructed a contingency table as explained in the methods section. Each
blob’s originating project is unique and falls into one of three categories (big, medium, and small). However,
downstream projects are not unique and we consider the largest downstream project for each blob.

Our analysis revealed nearly 112 million unique blobs reused in our 640 million sample copy instances, with
nearly 13 million of these blobs reused by at least one big project (see Table 2). This indicates that more than 11%
of blobs are reused at least once by at least one big project, showing that copy-based reuse is not limited to small
projects but is a widespread phenomenon in the OSS community.

ACM Trans. Softw. Eng. Methodol.

20 « Mahmoud Jahanshahi, David Reid, and Audris Mockus

Table 2. Blob Counts in Reuse Sample

Biggest Downstream Projects Total
Big Medium Small ‘
Upstream Big 6,748,621 22,273,811 6,515,122 35,537,554 (31.8%)
Projects Medium 5,348,651 36,434,732 14,552,148 56,335,531 (50.3%)
Small 691,644 10,151,838 9,231,618 20,075,100 (17.9%)
Total 12,788,916 (11.4%) 68,860,381 (61.5%) 30,298,888 (27.1%) | 111,948,185

However, it is still unclear if these reused blobs are predominantly introduced by big projects: If this were the
case, one could presume that these blobs are mostly of good quality and not error-prone, making the costs of
managing and tracking code propagation through such reuse potentially outweigh the benefits. Sampling copy
instances revealed that big projects are responsible for only about 30% of reused blobs, while the remaining 70%
are introduced by medium and small projects. Specifically, nearly 18% of these blobs are introduced by small
projects, with the remaining 50% coming from medium projects. Furthermore, even for big projects, almost 50%'°
of the blobs they reuse originate from medium and small projects (see Table 2). Therefore, it is evident that not
only big projects serve as upstream sources for copy-based reuse. Indeed; many blobs introduced by medium and
small projects are being widely reused.

Even if all widely reused blobs were exclusively introduced by big projects, copy-based reuse still requires
management for several reasons. For example, security vulnerabilities may continue to spread even after the
main project has fixed the issue [78].

RQ1-b Key Findings:
(1) 32% of reused blobs originate from big projects; which comprise 1% of the total projects.
(2) 18% of reused blobs originate from small projects, which make up 62% of the total projects.
(3) 50% of reused blobs originate from:medium projects, which represent 37% of the total projects.
(4) Nearly 50% of blobs reused by big projects originate from medium and small projects, highlighting
significant cross-category reuse.

Our findings demonstrate that a non-negligible portion of reused code in the OSS community comes from
medium and small projects, challenging the assumption that high-quality code predominantly originates from
large projects. This implies a diverse quality spectrum in reused code and underscores the importance of ensuring
quality and security across all project sizes, as vulnerabilities in smaller projects can propagate widely. Tools
that can track the origin and usage of blobs are essential to ensure timely updates and fixes across the OSS
ecosystem, mitigating risks associated with vulnerabilities and outdated code. The widespread nature of code
reuse across projects of all sizes, emphasizes the need for quality assurance, effective management, and community
collaboration to maintain the health and sustainability of the OSS landscape.

5.1.3 RQi-c: Do characteristics of the blob affect the probability of reuse? In this section, we first demonstrate
the reuse trends, followed by the logistic regression model predicting the probability of a blob being reused.
Additionally, we present the reuse propensity per language and show the difference in blob size between reused
and non-reused blobs. Finally, we discuss a case study using JavaScript as an example.

10(5,348,651 + 691, 644) /12,788,916

ACM Trans. Softw. Eng. Methodol.

Beyond Dependencies: The Role of Copy-Based Reuse in Open Source Software Development « 21

Reuse Trends. As explained in the methods section, we use a 2-year-limited copying definition in the RQ1-c
and RQ1-d models and results. This means that we consider a blob reused only if it has been reused within 2
years of its creation. With this definition, 7.5% of blobs have been reused. Figure 2a shows the total counts of new
blobs and copied blobs for each quarter since the year 2000!!. Both counts exhibit rapid growth, although the
growth in new blob creation appears to outpace that of copying. To investigate this difference, Figure 2b shows
the reuse propensity measured via the reuse ratio (reused blobs divided by total blobs), confirming that new blob
creation has outpaced copied blobs since 2006 when the ratio began to decline.

variable 0.40 -

— Total ot T ,.\./\.‘ P Wil
Copied o a ’ 035 -y "'\--’['d .'\.""\
100 o "y
’,"" 030 \‘.,
{ 3
o *
< 025 Y
E] o) .
ERU £ !

' 0.20 LTy

-jd \\

ot L
e 015 “
100
./—" 0.10 \.\. .
-'“‘.._n Pens® s,
L esteestute
0.05 : fe
2000 2004 2008 2012 2016 2020 2000 2004 2008 2012 2016 2020
Period Period
(a) Generated and Reused Blobs Trends (b) Reused to Generated Blobs Ratio Trend

Fig. 2. Quarterly Reuse Trends

Logistic Regression Model. We expect the nature of the blob to affect its propensity to be reused. To test this
hypothesis, we use a logistic regression model where the response variable is set to one if the blob has been
copied at least once (i.e., has been committed in at least two projects) within two years of its creation, and zero
otherwise. We used WoC definition of the programming language associated with each blob and categorized less
common programming languages in the sample as “other”. The descriptive statistics of the variables are presented
in Table 3.

Table 3. Blob-level Model - Descriptive Statistics

Variable Statistics

Reused Yes: 6,419,388 (7.5%) No: 78,136,705 (92.5%)

Language JavaScript Java C (Other)
(Counts) 11,122,849 4,579,458 3,460,733 65,393,053
Creation Time 5% Median Mean 95%
(Date) 7/29/2012 2/7/2018 5/28/2017 2/28/2020
Binary Yes: 18,516,721 (21.8%) No: 66,039,372 (78.2%)

1The number of projects and blobs was much smaller before 2000.

ACM Trans. Softw. Eng. Methodol.

22 « Mahmoud Jahanshahi, David Reid, and Audris Mockus

The sample dataset is predominantly composed of blobs written in JavaScript, with significant counts also in
Java and C. Additionally, the distribution of blob creation time is provided, showing a median date of February 7,
2018. Furthermore, a notable proportion of the blobs, 21.8%, are binary.

The results of our logistic regression model are shown in Tables 4 and 5. The model shows that the coefficients
for all predictors are statistically significant with p-values less than 0.0001, meaning they impact the probability
of a blob being reused (see Table 4).

Table 4. Blob-level Model - Coefficients

Estimate Std. Error zvalue Pr(>|z|)
(Intercept) -18.0293 0.0186 -967.07 <2x 1071
Binary 0.4775 0.0010 460.16 <2x1071¢
Creation Time 0.8108 0.0010 82834 <2x1071°
C 0.7142 0.0017 42632 <2x107'¢
C# -0.1277 0.0033 -38.15 <2x10°'°
Go 0.3095 0.0065 4774 <2%10716
JavaScript -0.0832 0.0015 -56.21 <2x10°'°
Kotlin -0.5606 0.0133 -42.02/ <2x 10716
ObjectiveC 0.0810 0.0066 1230 . <2x10716
Python -0.0327 0.0030 -10.97 "< 2X 107'¢
R 0.4070 0.0083 4922 <2x1071°
Rust 0.0879 0.0095 930 <2x1071°
Scala -0.6168 0.0123 -50.21 <2x1071°
TypeScript 0.1827 0.0046 39.38 <2x1071°
Java 0.0794 0.0019 4237 <2x1071°
PHP 0.3561 0.0024 151.14 <2x1071°
Perl 0.7664 0.0082 92.95 <2x1071°
Ruby -0.4782 0.0044 -108.58 <2x1071¢

The ANOVA table (Table 5) provides insights into the significance of different variables. We see that all the
predictors have p-value equal to zero, meaning that the null hypothesis!? can be rejected. The null deviance is
45,438,151, which represents the deviance of a model with only the intercept. Adding the Binary variable reduces
the deviance by 124,114, indicating its strong influence on reuse likelihood. The Creation Time variable further
reduces the deviance by 830,322, highlighting its importance in predicting reuse. The “Language” variable also
reduces the deviance by 230,614. Although these reductions might seem small relative to the null deviance, they
are statistically significant given the large sample size and the high degrees of freedom involved.

To assess the direction and the size of predictor effects, we need to go further. In a logistic regression model, a
positive coefficient estimate indicates that as the predictor variable increases, the odds of the outcome occurring
increase, while a negative coefficient estimate indicates that as the predictor variable increases, the odds of the
outcome occurring decrease. Since the coefficients represent the change in the log-odds of the outcome for a
one-unit increase in the predictor, we transform these coefficients to odds ratios by exponentiating them to
interpret the actual impact of each predictor. The odds ratio indicates how the odds of the outcome change with
a one-unit increase in the predictor. The results are shown in Figure 3. This graph displays the odds ratios for

12H0: The reduced model (without the predictor) provides a fit to the data that is not significantly worse than the full model (with the
predictor). This suggests that the predictor does not significantly improve the model’s fit.

ACM Trans. Softw. Eng. Methodol.

Beyond Dependencies: The Role of Copy-Based Reuse in Open Source Software Development « 23

Table 5. Blob-level Model - ANOVA Table

Df Deviance Resid.Df Resid. Dev p-value

NULL 84,556,092 45,438,151.00

Binary 1 124,114.20 84,556,091 45,314,036.80 < 2x 1071
Creation Time 1 830,322.63 84,556,090 44,483,714.17 <2x 1071
Language 15 230,614.17 84,556,075 44,253,100.00 < 2x 10716

various predictors in the logistic regression model at the blob level. An odds ratio greater than 1 indicates an
increase in the likelihood of reuse, while an odds ratio less than 1 indicates a decrease.

Creation Time
Perl
C

Binary

PHP
Go
TypeScript

Rust

Predictor

ObjectiveC
Java
Python
Javascript
C#

Ruby
Kotlin

Scala

Odds Ratio

Fig. 3. Blob-level Model - Logistic Regression Odds Ratios

The creation time has the highest positive coefficient. The time variable in the model represents the time
elapsed from the blob’s creation until current time, meaning that older blobs have higher time values. The positive
coefficient indicates that newer blobs (with smaller time values) are less likely to be reused. This is not because
they have been visible for a shorter duration (as we controlled for this with the time-bound definition of reuse),
but likely due to other factors we hypothesized, such as fewer artifacts being available for reuse at the time of
their creation.

ACM Trans. Softw. Eng. Methodol.

24 « Mahmoud Jahanshahi, David Reid, and Audris Mockus

Binary blobs show a significant increase in reuse likelihood with an odds ratio of 1.63. Given this confirmed
effect, we calculated the reuse propensity for binary and non-binary blobs separately. The results showed that
9.5% of binary blobs were reused, compared to 7.0% of non-binary blobs in our sample.

Different programming languages show varied impacts on reuse likelihood. Blobs written in Perl, C, R, PHP,
Go, TypeScript, Objective-C, Java, and Rust are more likely to be reused, with Perl showing the highest odds
ratio. In contrast, blobs written in Kotlin, Scala, Ruby, C#, JavaScript, and Python are less likely to be reused,
with Kotlin and Scala showing the most significant negative coefficients. This variability suggests that certain
languages, perhaps due to their prevalence or specific use cases, are more conducive to code reuse.

Per-Language Propensity. Following our logistic regression results, which demonstrated that programming
language is a statistically significant factor in reuse probability of a blob, we calculated the propensity to copy for
each programming language, measured as the percentage of reused blobs within that language (see Table 6). The
results show that blobs written in Perl have the highest propensity to be reused at 18.5%, indicating a strong
tendency for code reuse among Perl developers. Conversely, Kotlin has the lowest propensity at 3.0%, suggesting
minimal code reuse in this language. Languages such as C (15.2%) and PHP (9.9%) also show high reuse rates,
while Python (6.4%), JavaScript (5.5%), and TypeScript (6.3%) have lower rates:Other languages like Java (7.8%),
Go (7.9%), and R (9.8%) fall in the middle range, with moderate reuse rates.

Table 6. Blob-level - Propensity to Reuse

Language Ratio | Language Ratio | Language Ratio
C 15.2% | ObjectiveC 8.4% ' | TypeScript 6.3%
C# 6.0% | Python 6.4% | Java 7.8%
Go 79% | R 9.8% | PHP 9.9%
JavaScript 5.5% | Rust 6.7% | Perl 18.5%
Kotlin 3.0%_ | Scala 3.8% | Ruby 5.1%

JavaScript Example. The role of programming language in reuse activity might have several underlying reasons,
as previously discussed. One such reason is the presence of a reliable package manager. If true, improvements in
a package manager should reduce the propensity to reuse an artifact. To examine this, we analyzed the timeline
of the reuse ratio for JavaScript, shown in Figure 4. The figure indicates a sharper decrease in the slope around
2010, the year the NPM package manager was introduced. This downward trend continues until mid-2013, when
the copying activity rate drops to around 7% and then levels off. This pattern supports the hypothesis that the
introduction and adoption of NPM significantly reduced code reuse through copying.

However, it is important to note that this is just an illustration, and further research is needed to understand this
phenomenon fully. Our current study was not focused on this aspect, so we did not conduct an in-depth analysis.
Additional investigations with more data points and comparisons with other languages that have introduced
similar improvements in their package management systems are necessary to confirm that the observed effect is
not coincidental or specific to JavaScript alone.

Blob Size. The final predictor we hypothesized to affect the reuse probability of a blob was its size. To investigate
whether there is a significant difference between the sizes of copied and non-copied blobs, we conducted a t-test
comparing these sizes. Our analysis revealed a significant difference (p-value < 2.2e-16), indicating that, on
average, copied blobs are smaller than non-copied blobs.

However, the effect varies by language. Specifically, per-language t-tests reveal that copied blobs are smaller
in languages like JavaScript and TypeScript, larger in languages such as C and Python, and remain unchanged in

ACM Trans. Softw. Eng. Methodol.

Beyond Dependencies: The Role of Copy-Based Reuse in Open Source Software Development « 25

-y

0.25 \ A
A

020 1\
1
1

=== npm Introducticn

Ratio
[I

[]

0.15
E .\'l‘ f'
L

0.10 ! A
1 Lo \
1 .r'w/. AV
: " '\f L] \ ./.\...r"\.‘ . .\.

0.05 1 L s = ar ety
i

2006 2008 2010 2012 2014 2016 2018 2020

Period

Fig. 4. Reused Blobs to Total Generated Blobs Ratio Trend in JavaScript

Objective-C, as detailed in Table 7. For example, in JavaScript, the t-value is -59.9, suggesting that copied blobs
are significantly smaller, while in C, the t-value is 195.9, indicating that copied blobs are larger. Similar patterns
are observed in other languages, with TypeScript showing a t-value of -35.9 (smaller copied blobs) and Python a
t-value of -5.8 (also smaller copied blobs). Conversely, languages like Java (t-value 120.7) and PHP (t-value 28.6)
show that copied blobs tend to be larger.

Table 7. Size Difference between Reused and non-Reused Blobs
(Positive t value means larger reused blobs.)

Language tvalue p-value | Language tvalue p-value

C 1959 <2x107% | Rust 78 <2x1071¢
C# 125 <2x1071 | Scala 9.1 <2x1071
Go 155 <2x107! | TypeScript -359 <2x1071¢
JavaScript -59.9 < 2x107! | Java 1207 <2x1071
Kotlin -145 <2x107'¢ | PHP 286 <2x10716
ObjectiveC 0.7 0.430298 | Perl 58 <2x1071%
Python -58 <2x107' | Ruby -249 <2x1071¢
R 7.6 <2x107% | Other -3649 <2x1071¢

ACM Trans. Softw. Eng. Methodol.

26 « Mahmoud Jahanshahi, David Reid, and Audris Mockus

This variation highlights that the relationship between blob size and reuse propensity is complex and influenced
by language-specific factors. While our findings demonstrate a general trend of smaller copied blobs, the differing
patterns across languages suggest that other underlying factors may be at play.

RQ1-c Key Findings:

(1) The reuse ratio is decreasing over time.

(2) 7.5% of blobs have been reused within two years of creation.

(3) Older blobs, when controlling for the confounding effect of increased visibility, are more likely to
be reused.

(4) Binary blobs are 63% more likely to be reused.

(5) Programming languages significantly impact reuse likelihood. Blobs written in languages like Perl,
C, R, PHP, Go, TypeScript, Objective-C, Java, and Rust are more likely to be reused, while those
written in Kotlin, Scala, Ruby, C#, JavaScript, and Python are less likely to be reused.

(6) The reuse ratio timeline for JavaScript shows a notable decrease in slope around the year the NPM
package manager was introduced.

(7) Copied blobs are generally smaller than non-copied blobs, but this is not consistent across different
languages. The size difference varies by language, with reused blobs.in C, Java, PHP, Go, C#, Scala,
Perl, and Objective-C being larger than non-reused blobs, while in JavaScript, TypeScript, Ruby,
Kotlin, Rust, R, and Python, the reused blobs are smaller than non-reused blobs.

The higher reuse propensity among binary blobs suggests that binaries are inherently more reusable, likely
due to their compiled nature, which allows easy integration across;projects. The lower reuse likelihood of newer
blobs indicates a potential issue with the integration and acceptance of recent contributions, possibly due to
rapid technological advancements and shifts in development practices. The significant impact of programming
languages on reuse likelihood highlights the importance of language-specific tools and ecosystems. Languages
with higher reuse rates, such as Perl and C, benefit from mature ecosystems, while newer or niche languages like
Kotlin and Scala show lower reuse rates, potentially due to smaller communities. The decline in JavaScript code
reuse post-NPM introduction suggests that improved package management can reduce the need for direct code
copying, promoting more modular and maintainable codebases.

Regarding blob size, the general trend indicates that smaller code artifacts are more reusable, likely due to
their simplicity and ease of integration. However, this trend varies significantly across different programming
languages. For example, in languages like JavaScript and TypeScript, copied blobs tend to be smaller, supporting
the idea of writing concise and modular code to enhance reusability. In contrast, in languages like C and Python,
copied blobs are often larger, suggesting that the nature and use cases of these languages might necessitate larger
reusable components. This variation underscores the importance of understanding language-specific factors
when considering code reuse management strategies.

5.1.4 RQI-d:Do characteristics of the originating project affect the probability of reuse? In this section, we first
present the logistic regression model. We then demonstrate the per-language reuse propensity and compare it to
blob-level results. Finally, we analyze binary blob reuse.

Logistic Regression Model. We applied a logistic regression model to determine the likelihood of a project
introducing at least one reused blob. The response variable is binary: 1 if the project has introduced a reused blob,
0 otherwise. Descriptive statistics for the model variables are presented in Table 8. Consistent with blob-level
data, the most frequent languages in our sample are JavaScript and Java.

ACM Trans. Softw. Eng. Methodol.

Beyond Dependencies: The Role of Copy-Based Reuse in Open Source Software Development « 27

Table 8. Project-level Model - Descriptive Statistics

Variable Description Statistics
Reused Project has at least 1 reused blob Yes: 205,140 (33.7%) No: 403,195 (66.3%)

5% Median Mean 95%
Blobs Number of generated blobs 1 15 162.7 397
Binary Binary blobs to total blobs ratio 0 0 0.1 0.6
Commits Number of commit 1 5 57.0 84
Authors Number of authors 1 1 2.5 3
Forks Number of forks 0 0 1.5 1
Stars Number of GitHub stars 0 0 3.4 2
Time Earliest commit time 7/18/2013 3/26/2018 9/15/2017 3/3/2020
Activity Total months project was active 1 1 2.5 8
Language JavaScript Java Python PHP C (Other)
(Counts) 86,065 43,172 40,503 24,659 22,258 391,678

Spearman’s correlation analysis, suitable for the observed heavily skewed distributions, is presented in Table 9.
The number of commits shows a high correlation with two other predictors: activity time (0.68) and the number
of blobs (0.67). These high correlations indicate redundancy, as the number of commits does not add significant
information beyond what is already captured by activity time and the number of blobs. This redundancy can lead
to multicollinearity, potentially distorting the model’s coefficients and reducing interpretability. Consequently,
we remove the number of commits from the model, simplifying it without sacrificing explanatory power. All
other correlations are below 0.52, which are not concerning.

Table 9. Project-level Model - Spearman’s Correlations Between Predictors

Blobs Binary Commits Authors Forks Stars Time Activity

Blobs 1.00 0.46 0.67 0.34 0.22 0.22 0.09 0.52
Binary - 1.00 0.18 0.12 0.06 0.05 0.02 0.14
Commits - b 1.00 0.45 0.27 0.26 0.05 0.68
Authors E - - 1.00 0.32 0.22 0.05 0.38
Forks - - - - 1.00 0.48 0.14 0.28
Stars - - - - - 1.00 0.13 0.28
Time = - - - - - 1.00 0.05
Activity - - - - - - - 1.00

The results for the project-level logistic regression model are shown in Tables 10 and 11. All the variables in the
model have p-values less than 0.05, indicating that they are statistically significant in predicting the likelihood of
a project introducing reused blobs (see Table 10). This demonstrates strong evidence against the null hypothesis,
suggesting that these variables do have an effect on reuse.

Examining the ANOVA results (Table 11) provides further insight into the impact and significance of these
predictors. We see that all the predictors have p-value equal to zero, meaning that the null hypothesis can
be rejected. The deviance values in the ANOVA table indicate the reduction in model deviance when each
predictor is included. For example, adding the number of blobs to the model reduces the deviance by 131,219.53, a

ACM Trans. Softw. Eng. Methodol.

28 « Mahmoud Jahanshahi, David Reid, and Audris Mockus

Table 10. Project-level Model - Coefficients

Estimate Std. Error zvalue Pr(>|z|)

(Intercept) -4.79 0.16 -30.01 <2x10°%
Blobs 0.61 0.00 22894 <2x10°1°
Binary 0.77 0.02 4009 <2x10°1°
Authors 0.09 0.01 8.24 <2x1071
Forks 0.31 0.01 2772 <2x10°1°
Stars 0.06 0.01 719 6.61x 10713
Time 0.10 0.01 1200 <2x10°1¢
Activity 0.07 0.01 1048 <2x107'°
C -0.33 0.02 -19.60 < 2x1071
C# -0.30 0.02 -15.74 <2x1071
Go -0.29 0.04 =770 1.33x 10714
JavaScript 0.21 0.01 2258 <2x1071°
Kotlin -0.23 0.05 -430 1.75%10°
ObjectiveC -0.13 0.03 -3.63 0.000288

Python -0.19 0.01 -14.78 < 2x%10716
R -0.27 0.05 -5.93 1 3.04x107°
Rust -0.48 0.07 -6.65 2.87 x10~ 1!
Scala -0.27 0.07 -3.79 0.000153

TypeScript 0.88 0.03 3457 <2x1071
Java -0.25 0.01 -2090 <2x1071
PHP 0.29 0.01 1959 <2x10°1¢
Perl -0.31 0.10 -3.20 0.001395

Ruby 0.63 0.02 3318 <2x1071°

substantial reduction that underscores its important role in the model. These results confirm the importance of
these predictors in explaining the variability in the likelihood of reuse.

Table 11. Project-level Model - ANOVA Table

Df Deviance Resid. Df Resid. Dev p.value
NULL 608,334 777,660.48

Blobs 1 131,219.53 608,333 646,440.95 < 2x 10716
Binary 1 662.94 608,332 645,778.01 < 2x1071°
Authors 1 926.69 608,331 644,851.32 < 2x 107
Forks 1 2,084.02 608,330 642,767.30 < 2x1071°
Stars 1 63.77 608,329 642,703.53 1.44x 101
Time 1 156.98 608,328 642,546.54 < 2x1071°
Activity 1 139.31 608,327 642,407.24 <2x1071°

Language 15 5,178.20 608,312 637,229.03 <2x 10716

To understand the size and direction of the impacts, we look at the odds ratios inferred from the logistic
regression coefficients. The odds ratio is calculated as the exponential of the coefficient. An odds ratio greater

ACM Trans. Softw. Eng. Methodol.

Beyond Dependencies: The Role of Copy-Based Reuse in Open Source Software Development « 29

than 1 indicates a positive impact, while an odds ratio less than 1 indicates a negative impact. The results are
shown in Figure 5.
TypeScript 2.41
Binary
Ruby
Blobs
Forks
PHP
JavaScript
Time
Authors
Activity
Stars

ObjectiveC

Predictor

Python
Kotlin
Java
Scala
R

Go

C#
Perl

C

Rust

2.5

Odds Ratio

Fig. 5. Project-level Model - Logistic Regression Odds Ratios

The logistic regression analysis shows that several predictors significantly impact the likelihood of a project
having a reused blob. TypeScript, Binary, Ruby, and Blobs have the strongest positive effects, indicating that
increases in these variables substantially raise the odds of a project being reused. Other positive predictors include
Forks, PHP, JavaScript, Time, Authors, Activity, and Stars, which also increase the likelihood, though to a lesser
extent. Conversely, predictors like Rust, C, Perl, C#, Go, Scala, R, Java, Kotlin, Python, and Objective-C negatively
impact the odds, suggesting that increases in these variables decrease the likelihood of a project introducing a
reused blob.

When interpreting the time variable, it is important to note that since the earliest commit timestamp is
represented asa number, we calculated the time elapsed from the earliest commit to the current date for better
interpretability. A larger time value indicates an older earliest commit. The model shows that time has a positive
coefficient, suggesting that the older the earliest commit, the higher the probability of introducing reused blobs.
This result could be influenced by two factors. First, at the blob-level model, we already observed that older blobs
have a higher probability of being reused. Additionally, while the time-bound definition of reuse controls for the
confounding effect of longer visibility at the blob level, it does not account for the longer visibility of the project
itself. Therefore, the observed result might also be affected by the project’s age, which implies longer visibility,
even though the blob is reused within two years of its creation.

ACM Trans. Softw. Eng. Methodol.

30 « Mahmoud Jahanshahi, David Reid, and Audris Mockus

Per-Language Propensity. The project-level model highlights the significance of programming languages in
the likelihood of a project introducing a reused blob. To explore this further, we calculated the percentage of
projects in each language that have introduced reused blobs. From our previous analysis (RQ1-a), we know that
approximately 29% of projects introduced at least one reused blob. When using the time-bound definition of
copying, this ratio increased to 33% in our sample. The results for each language are shown in Table 12.

Table 12. Percentage of Projects Introducing at Least One Reused Blob

Languages Ratio | Language Ratio | Language Ratio
C 33.2% | ObjectiveC 40.0% | TypeScript 62.3%
C# 37.0% | Python 30.5% | Java 36.2%
Go 31.3% | R 28.5% | PHP 46.4%
JavaScript 41.2% | Rust 31.5% | Perl 29.9%
Kotlin 40.0% | Scala 36.0% | Ruby 51.2%

The ratio of projects that have introduced reused blobs varies significantly across different programming lan-
guages, offering new insights compared to the blob-level analysis. For example; projects dominated by TypeScript
have the highest probability (62%) of introducing at least one reused blob. This finding is particularly interesting
because, at the blob level, the propensity to copy in TypeScript was lower than average. This discrepancy suggests
that TypeScript projects, acting as upstream in the language’s supply chain, are less centralized. Developers in
this language seem more inclined to incorporate code from various; possibly unknown, projects.

Other languages also show distinct patterns. For instance, Ruby projects have a high probability (51%) of reusing
blobs, whereas Python projects have a lower probability (30.5%). This variation indicates that the likelihood
of code reuse is strongly influenced by the primary language of the project, reflecting different practices and
community norms across languages. These insights emphasize the importance of considering programming
language when studying code reuse patterns in software projects.

To ensure these results are comparable to blob-level analysis, we calculated the copied blob ratio (copied blobs
to total blobs) for each project and took the average of this ratio for projects in each language. An important
difference here with the blob-level propensity is that at the blob level, language assignment was based on the file
extension of each blob, with binary blobs categorized as “Other”. In this project-level analysis, the language of
a blob is determined by the predominant language of the project it belongs to. For example, a Python-written
blob in a C-dominated project is counted as a C blob. Similarly, binary blobs are assigned the language of the
dominant language in their respective projects. The results of this new definition are shown in Table 13.

Table 13. Project-level - Propensity to Reuse

Language Ratio | Language Ratio | Language Ratio
C 15.4% | ObjectiveC 9.5% | TypeScript 5.6%
C# 4.7% | Python 7.3% | Java 5.8%
Go 6.7% | R 7.2% | PHP 9.5%
JavaScript 8.8% | Rust 5.1% | Perl 21.2%
Kotlin 3.4% | Scala 3.5% | Ruby 5.3%

The propensity to copy varies when using this project-level definition compared to the blob-level definition
(see Table 6).

ACM Trans. Softw. Eng. Methodol.

Beyond Dependencies: The Role of Copy-Based Reuse in Open Source Software Development « 31

For example, the propensity to copy in JavaScript-dominated projects is higher than for JavaScript blobs in
general (8.8% vs. 5.5%). This indicates a greater likelihood of reuse within JavaScript projects compared to individual
JavaScript blobs from various projects. This could be attributed to the modularity and strong reuse culture in the
JavaScript ecosystem, where libraries and frameworks are frequently shared and integrated. JavaScript projects
often incorporate multiple languages, such as HTML and CSS for web development or server-side languages
for backend functionality, enhancing reuse through shared components. The evolution of JavaScript projects,
involving various tools and libraries, also contributes to the higher reuse rate within the project context.

In Perl-dominated projects, the propensity to reuse is higher than for Perl blobs in general (21.2% vs. 18.5%).
This suggests that blobs within Perl projects are more likely to be reused compared to individual Perl blobs from
different projects. Perl’s strong culture of code reuse and sharing, exemplified by the Comprehensive Perl Archive
Network (CPAN), encourages the use and distribution of reusable code modules. Perl projects often include a
wide range of scripts and utilities shared across different applications, enhancing reuse. Furthermore, Perl’s use in
scripting, text processing, and system administration often requires the reuse of common patterns and libraries,
contributing to the higher reuse rate within projects.

Conversely, R-dominated projects show a lower propensity to reuse compared to R blobs in general (7.2% vs.
9.8%). This implies that individual R blobs are more likely to be reused than blobs within R-dominated projects. R
is primarily used for statistical computing and data analysis, where specific scripts and functions are reused across
different analyses. However, R projects are often tailored to specific datasets and analyses, resulting in lower
overall reuse within the project context. The specialized nature of many R projects, with unique data processing
and analysis pipelines, limits reuse compared to individual reusable components like functions and libraries.

Java-dominated projects exhibit a lower propensity to reuse compared to Java blobs in general (5.8% vs.
7.8%). This indicates that individual Java blobs are more likely to be reused than blobs within Java-dominated
projects. Java is widely used across various domains, and reusable components like libraries and frameworks are
common across different projects. However, Java projects tend to be large and complex, with specific architectures
and dependencies that may limit cross-project reuse. The high degree of customization and specificity in Java
enterprise applications reduces the reuse rate within the project context compared to the reuse of individual Java
blobs or libraries.

These analyses reflect the differing dynamics of code reuse in various programming ecosystems. Understanding
these differences can help improve strategies for fostering code reuse and optimizing software development
practices across different languages and project contexts.

Binary Blob Analysis. Although previous analyses indicated that binary blobs are more likely to be reused,
we aimed to investigate whether this propensity varies across projects dominated by different programming
languages. At the blob level, it was not feasible to ascertain the programming language of a binary blob. However,
at the project level, such analysis becomes possible. Therefore, we examined the reused binary blob ratio (the
percentage of reused binary blobs to total reused blobs) within each language and compared it to the binary blob
ratio (the percentage of binary blobs to total blobs) within the same language, utilizing a t-test to identify any
significant differences.

Consistent with the blob-level analysis, the reused binary blob ratio exceeds the general binary blob ratio
across all programming languages, indicating a higher likelihood of reuse for binary blobs. This observation
raises questions about language-specific differences in binary blob reuse. Specifically, we hypothesize that binary
blobs are more frequently reused in certain languages compared to others. In other words, we want to know
if identifying a reused binary blob allows us to infer that it is more likely to originate from projects written in
particular languages.

Our findings confirm this hypothesis, as the proportion of reused binary blobs varies significantly among
different programming languages. Nevertheless, we hypothesize that at least some of this difference stems from

ACM Trans. Softw. Eng. Methodol.

32 « Mahmoud Jahanshahi, David Reid, and Audris Mockus

the general difference in binary blob ratios in different languages and is not limited to reuse. Our statistical tests
reveal that the binary blob ratios indeed differ significantly across languages. Consequently, the ratio of reused
binary blobs also exhibits significant variation among different languages, suggesting that this difference does
not necessarily mean varying binary reuse practices among them.

We want to determine if the higher number of reused binary blobs in a certain language is solely due to the
general prevalence of binary blobs in that language, or if some languages tend to reuse more binary blobs. To
control for this confounding effect, we normalize the binary blob reuse ratio based on the total binary blob ratio.
Given the binary blobs ratio br in a project (binary blobs over total blobs), we defined the reused binary ratio cbr
(binary reused blobs to total reused blobs) to binary ratio br metric. This metric (cbr/br) averaged 4.104 for all
the projects in our sample. By using a linear regression with the project’s primary language as a predictor, we
obtained the results shown in Table 14'3.

_cbr _ cbefcc
br be/c

m: normalized binary reuse metric
cbr: copied binary ratio

br: binary ratio

cbc: copied binary count

cc: copied count

be: binary count

c: total count

Table 14. Reused Binary Blobs to Binary Blobs Metric

Language Metric p-value | Language Metric p-value
C 3.33 0.810722 Rust 6.06 0.422024
C# 4.92 0.025270 Scala 5.38 0.545028
Go 5.73 0.173372 TypeScript 5.17 0.063922
JavaScript 704 <2x107'° | Java 491 0.000497
Kotlin 5.42 0.306698 PHP 4.49 0.035326
ObjectiveC 2.17 0.217673 Perl 3.32 0.975449
Python 2.19 0.005547 Ruby 3.51 0.951277
R 2.65 0.614773

Our analysis reveals that the reused binary blobs to binary blobs metric varies across programming languages.
Notably, C#, JavaScript, Python, Java, and PHP exhibit statistically significant differences (p-value < 0.05). In
particular, JavaScript projects demonstrate a higher tendency to reuse binary blobs, while Python projects show a
lower tendency. This suggests that in JavaScript-dominated projects, reusing binary blobs is likely more efficient
and cost-effective than reusing code. Conversely, Python projects might benefit more from reusing code rather
than binary blobs.

13The complete coefficients and regression ANOVA tables are available in the online appendix.

ACM Trans. Softw. Eng. Methodol.

Beyond Dependencies: The Role of Copy-Based Reuse in Open Source Software Development « 33

RQ1-d Key Findings:

(1) Project properties significantly impact the probability of their blobs being reused, with binary ratio,
number of blobs, forks, authors, activity duration, and stars having a positive impact.

(2) Older projects are more likely to have introduced reused blobs.

(3) Blobs residing in projects dominated by different programming languages have varying probabilities
of reuse, with TypeScript, Ruby, PHP, and JavaScript having higher probabilities, and Rust, C, Perl,
C#, Go, Scala, R, Java, Kotlin, Python, and Objective-C having lower probabilities.

(4) On average, 33.7% of projects have introduced at least one reused blob, but this percentage varies
significantly between languages, with TypeScript (62.3%) and Ruby (51.2%) having the highest
propensity, and R (28.5%) and Perl (29.9%) the lowest.

(5) The tendency to reuse binary blobs is much higher in JavaScript projects, while Python projects
show a lower tendency.

The project-level analysis reveals that various factors significantly influence the likelihood of code reuse in
open source software projects. Projects with more blobs, binary blob ratio, and longer activity tend to exhibit
higher reuse rates. This aligns with our hypothesis that project health, activity, and popularity signals play an
important role in promoting reuse.

The variation in reuse likelihood across different programming languages underscores the influence of language-
specific ecosystems and practices, consistent with blob-level results. For instance, TypeScript and Ruby projects
show the highest propensity for reuse, which may be due to. their robust ecosystems and strong community
practices that encourage code sharing and reuse. Conversely, languages like Python and Perl have lower reuse
rates, suggesting different reuse dynamics and possibly a need for improved tools and practices to foster reuse.
However, the impact between the blob’s language and the language of the project it resides in differs. This
suggests that the underlying factors behind these differences are not just technical aspects of the languages and
their tools, but also their community culture and practices.

The significant reuse of binary blobs, particularly in languages like JavaScript, indicates that binary artifacts are
valuable assets in software projects. This might be due to the efficiency and ease of integrating precompiled binaries
compared to source code. However, the lower reuse rate of binary blobs in Python suggests that this language’s
ecosystem favors source code reuse, which could be due to its dynamic nature and the extensive use of interpreted
scripts. These findings have important implications for the development and support of tools that facilitate
reuse in different programming languages. For languages like JavaScript, where binary blob reuse is prevalent,
enhancing asset libraries could be beneficial. In contrast, for languages like Python, where code reuse is more
advantageous, improving code package managers would be more appropriate. This differentiation underscores
the necessity for tailored support tools to optimize reuse practices in various programming environments.

These findings highlight the impact of project context on reuse patterns and suggest that different definitions
and granularity levels can yield varying insights into code reuse behaviors.

5.2 RQ2: How do developers perceive and engage with copy-based reuse?

Across three rounds, we received 247 complete responses from reusers and 127 from creators. There were also
360 and 178 partial responses, making the total of 607 and 305 responses from reusers and creators respectively.
The results are shown in Table 15.

As will be discussed in Section 7.1.2, the identified originating repository might not always be the true creator
of the blob. 39% of developers identified as creators reported reusing the blob from another source. Additionally,
reusers might have obtained the blob from another reuser and not the original creator (see Section 7.1.3). Among

ACM Trans. Softw. Eng. Methodol.

34 « Mahmoud Jahanshahi, David Reid, and Audris Mockus

Table 15. Survey Participation

Total Started Completed Response Rate Completion Rate
Creator | 3,144 305 127 9.70% 4.04%
Reuser | 6,338 607 247 9.58% 3.90%
Total 9,482 912 374 9.62% 3.94%

the reusers who confirmed reusing the blob, 43% acknowledged the originating project as the source, 48% reported
copying it from elsewhere, and 9% did not answer the question.

These findings provide important estimates: the fraction of reuse within open source software (OSS) is at least
61%, and the fraction of reuse from originating projects is at least 43%. This data is essential for understanding
the dynamics of code reuse within OSS, highlighting the significance of both direct reuse from original projects
and secondary reuse through intermediate projects.

Furthermore, only 60% of those identified as reusers confirmed reusing the blob, while the remaining 40%
claimed to have created it (see Table 16). This discrepancy can be attributed to several factors. First, some
individuals might indeed be the original authors of the blob in the originating project, implying they have reused
their own resources. Second, this gap could be explained by activities in private repositories (e.g., Developer A
creates a file in a private repository, Developer B copies it to a public repository, and then Developer A reuses it
in another public repository). Third, as mentioned in Section 4.3, concerns about potential licensing violations
might have made many reusers uncomfortable admitting the reuse explicitly. Additionally, developers’ faulty
memory could play a role, especially for reuse instances that occurred a long time ago.

One potential area for further investigation could be examining the project owners and commit authors for
each copy instance to gain a better understanding of this gap. However, this was not pursued further in this study
as it was not the main focus. Exploring these factors in future research could provide deeper insights into the
complexities of code reuse and attribution within open source software projects.

Table 16. Identified vs. Claimed Creators & Reusers

Identified Creators Reusers | Total
Claimed Creator 77 (61%) 99 (40%) 176
Reuser 50 (39%) 148 (60%) | 198
Total 127 247 374

Another dimension of the survey explored the intentions of creators for others to reuse their artifacts. Sixty-two
percent of creators indicated that their resources were intended for reuse by others. When asked about the
helpfulness of the particular blob on a scale from 1 to 5 (with 5 being the most helpful), reusers rated the average
helpfulness at 3.81, while creators rated it at 4.24. This suggests that developers are well aware of the reuse
potential of their artifacts, even if the blob may be essential primarily for their own projects.

In the background sections, we discussed the risks associated with this type of reuse. We asked reusers if
they were concerned about these risks as well. On a scale from 1 to 5 (with 5 being the most concerned), the
average concern about bugs in the reused file was 1.83, and the average concern about changes in the original file
was 2.35. Several factors might contribute to the low level of concern among developers, including trust in the
original code’s quality or confidence in their own testing processes. However, this lack of concern could facilitate
the spread of potentially harmful code, even if the creator fixes the original code. The fact that reusers are not
significantly worried about these risks amplifies the potential risk at the OSS supply chain level.

ACM Trans. Softw. Eng. Methodol.

Beyond Dependencies: The Role of Copy-Based Reuse in Open Source Software Development « 35

Next, we asked participants how likely they would be to use a package manager if one were available for
the particular blob. On a scale from 1 to 5 (with 5 being the most likely), the average likelihood of using a
package manager was 2.93. This indicates that although developers may not be very concerned about bugs
or changes (potential improvements), many would still use such a tool if it were available. This suggests that
“package-manager” type tools for refactoring or at least maintaining reused code might gain traction if developed.
These results are shown in Table 17.

Table 17. Likert Scale Questions (Scale 1 to 5)

Question (audience) Responses Average Median: StdDev
How helpful? (creators) 156 4.25 5 1.15
How helpful? (reusers) 185 3.82 4 1.32
Concern about bugs? (reusers) 185 1.85 1 1.33
Concern about changes in the original file? (reusers) 187 2.33 2 1.56
Likelihood of using a package manager? (reusers) 184 2.89 3 1.64

Finally, the thematic analysis of reasons for reuse, specifically responses to the question “why”, revealed eight
themes from the 162 responses we received (see Table 18'%). This analysis provides a nuanced understanding of
the motivations behind code reuse, highlighting several key themes.

Table 18. Identified Reuse Themes

Theme Description Frequency
Demo demonstration, test, prototype 14
Dependency part of alibrary 11
Education learning purposes 16
Functionality specific functionality 39
Own own reuse 2
Resource image, style, dataset, license 30
Template template, starting point, framework 14
Tool parser, plugin, SDK, configuration 23

As expected, one of the main reasons for reuse was to provide specific functionality. This indicates that
developers often reuse code to incorporate existing functionalities into their projects, saving time and effort in
development, a practice well-documented in the literature [48]. This underscores the importance of reusable
components in efficient software development.

Another observed theme was the reuse of various resources, including datasets, instructions, license files, and
graphical or design objects (e.g., PNG, JPEG, fonts, styles). This aligns with the significant reuse of binary blobs
identified in RQ1. The inclusion of diverse resources indicates that developers often depend on readily available
materials to enhance their projects’ visual or functional aspects. While the literature acknowledges this practice,
our findings suggest a slightly higher emphasis on resource reuse. This indicates that resource management
might be more important for developers than previously thought.

14Since survey participants were chosen through stratified sampling, these frequencies do not represent the actual data distribution.

ACM Trans. Softw. Eng. Methodol.

36 « Mahmoud Jahanshahi, David Reid, and Audris Mockus

Reusing tools such as parsers, plugins, SDKs, and configuration files was mentioned 23 times. This practice is
noted for its practicality and efficiency in setting up development environments and ensuring consistency across
projects. This highlights the role of auxiliary software components in streamlining development processes and
providing necessary infrastructure or functionality.

Assignments, school projects, learning objectives, and similar concepts were another prominent theme. This
emphasizes the role of code reuse in the software development knowledge supply chain, as developers reuse
existing code to understand and learn new concepts.

Code reuse for demonstration, testing, and prototyping purposes was identified 14 times. This theme suggests
that developers often reuse code to quickly create prototypes or test scenarios without focusing on the quality,
security, or licensing of the reused code. The priority in these cases is to achieve rapid results. This aligns with
the findings by Juergens et al. [48], that developers often clone code to create prototypes and perform tests. Some
of these quick prototypes, however, may end up as active projects.

Templates, starting points, and frameworks were mentioned 14 times. Developers often clone templates or
frameworks to have a solid foundation for their projects, a practice supported by findings of Roy and Cordy [80].
This approach leverages existing structures to expedite development and ensure consistency.

Part of a library or dependency management was cited 11 times. This practice is highlighted in studies that
emphasize the importance of managing dependencies within the development process, such as the study by Roy
and Cordy [80]. Although checking in library files is not considered best practice, many developers do so to
maintain specific versions and avoid potential issues with updates or changes. This conscious decision highlights
a trade-off between best practices and practical needs.

Reusing one’s own code was mentioned twice. The theme of “own reuse” where developers clone their own
code for reuse in new projects, is less prominently featured in the literature compared to other reasons for code
cloning. Developers clone their own code to ensure consistency, save time, and leverage previously written and
tested code. This practice is practical and efficient, especially when developers are familiar with the code and its
functionality. However, the literature does not emphasize this reason as strongly. While studies acknowledge
the broader concept of code reuse, their focus is more on reusing code from external sources, libraries, or for
educational purposes [48, 80]. This discrepancy suggests that “own reuse” might be an underexplored area
in existing research. It indicates that while developers recognize and practice it frequently, it may not be as
thoroughly documented or emphasized in the academic literature. This gap highlights an opportunity for further
investigation into how and why developers engage in “own reuse” and its impact on software development
processes.

There were also 13 instances where responses were either incomprehensible or the respondent did not remember
the file or the reason for reuse.

ACM Trans. Softw. Eng. Methodol.

Beyond Dependencies: The Role of Copy-Based Reuse in Open Source Software Development « 37

RQ2 Key Findings:
(1) 39% of identified creators stated they reused the blob from another source.
(2) Among reusers, 43% acknowledged the originating project (direct reuse), while 48% copied from
elsewhere (indirect reuse).
(3) Reuse within the OSS landscape is at least 61%.
(4) 60% of reusers confirmed reuse; 40% claimed creation.
(5) 62% of creators intended their resources for reuse.
(6) Reusers are not very concerned about potential bugs or changes in the original file.
(7) Reusers are willing to use a package manager if available.
(8) Main reuse themes are: functionality, resources, tools, education, demo/testing/prototyping, tem-
plates, dependencies, and own reuse.

The findings reveal that a non-negligible portion of developers engage in copy-based reuse within the OSS
community. This practice is common, with many reusers sourcing code not directly from the original creators
but through intermediaries. Understanding these dynamics is important for improving the transparency and
traceability of reused code, which could potentially enhance code quality and security:

The discrepancies between identified and claimed creators highlight complexities in attribution and ownership.
Additionally, survey respondents’ replies are not always accurate or true, which further complicates understanding
the true origins of code. This gap underscores the need for better tracking mechanisms within repositories to
accurately reflect code origins. Future research could delve deeper into these factors, offering insights that could
inform policy and tooling improvements in OSS development.

Creators often intend their code to be reused, and both creators and reusers recognize the utility of such
artifacts. This positive perception suggests that promoting reuse can be beneficial for the community, fostering
collaboration and innovation. However, the difference in helpfulness ratings indicates that there might be room
for improving the clarity and documentation of reusable code to better meet reusers’ needs.

Despite the low concern about potential risks like bugs and changes, the moderate interest in package
management tools suggests an opportunity for developing solutions that can help maintain and refactor reused
code. Such tools could mitigate risks by providing updates and improvements in a managed manner, enhancing
the overall reliability of reused code.

The thematic analysis of reuse motivations provides a comprehensive view of why developers opt for copy-
based reuse. Reusing for specific functionality underscores the importance of modular and reusable code in
software development. It also highlights the potential benefits of well-documented and easily integrable code
components that can be readily reused by others.

This practice of including library files suggests a deliberate effort to maintain stability and avoid the uncertainties
that might come with updates or changes. However, it also highlights a potential area for improvement in
developer education and best practices, as well as the importance of tools that can help manage dependencies
more effectively. These insights contribute to our understanding of the motivations behind code reuse and the
practical considerations developers face in maintaining their projects.

While reusing for demo and testing can accelerate development and innovation, it also raises potential risks.
Developers may inadvertently propagate vulnerabilities or violate licenses, leading to broader issues within the
software supply chain. Highlighting the importance of balancing speed and security during testing phases can
inform best practices and educational efforts.

Educational use underscores the educational value of code reuse. Reusing existing code allows learners to
understand real-world applications and coding practices, fostering skill development. However, it also emphasizes

ACM Trans. Softw. Eng. Methodol.

38 « Mahmoud Jahanshahi, David Reid, and Audris Mockus

the need for proper guidance and resources to ensure that educational reuse is done ethically and effectively.
Encouraging educators to integrate lessons on best practices in code reuse can enhance the quality of learning
and adherence to legal and ethical standards.

The proportion of no meaningful answers and not recalling the file, indicate that not all reuse instances are
well-documented or remembered by developers. This lack of clarity can hinder the understanding and traceability
of reuse practices. It highlights the need for better documentation and tracking mechanisms to ensure that the
reasons and contexts for reuse are transparent and well-understood. Implementing such measures can improve
the management of reused code and resources, reducing potential risks associated with undocumented reuse.

6 IMPLICATIONS
6.1 For Developers

Copy-based reuse enables developers to save time and effort by leveraging existing code. However, it introduces
risks such as maintenance fragmentation, security vulnerabilities, and outdated dependencies. To address these
challenges, developers should adopt tools and practices to track reused code, ensure compliance with licensing
requirements, and mitigate risks associated with unverified code quality.

Fostering a practice of systematically reviewing and documenting reused code not only enhances its reliability
and maintainability, but also contributes to the overall sustainability of software projects. Additionally, staying
informed about updates to reused code and integrating these updates promptly can further reduce risks associated
with outdated or insecure components.

6.2 For Businesses

Businesses that rely on open source software must proactively address the inherent risks of copy-based reuse,
including security vulnerabilities and potential non-compliance with licensing terms. Investing in robust tools
for tracking and maintaining reused code is critical to safeguarding the software supply chain. This effort should
encompass implementing workflows for regularly updating and reviewing reused components.

Moreover, businesses should actively support smaller open source projects that provide valuable code contri-
butions. Such support not only enhances the quality and reliability of business-critical software, but also fosters
goodwill and collaboration within the open source community. By taking these steps, businesses can effectively
mitigate risks while strengthening the ecosystem upon which they rely.

6.3 For the Open Source Community

The open source community plays an important role in ensuring the safe and effective reuse of code. By
promoting best practices for ethical and secure reuse, such as adopting standardized licensing and improving
quality benchmarks, the community can minimize risks and build trust in shared resources. Equally important is
supporting small and medium-sized projects that contribute significantly to the reusable code base. Providing
mentorship, funding, and collaboration opportunities can bolster the overall open source ecosystem, fostering
innovation and cooperation across projects.

Additionally, establishing centralized repositories or resources that facilitate traceability and offer detailed
metadata on provenance, authorship, and licensing can streamline the reuse process and mitigate associated risks.
These efforts collectively enhance the reliability, sustainability, and scalability of open source software.

6.4 For Researchers and Educators

Researchers have a unique opportunity to investigate finer-grained reuse patterns, such as instances involving
slight modifications or partial reuse, to better understand the factors influencing reuse and its long-term impact

ACM Trans. Softw. Eng. Methodol.

Beyond Dependencies: The Role of Copy-Based Reuse in Open Source Software Development « 39

on software quality and security. Such insights can guide the development of tools and methodologies that
promote safe and effective reuse practices.

Educators should integrate lessons on ethical reuse practices, licensing compliance, and dependency man-
agement into software engineering curricula. By leveraging real-world case studies and addressing practical
challenges, such as balancing development speed with security concerns, educators can equip future developers to
navigate the complexities of software reuse responsibly. This approach will help ensure that the next generation
of software professionals actively supports the sustainability and growth of open source ecosystems.

6.5 For OSS Platform Maintainers

Platforms like GitHub and GitLab are well-positioned to enhance practices surrounding copy-based reuse.
Improving traceability mechanisms to preserve provenance, authorship, and licensing metadata is essential for
minimizing risks such as unintentional license violations and outdated dependencies. Integrating features for
automated detection of license conflicts, dependency vulnerabilities, and changes in reused code can further
empower developers to manage their projects efficiently and securely.

Additionally, platforms can offer educational resources and in-platform guidance to encourage best practices
for reuse and compliance. By fostering a culture of informed and collaborative reuse, platform maintainers can
contribute significantly to the long-term sustainability and resilience of the open source ecosystem.

7 LIMITATIONS
7.1 Internal Validity

7.1.1 Commit Time. The identification of the first occurrence and consequently building the reuse timeline of a
blob is based on the commit timestamp. This time is not necessarily accurate as it depends on the user’s system
time. The dataset we utilized followed suggestions by Flint et al. [22] and other methods to eliminate incorrect
or questionable timestamps. This increases the reliability of our reuse timeline. We also used version history
information to ensure the time of parent commits does not postdate that of child commits [46]. This adds an extra
layer of consistency and validation, further enhancing the accuracy of our data.

7.1.2 Originating Project. The accuracy of origination estimates is highly reliant on the completeness of data.
Even if we assume that the World of Code (WoC) collection is exhaustive, it is possible that some blobs may
have originated in a private repository before being copied into a public one. This means that the originating
repository in WoC may not be the actual creator of the blob. This scenario suggests that even with a comprehensive
dataset, there could be instances of code reuse that remain undetected, adding another layer of complexity to
understanding the full extent of reuse across open source projects. For example, a 3D cannon pack asset!® was
committed by 38 projects indexed by WoC. However, that asset was originally created earlier in the Unity Asset
Store [46].

By utilizing the extensive WoC collection, we provide a broad and detailed analysis of code reuse, capturing
a significant portion of open source activity even if some instances of private-to-public transitions are missed.
Additionally, the examples we identified, such as the 3D cannon pack asset, highlight the practical implications
and real-world relevance of our findings, demonstrating the robustness of our analysis despite potential data gaps.
Our approach addresses the inherent challenges of tracking code origination and reuse, offering a framework
that can be refined and expanded in future research to further improve accuracy and comprehensiveness.

7.1.3 Copy Instance. A unique combination of blob, originating project, and destination project might not always
accurately represent the actual pattern of reuse. This is because some destination projects could potentially reuse
the blob from a different source other than the originating project. For instance, if we have three projects—A, B,

Shttps://assetstore.unity.com/packages/3d/props/weapons/stylish-cannon-pack-174145

ACM Trans. Softw. Eng. Methodol.

https://assetstore.unity.com/packages/3d/props/weapons/stylish-cannon-pack-174145

40 « Mahmoud Jahanshahi, David Reid, and Audris Mockus

and C—in order of blob creation, project C might copy from either project A or B. Additionally, certain blobs
are not reused but are created independently in each repository, such as an empty string or a standard template
automatically generated by a common tool [46]. These blobs are excluded by using the list provided by WoC [62].

Despite this limitation, our results remain significant. By recognizing the potential for indirect reuse and
independently created blobs, we provide a more nuanced understanding of the reuse landscape, accounting for
the complexity of code propagation across projects. Excluding independently created blobs and utilizing WoC’s
comprehensive list ensures that our analysis focuses on genuine reuse instances, enhancing the reliability of our
findings.

7.2 External Validity

7.2.1 Blob-level Reuse. Our work focuses solely on the reuse of entire blobs, deliberately excluding the reuse of
partial code segments within files. While blob-level reuse is common, it only covers a subset of the broader code
reuse landscape. Blob-level reuse is more relevant to scenarios where larger code blocks, consisting of entire files
or even groups of files, are reused compared to statement or function-level reuse. This means that our results
might have an implicit bias towards programming languages or ecosystems that rely more heavily on complete
files, potentially overlooking reuse practices prevalent in languages that favor modular or snippet-based reuse.

This limitation also implies that different versions of the same file, even if they differ by just one character,
generate different blobs due to distinct file hashes. Consequently, blob reuse does not equate to file reuse. Defining
file reuse is challenging because it is difficult to determine what constitutes equivalence between files in different
projects [46]. This could be a potential reason for the higher level of reuse in binary blobs, as they are relatively
harder to modify.

Despite these limitations, our results remain significant for several reasons:

e Prevalent Pattern: By concentrating on entire blob reuse, we address a prevalent and impactful pattern
in software development. This allows us to provide valuable insights into a substantial portion of code
reuse practices.

o Clarity and Precision: Analyzing entire blobs offers a clear and precise method for identifying reuse,
avoiding the ambiguity and complexity associated with defining partial file reuse. This clarity enhances
the reliability of our findings.

o Efficiency and Scalability: Blob-level analysis is computationally efficient and scalable, enabling us to
process large datasets and draw meaningful conclusions from extensive data. This scalability is important
for comprehensive empirical studies.

¢ Foundation for Future Research: Our work lays the groundwork for future studies that can build
on our findings to explore partial file reuse and other nuanced aspects of code reuse. By addressing a
well-defined scope, we provide a solid foundation for subsequent research.

In summary, while our focus on blob reuse introduces certain limitations, it also provides clear, scalable, and
impactful insights into code reuse practices. This targeted approach enables us to contribute valuable findings
to the field, despite the inherent complexities of defining and analyzing file reuse. Although blob-level reuse is
less granular than statement or method-level reuse, findings at the blob level would also apply to sub-blob-level
analysis, which should adjust for blob-level reuse. Future studies are needed to investigate the extent to which
different levels and types of code reuse overlap or differ.

7.2.2 Survey Response Rate. The relatively low response rate to our survey may have been due to the perception
of the respondents that copying code is a sensitive subject. These concerns may have impacted the responses even
in cases when developers chose to participate. It suggests that further work may be needed to design surveys
that do not create such impressions.

ACM Trans. Softw. Eng. Methodol.

Beyond Dependencies: The Role of Copy-Based Reuse in Open Source Software Development « 41

Additionally, since many of these reuse instances happened a long time ago, developers might have forgotten
about them. Therefore, it is important to conduct regular surveys to capture the experiences while developers
still remember their practices.

8 FUTURE WORK
8.1 Code-Snippet Granularity

We discussed in methodology section that going to a finer granularity than blob-level to detect code reuse is not
practically feasible. Nevertheless, there are approaches that can make this a relatively more tractable problem.
Specifically, hashing the abstract syntax tree (AST) for each code snippet (such as classes or functions) in a blob
and mapping blobs to these hashes could potentially make finer-grained code reuse detection more feasible.

Assuming an average of k code snippets for each of the 16 billion blobs, the parsing and hashing operation has
a complexity of O(n), resulting in O(16 X 10° X k). We can then perform a self-join on the created map of blob to
syntax tree hash (b2AST) using the AST hash as the key. The self-join complexity depends on the number of
unique hashes and their distribution. In the worst case, if every blob had unique hashes, the join eperation would
approach O((16 x 10° x k)?). However, the join complexity would typically be significantly less if there are many
common hashes. A more realistic estimate assumes that the number of unique AST hashes k is much smaller
than the total number of entries in the b2AST map, making the join complexity closer to O(h X 16 X 10° x k).
This join, although potentially large, can be more feasible than pairwise comparisons of entire blobs due to the
more efficient handling of common hashes.

By examining code reuse at the granularity of code snippets, we could potentially uncover a far more intricate
network of reuse. This approach might reveal patterns and practices thatare not noticeable when looking solely
at whole-file or blob-level reuse. Although this increased complexity is challenging to manage, it offers valuable
opportunities for a more comprehensive analysis of reuse [46].

8.2 Dependency-Based Reuse

In this work, we aimed to demonstrate the prevalence and importance of copy-based reuse. To gain a comprehen-
sive understanding of code reuse, it is important to analyze both copy-based and dependency-based reuse. Each
type of reuse reveals different aspects of how software developers leverage existing code in their projects. By
studying them side by side, we can paint a more complete picture of the extent and nuances of reuse in software
development. Ignoring one in favor of the other would provide an incomplete narrative [46].

8.3 Upstream Repository

As highlighted in the limitations section, we currently lack precise knowledge about the source from which
a repository reuses a file. We tend to assume it is from the originating repository in all instances of copying.
However, this assumption may not capture the real-world complexity of reuse. To enhance our understanding of
how developers identify suitable repositories for reuse, we could potentially leverage meta-heuristic algorithms
or artificial intelligence techniques. These advanced methods might enable us to predict the actual source of
reused artifacts in each instance of copying with greater accuracy [46].

8.4 Open Source Software Supply Chain Network

Directed Acyclic Graphs (DAGs) have been instrumental in clone detection and reuse literature due to their
ability to model and analyze complex relationships and dependencies between various software components.

ACM Trans. Softw. Eng. Methodol.

42 « Mahmoud Jahanshahi, David Reid, and Audris Mockus
In the context of copy-based reuse, the dataset created using the World of Code (WoC)!¢ infrastructure can be
leveraged to construct DAGs that represent the flow and reuse across different repositories.

The dataset’s detailed tracking of blob copies, including their origins and destinations, provides a rich source
of data to map these relationships accurately. By drawing DAGs, researchers can visualize and analyze the
propagation of reused blobs, identifying critical nodes (projects or blobs) that play a central role in the reuse
network. This visualization helps in understanding the structure and dynamics of reuse, highlighting patterns
such as the most reused blobs, the central projects in the reuse network, and potential vulnerabilities or licensing
issues propagating through these reused blobs.

DAGs can reveal how reuse spreads across projects, helping to identify which projects are the primary sources
of reusable blobs and how code flows between different projects. By mapping out the reuse network, it is
possible to pinpoint critical points where vulnerabilities or licensing issues could propagate, allowing for targeted
interventions to mitigate these risks. Understanding the reuse network also aids in developing better tools and
practices for managing code quality and ensuring that reused code is maintained and updated consistently across
all projects that use it.

Studies on large-scale clone detection such as Sajnani et al. [83] and Koschke [52] provide foundational
methodologies for leveraging DAGs in these contexts. These methodologies can be adapted and extended using
our dataset to enhance the understanding of copy-based reuse in open source software development.

8.5 Tool Development

As discussed in the background section, different types of code reuse can have impacts on several critical areas,
including security, licensing, and code quality. Understanding these implications and addressing them is important
for advancing software development practices.

Security. Reused code can propagate vulnerabilities across multiple projects [78]. For instance, if a security flaw
exists in a reused blob, it can potentially affect all projects that include this blob. Analyzing the reuse patterns can
help identify critical points where vulnerabilities might spread and allow for proactive mitigation measures. There
have been notable incidents where widespread code reuse led to security breaches. For example, the Heartbleed
bug in OpenSSL had far-reaching impacts due to the extensive reuse of the affected code across numerous projects.
Future research can focus on developing automated tools that scan reused code for known vulnerabilities and
suggest patches. This proactive approach can enhance the security posture of software systems.

Compliance. Reused code may carry licensing obligations that need to be respected. Failure to comply with
these obligations can lead to legal disputes and financial penalties. By understanding reuse patterns, organizations
can ensure they meet licensing requirements. There have been instances where companies faced legal challenges
due to improper reuse of code with restrictive licenses. For example, using GPL-licensed code in a proprietary
software without complying with GPL terms has led to lawsuits. Developing tools that automatically check for
license compliance when code is reused can help organizations avoid legal pitfalls. These tools can flag potential
issues and provide guidance on how to resolve them.

Code Quality. Reused code may not always meet the quality standards of the adopting project. Ensuring that
reused code adheres to best practices and coding standards is essential for maintaining overall code quality.
Poorly written code can lead to maintenance challenges and degraded performance in adopting projects. Future
work can focus on creating tools that assess the quality of reused code and suggest improvements. These tools
can analyze code for adherence to coding standards, detect code smells, and recommend refactoring.

19For more information about how to access this data, please visit: https://github.com/woc-hack/tutorial.

ACM Trans. Softw. Eng. Methodol.

https://github.com/woc-hack/tutorial

Beyond Dependencies: The Role of Copy-Based Reuse in Open Source Software Development « 43

Package Managers. Developing package managers tailored for different programming languages and communi-
ties can be highly beneficial. These managers can offer more relevant and effective support for managing code
reuse in specific environments. Additionally, enhancing existing package managers with features such as reuse
tracking, version control, and automated updates can improve development efficiency and reduce the associated
risks of code reuse.

Community Engagement. Engaging with open source communities to develop tools and practices that address
the unique needs of different ecosystems, and collaborating with these communities, can ensure widespread
adoption and effectiveness. Continuously gathering user feedback and iterating on the tools to enhance their
functionality and usability is also important. This iterative process helps create robust and reliable tools that
meet the evolving needs of software developers.

9 CONCLUSIONS

In conclusion, our study highlights the non-negligible role of copy-based reuse in open source software develop-
ment. By leveraging the extensive World of Code (WoC) dataset, we provided a comprehensive analysis of code
reuse, revealing that a substantial portion of open source projects engage in this practice. Our findings indicate
that 6.9% of all blobs in OSS have been reused at least once, and 80% of projects have reused blobs from another
project. This widespread reuse emphasizes the efficiency gains in OSS development but also raises concerns about
security and legal compliance.

The variation in reuse patterns across programming languages underscores the influence of language-specific
ecosystems and practices. Moreover, the higher propensity for binary blob reuse suggests a need for tailored tools
to support different types of reuse. Future research should focus on improving the accuracy and comprehensiveness
of reuse detection and exploring the impact of partial file reuse.

The survey results further enrich our understanding of reuse practices. We found that many creators intended
their resources for reuse, indicating a collaborative mindset among developers. Reusers generally found the
reused blobs helpful. Despite these positive perceptions, reusers showed relatively low concern about potential
bugs and changes in the original files. This low level of concern could suggest either a high level of trust in the
quality of the reused code or a lack of awareness of the associated risks. Additionally, the survey revealed a
moderate interest in using package managers to handle changes to reused files. This indicates potential demand
for tools that can streamline and manage code reuse more effectively.

Overall, our work provides‘insights into the patterns and factors affecting code reuse, advocating for better
management and support tools to enhance the sustainability and security of OSS. By addressing the identified
risks and leveraging the collaborative nature of the OSS community, we can improve code reuse practices and
outcomes.

ACKNOWLEDGMENTS

This work was supported in part by the National Science Foundation under Award Numbers 1901102 and 2120429.
The authors additionally thank Dr. James Herbsleb and Dr. Bogdan Vasilescu for their valuable advice and
insightful comments, which helped improve this work. The authors also thank the reviewers for their constructive
feedback and suggestions, which helped enhance the quality of this paper.

REFERENCES

[1] Qurat Ul Ain, Wasi Haider Butt, Muhammad Waseem Anwar, Farooque Azam, and Bilal Magbool. 2019. A systematic review on code
clone detection. IEEE access 7 (2019), 86121-86144.

[2] Le An, Ons Mlouki, Foutse Khomh, and Giuliano Antoniol. 2017. Stack overflow: a code laundering platform?. In 2017 IEEE 24th
International Conference on Software Analysis, Evolution and Reengineering (SANER). IEEE, 283-293.

ACM Trans. Softw. Eng. Methodol.

a4 .

(3]
(4]

(7]

(8]

(9]
[10]
(1]
(12]
(13]
(14]
(15]
(16]
(17]
(18]

[19]

[20]

[21]

[22]
[23]
[24]
[25]
[26]
[27]
[28]
[29]

[30]

[31]

Mahmoud Jahanshahi, David Reid, and Audris Mockus

Corey M Angst, Ritu Agarwal, Vallabh Sambamurthy, and Ken Kelley. 2010. Social contagion and information technology diffusion:
The adoption of electronic medical records in US hospitals. Management Science 56, 8 (2010), 1219-1241.

Giuliano Antoniol, Massimiliano Di Penta, and Ettore Merlo. 2004. An automatic approach to identify class evolution discontinuities.
In Proceedings. 7th International Workshop on Principles of Software Evolution, 2004. IEEE, 31-40.

Zubin Austin and Jane Sutton. 2014. Qualitative research: Getting started. The Canadian journal of hospital pharmacy 67, 6 (2014), 436.
Tegawendé F Bissyandé, Ferdian Thung, David Lo, Lingxiao Jiang, and Laurent Réveillere. 2013. Popularity, interoperability, and impact
of programming languages in 100,000 open source projects. In 2013 IEEE 37th annual computer software and applications conference.
IEEE, 303-312.

Kelly Blincoe, Jyoti Sheoran, Sean Goggins, Eva Petakovic, and Daniela Damian. 2016. Understanding the popular users: Following,
affiliation influence and leadership on GitHub. Information and Software Technology 70 (2016), 30-39.

Hudson Borges, Andre Hora, and Marco Tulio Valente. 2016. Predicting the popularity of github repositories. In Proceedings of the The
12th international conference on predictive models and data analytics in software engineering. 1-10.

Lina Boughton, Courtney Miller, Yasemin Acar, Dominik Wermke, and Christian Késtner. 2024. Decomposing and Measuring Trust in
Open-Source Software Supply Chains. In Proceedings of the 2024 ACM/IEEE 44th International Conference on Software Engineering: New
Ideas and Emerging Results. 57-61.

Virginia Braun and Victoria Clarke. 2006. Using thematic analysis in psychology. Qualitative research in psychology 3, 2 (2006), 77-101.
Alan W Brown and Kurt C Wallnau. 1998. The current state of CBSE. IEEE software 15, 5 (1998), 37-46.

Andrea Capiluppi, Patricia Lago, and Maurizio Morisio. 2003. Characteristics of open source projects. In Seventh European Conference
onSoftware Maintenance and Reengineering, 2003. Proceedings. IEEE, 317-327.

Ashley Castleberry and Amanda Nolen. 2018. Thematic analysis of qualitative research data: Is it as easy as it sounds? Currents in
pharmacy teaching and learning 10, 6 (2018), 807-815.

Nicholas A Christakis and James H Fowler. 2013. Social contagion theory: examining dynamic social networks and human behavior.
Statistics in Medicine 32 (2013), 556-577. Issue 4. https://doi.org/10.1002/sim.5408

Russ Cox. 2019. Surviving Software Dependencies: Software reuse is finally here but comes with risks. Queue 17, 2 (2019), 24-47.
John W Creswell and] David Creswell. 2017. Research design: Qualitative, quantitative, and mixed methods approaches. Sage publications.
Kevin Crowston and James Howison. 2005. The social structure of free and open source software development.

Norman K Denzin. 2017. The research act: A theoretical introduction to sociological methods. Routledge.

Massimiliano Di Penta, Daniel M German, Yann-Gaél Guéhéneuc, and Giuliano Antoniol. 2010. An exploratory study of the evolution
of software licensing. In 2010 ACM/IEEE 32nd International Conference on Software Engineering, Vol. 1. IEEE, 145-154.

Muyue Feng, Weixuan Mao, Zimu Yuan, Yang Xiao, Gu Ban, Wei Wang, Shiyang Wang, Qian Tang, Jiahuan Xu, He Su, et al. 2019.
Open-source license violations of binary software at large scale. In 2019 IEEE 26th International Conference on Software Analysis,
Evolution and Reengineering (SANER). IEEE, 564-568.

Felix Fischer, Konstantin Boéttinger, Huang Xiao, Christian Stransky, Yasemin Acar, Michael Backes, and Sascha Fahl. 2017. Stack
Overflow Considered Harmful? The Impact of Copy&Paste on Android Application Security. In 2017 IEEE Symposium on Security and
Privacy (SP). 121-136. https://doi.org/10.1109/SP.2017.31

Samuel W Flint, Jigyasa Chauhan; and Robert Dyer. 2021. Escaping the time pit: Pitfalls and guidelines for using time-based git data.
In 2021 IEEE/ACM 18th International Conference on Mining Software Repositories (MSR). IEEE, 85-96.

William Frakes and Carol Terry. 1996. Software reuse: metrics and models. ACM Computing Surveys (CSUR) 28, 2 (1996), 415-435.
William B Frakes and Christopher J Fox. 1995. Sixteen questions about software reuse. Commun. ACM 38, 6 (1995), 75—f.

William B Frakes and Kyo Kang. 2005. Software reuse research: Status and future. IEEE transactions on Software Engineering 31, 7
(2005), 529-536.

William B Frakes and Giancarlo Succi. 2001. An industrial study of reuse, quality, and productivity. Journal of Systems and Software 57,
2 (2001), 99-106.

Mark Gabel and Zhendong Su. 2010. A study of the uniqueness of source code. In Proceedings of the eighteenth ACM SIGSOFT
international symposium on Foundations of software engineering. 147-156.

Jonas Gamalielsson and Bjorn Lundell. 2014. Sustainability of Open Source software communities beyond a fork: How and why has
the LibreOffice project evolved? Journal of systems and Software 89 (2014), 128-145.

CJ Michael Geisterfer and Sudipto Ghosh. 2006. Software component specification: a study in perspective of component selection and
reuse. In Fifth International Conference on Commercial-off-the-Shelf (COTS)-Based Software Systems (ICCBSS’05). IEEE, 9-pp.

Daniel M German. 2002. The evolution of the GNOME Project. In Proceedings of the 2nd Workshop on Open Source Software Engineering.
20-24.

Daniel M German, Massimiliano Di Penta, Yann-Gael Gueheneuc, and Giuliano Antoniol. 2009. Code siblings: Technical and legal
implications of copying code between applications. In 2009 6th IEEE International Working Conference on Mining Software Repositories.
IEEE, 81-90.

ACM Trans. Softw. Eng. Methodol.

https://doi.org/10.1002/sim.5408
https://doi.org/10.1109/SP.2017.31

[32]
[33]
[34]
[35]
[36]
(37]
(38]
[39]

[40]

[41]

[42]
[43]
[44]
[45]
[46]
[47]
[48]
[49]

[50]

[51]

[52]
(53]

[54]

[55]
[56]

Beyond Dependencies: The Role of Copy-Based Reuse in Open Source Software Development « 45

Daniel M German and Ahmed E Hassan. 2009. License integration patterns: Addressing license mismatches in component-based
development. In 2009 IEEE 31st international conference on software engineering. IEEE, 188-198.

Mohammad Gharehyazie, Baishakhi Ray, and Vladimir Filkov. 2017. Some from here, some from there: Cross-project code reuse in
github. In 2017 IEEE/ACM 14th International Conference on Mining Software Repositories (MSR). IEEE, 291-301.

Mohammad Gharehyazie, Baishakhi Ray, Mehdi Keshani, Masoumeh Soleimani Zavosht, Abbas Heydarnoori, and Vladimir Filkov.
2019. Cross-project code clones in GitHub. Empirical Software Engineering 24, 3 (2019), 1538-1573.

Antonios Gkortzis, Daniel Feitosa, and Diomidis Spinellis. 2021. Software reuse cuts both ways: An empirical analysis of its relationship
with security vulnerabilities. Journal of Systems and Software 172 (2021), 110653.

Georgios Gousios. 2013. The GHTorent dataset and tool suite. In 2013 10th Working Conference on Mining Software Repositories (MSR).
IEEE, 233-236.

Georgios Gousios and Diomidis Spinellis. 2012. GHTorrent: GitHub’s data from a firehose. In 2012 9th IEEE Working Conference on
Mining Software Repositories (MSR). IEEE, 12-21.

Greg Guest, Arwen Bunce, and Laura Johnson. 2006. How many interviews are enough? An experiment with data saturation and
variability. Field methods 18, 1 (2006), 59-82.

Stefan Haefliger, Georg Von Krogh, and Sebastian Spaeth. 2008. Code reuse in open source software. Management science 54, 1 (2008),
180-193.

Steve Hanna, Ling Huang, Edward Wu, Saung Li, Charles Chen, and Dawn Song. 2012. Juxtapp: A scalable system for detecting code
reuse among android applications. In International Conference on Detection of Intrusions and Malware, and Vulnerability Assessment.
Springer, 62-81.

Hideaki Hata, Raula Gaikovina Kula, Takashi Ishio, and Christoph Treude. 2021. Research artifact: The potential of meta-maintenance
on GitHub. In 2021 IEEE/ACM 43rd International Conference on Software Engineering: Companion Proceedings (ICSE-Companion). IEEE,
192-193.

Hideaki Hata, Raula Gaikovina Kula, Takashi Ishio, and Christoph Treude. 2021." Same file, different changes: the potential of
meta-maintenance on github. In 2021 IEEE/ACM 43rd International Conference on Software Engineering (ICSE). IEEE, 773-784.

Lars Heinemann, Florian Deissenboeck, Mario Gleirscher, Benjamin Hummel, and Maximilian Irlbeck. 2011. On the extent and nature
of software reuse in open source java projects. In International Conference on Software Reuse. Springer, 207-222.

David W Hosmer Jr, Stanley Lemeshow, and Rodney X Sturdivant. 2013. Applied logistic regression. John Wiley & Sons.

Katsuro Inoue, Yuya Miyamoto, Daniel M German, and Takashi Ishio. 2021. Finding code-clone snippets in large source-code collection
by CCgrep. In Open Source Systems: 17th IFIP WG 2.13 International Conference, OSS 2021, Virtual Event, May 12-13, 2021, Proceedings 17.
Springer, 28-41.

Mahmoud Jahanshahi and Audris Mockus. 2024. Dataset: Copy-based Reuse in Open Source Software. In 2024 IEEE/ACM 21st
International Conference on Mining Software Repositories (MSR). IEEE, 42-47.

Lingxiao Jiang, Ghassan Misherghi, Zhendong Su, and Stephane Glondu. 2007. Deckard: Scalable and accurate tree-based detection of
code clones. In 29th International Conference on Software Engineering (ICSE’07). IEEE, 96-105.

Elmar Juergens, Florian Deissenboeck, Benjamin Hummel, and Stefan Wagner. 2009. Do code clones matter?. In 2009 IEEE 31st
International Conference on Software Engineering. IEEE, 485-495.

Cory J Kapser and Michael W Godfrey. 2008. “Cloning considered harmful” considered harmful: patterns of cloning in software.
Empirical Software Engineering 13 (2008), 645-692.

Naohiro Kawamitsu, Takashi Ishio, Tetsuya Kanda, Raula Gaikovina Kula, Coen De Roover, and Katsuro Inoue. 2014. Identifying
source code reuse across repositories using lcs-based source code similarity. In 2014 IEEE 14th international working conference on
source code analysis and manipulation. IEEE, 305-314.

Stefan Koch and Georg Schneider. 2002. Effort, co-operation and co-ordination in an open source software project: GNOME. Information
Systems Journal 12, 1 (2002), 27-42.

Rainer Koschke. 2007. Survey of research on software clones.

Robert V Krejcie and Daryle W Morgan. 1970. Determining sample size for research activities. Educational and psychological
measurement 30, 3 (1970), 607-610.

CharlesW Krueger. 2001. Easing the transition to software mass customization. In International Workshop on Software Product-Family
Engineering. Springer, 282-293.

Charles W Krueger. 1992. Software reuse. ACM Computing Surveys (CSUR) 24, 2 (1992), 131-183.

Piergiorgio Ladisa, Henrik Plate, Matias Martinez, and Olivier Barais. 2023. Sok: Taxonomy of attacks on open-source software supply
chains. In 2023 IEEE Symposium on Security and Privacy (SP). IEEE, 1509-1526.

[57] Jure Leskovec and Christos Faloutsos. 2006. Sampling from large graphs. In Proceedings of the 12th ACM SIGKDD international

[58]

conference on Knowledge discovery and data mining. 631-636.
Zhenmin Li, Shan Lu, Suvda Myagmar, and Yuanyuan Zhou. 2006. CP-Miner: Finding copy-paste and related bugs in large-scale
software code. IEEE Transactions on software Engineering 32, 3 (2006), 176-192.

ACM Trans. Softw. Eng. Methodol.

46 -

[59]

[60]

[61]

[62]

[63]

[64]

[65]
[66]

[67]
[68]
[69]
[70]
(71]

[72]

[73]

[74]

[75]
[76]

[77]
(78]
[79]
(80]
(81]

(82]
(83]

[84]

Mahmoud Jahanshahi, David Reid, and Audris Mockus

Long Liang, Xiaobo Wu, Jing Deng, and Xin Lv. 2022. Research on Risk Analysis and Governance Measures of Open-source Components
of Information System in Transportation Industry. Procedia Computer Science 208 (2022), 106-110. https://doi.org/10.1016/j.procs.2022.
10.017 7th International Conference on Intelligent, Interactive Systems and Applications.

Cristina V Lopes, Petr Maj, Pedro Martins, Vaibhav Saini, Di Yang, Jakub Zitny, Hitesh Sajnani, and Jan Vitek. 2017. DéjaVu: a map of
code duplicates on GitHub. Proceedings of the ACM on Programming Languages 1, OOPSLA (2017), 1-28.

Adolfo Lozano-Tello and Asuncién Gémez-Pérez. 2002. BAREMO: how to choose the appropriate software component using the
analytic hierarchy process. In Proceedings of the 14th international conference on Software engineering and knowledge engineering.
781-788.

Yuxing Ma, Chris Bogart, Sadika Amreen, Russell Zaretzki, and Audris Mockus. 2019. World of code: an infrastructure for mining
the universe of open source VCS data. In 2019 IEEE/ACM 16th International Conference on Mining Software Repositories (MSR). IEEE,
143-154.

Yuxing Ma, Tapajit Dey, Chris Bogart, Sadika Amreen, Marat Valiev, Adam Tutko, David Kennard, Russell Zaretzki, and Audris Mockus.
2021. World of code: Enabling a research workflow for mining and analyzing the universe of open source vcs data. Empirical Software
Engineering 26, 2 (2021), 1-42.

Yuxing Ma, Audris Mockus, Russel Zaretzki, Randy Bradley, and Bogdan Bichescu. 2020. A methodology for analyzing uptake of
software technologies among developers. IEEE Transactions on Software Engineering 48, 2 (2020), 485-501.

Mark Mason et al. 2010. Sample size and saturation in PhD studies using qualitative interviews.

Hafedh Mili, Fatma Mili, and Ali Mili. 1995. Reusing software: Issues and research directions. IEEE transactions on Software Engineering
21, 6 (1995), 528-562.

Michael Mitzenmacher and Eli Upfal. 2017. Probability and computing: Randomization and probabilistic techniques in algorithms and
data analysis. Cambridge university press.

Audris Mockus. 2007. Large-scale code reuse in open source software. In First International Workshop on Emerging Trends in FLOSS
Research and Development (FLOSS 07: ICSE Workshops 2007). IEEE, 7-7.

Audris Mockus. 2019. Insights from open source software supply chains (keynote). In Proceedings of the 2019 27th ACM joint Meeting
on European Software Engineering Conference and Symposium on the Foundations of Software Engineering (Tallinn, Estonia) (ESEC/FSE
2019). Association for Computing Machinery, New York, NY, USA, 3. https://doi.org/10.1145/3338906.3342813

Audris Mockus. 2022. Tutorial: Open Source Software Supply Chains. https://mockus.org/papers/SSCISEC22.pdf

Audris Mockus. 2023. Securing Large Language Model Software Supply Chains. https://mockus.org/papers/wocllm.pdf ASE’23 LLMs
in Software Engineering.

Audris Mockus, Diomidis Spinellis, Zoe Kotti, and Gabriel John Dusing. 2020. A complete set of related git repositories identified via
community detection approaches based on shared commits. In Proceedings of the 17th International Conference on Mining Software
Repositories. 513-517.

Chinenye Okafor, Taylor R Schorlemmer, Santiago Torres-Arias, and James C Davis. 2022. Sok: Analysis of software supply chain
security by establishing secure design properties. In Proceedings of the 2022 ACM Workshop on Software Supply Chain Offensive Research
and Ecosystem Defenses. 15-24.

Joel Ossher, Sushil Bajracharya; and Cristina Lopes. 2010. Automated dependency resolution for open source software. In 2010 7th
IEEE Working Conference on Mining Software Repositories (MSR 2010). IEEE, 130-140.

David Lorge Parnas. 1972.-On the criteria to be used in decomposing systems into modules. Commun. ACM 15, 12 (1972), 1053-1058.
Shi Qiu, Daniel M German, and Katsuro Inoue. 2021. Empirical study on dependency-related license violation in the javascript package
ecosystem. Journal of Information Processing 29 (2021), 296-304.

Baishakhi Ray, Daryl Posnett, Vladimir Filkov, and Premkumar Devanbu. 2014. A large scale study of programming languages and code
quality in github. In Proceedings of the 22nd ACM SIGSOFT international symposium on foundations of software engineering. 155-165.
David Reid, Mahmoud Jahanshahi, and Audris Mockus. 2022. The extent of orphan vulnerabilities from code reuse in open source
software. In Proceedings of the 44th International Conference on Software Engineering. 2104-2115.

Jeffrey A. Roberts, Il-Horn Hann, and Sandra A. Slaughter. 2006. Understanding the motivations, participation, and performance of
open source software developers: A longitudinal study of the apache projects. Management Science 52, 7 (July 2006), 984-999.
Chanchal Kumar Roy and James R Cordy. 2007. A survey on software clone detection research. Queen’s School of Computing TR 541,
115 (2007), 64-68.

Chanchal K Roy, James R Cordy, and Rainer Koschke. 2009. Comparison and evaluation of code clone detection techniques and tools:
A qualitative approach. Science of computer programming 74, 7 (2009), 470-495.

Julia Rubin and Marsha Chechik. 2013. A survey of feature location techniques. , 29-58 pages.

Hitesh Sajnani, Vaibhav Saini, Jeffrey Svajlenko, Chanchal K Roy, and Cristina V Lopes. 2016. Sourcerercc: Scaling code clone detection
to big-code. In Proceedings of the 38th international conference on software engineering. 1157-1168.

Mohammadreza Samadi, Alexander Nikolaev, and Rakesh Nagi. 2016. A subjective evidence model for influence maximization in
social networks. Omega 59 (2016), 263-278.

ACM Trans. Softw. Eng. Methodol.

https://doi.org/10.1016/j.procs.2022.10.017
https://doi.org/10.1016/j.procs.2022.10.017
https://doi.org/10.1145/3338906.3342813
https://mockus.org/papers/SSCISEC22.pdf
https://mockus.org/papers/wocllm.pdf

(85]
(86]
(87]

(88]
(89]

[90]
[91]
[92]
[93]
[94]
[95]
[96]
[97]
(98]

[99]
[100]

Beyond Dependencies: The Role of Copy-Based Reuse in Open Source Software Development « 47

Susan Elliott Sim, Charles LA Clarke, and Richard C Holt. 1998. Archetypal source code searches: A survey of software developers and
maintainers. In Proceedings. 6th International Workshop on Program Comprehension. IWPC’98 (Cat. No. 98TB100242). IEEE, 180-187.
Manuel Sojer and Joachim Henkel. 2010. Code reuse in open source software development: Quantitative evidence, drivers, and
impediments. Journal of the Association for Information Systems 11, 12 (2010), 2.

Chintakindi Srinivas, Vangipuram Radhakrishna, and CV Guru Rao. 2014. Clustering and classification of software component for
efficient component retrieval and building component reuse libraries. Procedia Computer Science 31 (2014), 1044-1050.

Student. 1908. The probable error of a mean. , 25 pages.

Jane Sutton and Zubin Austin. 2015. Qualitative research: Data collection, analysis, and management. The Canadian journal of hospital
pharmacy 68, 3 (2015), 226.

Jeffrey Svajlenko, Iman Keivanloo, and Chanchal K Roy. 2013. Scaling classical clone detection tools for ultra-large datasets: An
exploratory study. In 2013 7th International Workshop on Software Clones (IWSC). IEEE, 16-22.

Jeffrey Svajlenko and Chanchal K Roy. 2014. Evaluating modern clone detection tools. In 2014 IEEE international conference on software
maintenance and evolution. IEEE, 321-330.

Jeffrey Svajlenko and Chanchal K Roy. 2015. Evaluating clone detection tools with bigclonebench. In 2015 IEEE international conference
on software maintenance and evolution (ICSME). IEEE, 131-140.

Jason Tsay, Laura Dabbish, and James Herbsleb. 2014. Influence of social and technical factors for evaluating contribution in GitHub.
In Proceedings of the 36th international conference on Software engineering. 356-366.

Bogdan Vasilescu, Alexander Serebrenik, and Vladimir Filkov. 2015. A data set for social diversity studies of github teams. In 2015
IEEE/ACM 12th working conference on mining software repositories. IEEE, 514-517.

David M Weiss and Chi Tau Robert Lai. 1999. Software product-line engineering: a family-based software development process. Addison-
Wesley Longman Publishing Co., Inc.

Katrin Weller and Katharina E Kinder-Kurlanda. 2016. A manifesto for data sharing in social media research. In Proceedings of the 8th
ACM Conference on Web Science. 166-172.

Martin White, Michele Tufano, Christopher Vendome, and Denys Poshyvanyk. 2016. Deep learning code fragments for code clone
detection. In 2016 31st IEEE/ACM International Conference on Automated Software Engineering (ASE). IEEE, 87-98.

Dapeng Yan, Yuqing Niu, Kui Liu, Zhe Liu, Zhiming Liu, and Tegawendé F Bissyandé. 2021. Estimating the attack surface from residual
vulnerabilities in open source software supply chain. In 2021 IEEE 21st International Conference on Software Quality, Reliability and
Security (QRS). IEEE, 493-502.

Robert K Yin. 2015. Qualitative research from start to finish. Guilford publications.

Yuhang Zhao, Ruigang Liang, Xiang Chen, and Jing Zou. 2021. Evaluation indicators for open-source software: a review. Cybersecurity
4(2021), 1-24.

ACM Trans. Softw. Eng. Methodol.

	Abstract
	1 Introduction
	2 Background
	2.1 Reuse in Software Supply Chains
	2.2 Associated Risks
	2.3 Social Contagion Theory

	3 Related Work and Contributions
	3.1 Related Research Areas
	3.2 Contributions

	4 Methodology
	4.1 Identification of Reused Blobs
	4.2 RQ1: How much copy-based reuse occurs? What factors affect the propensity to reuse?
	4.3 RQ2: How do developers perceive and engage with copy-based reuse?

	5 Results & Discussions
	5.1 RQ1: How much copy-based reuse occurs? What factors affect the propensity to reuse?
	5.2 RQ2: How do developers perceive and engage with copy-based reuse?

	6 Implications
	6.1 For Developers
	6.2 For Businesses
	6.3 For the Open Source Community
	6.4 For Researchers and Educators
	6.5 For OSS Platform Maintainers

	7 Limitations
	7.1 Internal Validity
	7.2 External Validity

	8 Future Work
	8.1 Code-Snippet Granularity
	8.2 Dependency-Based Reuse
	8.3 Upstream Repository
	8.4 Open Source Software Supply Chain Network
	8.5 Tool Development

	9 Conclusions
	References

