Check for
Updates

“They Can Only Ever Guide:” How an Open Source Software
Community Uses Roadmaps to Coordinate Effort

DANIEL KLUG, CHRISTOPHER BOGART, and JAMES D. HERBSLEB, Carnegie Mellon
University, USA

Unlike in commercial software development, open source software (OSS) projects do not generally have
managers with direct control over how developers spend their time, yet for projects with large, diverse sets of
contributors, the need exists to focus and steer development in a particular direction in a coordinated way.
This is especially important for “infrastructure” projects, such as critical libraries and programming languages
that many other people depend on. Some projects have taken the approach of borrowing planning tools that
originated in commercial development, despite the fact that these techniques were designed for very different
contexts, e.g. strong top-down control and profit motives. Little research has been done to understand how
these practices are adapted to a new context. In this paper, we examine the Rust project’s use of roadmaps: how
has an important OSS infrastructure project adapted an inherently top-down tool to the freewheeling world of
0OSS? We find that because Rust’s roadmaps are built in part by summarizing what motivated developers most
prefer to work on, they are in some ways more a description of the motivated labor available than they are a
directive that the community move in a particular direction. They allow the community to avoid wasting time
on unpopular proposals by revealing that there will be little help in building them, and encouraging work on
popular features by making visible the amount of consensus in those features. Roadmaps generate a collective
focus without limiting the full scope of what developers work on: roadmap issues consume proportionally
more effort than other issues, but constitute a minority of the work done (i.e issues and pull requests made) by
both central and peripheral participants. They also create transparency among and beyond the community
into what central contributors’ plans are, and allow more rational decision-making by providing a way for
evidence about community needs to be linked to decision-making.

CCS Concepts: « Human-centered computing — Open source software; « Social and professional
topics — Sustainability.

Additional Key Words and Phrases: collaboration; common pool resources; open source; Rust language

ACM Reference Format:

Daniel Klug, Christopher Bogart, and James D. Herbsleb. 2021. “They Can Only Ever Guide:” How an Open
Source Software Community Uses Roadmaps to Coordinate Effort. Proc. ACM Hum.-Comput. Interact. 5,
CSCW1, Article 158 (April 2021), 28 pages. https://doi.org/10.1145/3449232

1 INTRODUCTION

Open source software (OSS) has come to fulfill an infrastructure role in the economy. Eghbal [26]
highlights OSS projects such as MySQL and Ruby that both OSS and industrial projects depend on
heavily, but are themselves non-profit OSS projects. To fulfill an infrastructural role, there needs to
be careful coordination among maintainers and users of the infrastructure [68], who are doing the
work on behalf of different companies or foundations, or perhaps as volunteers. Good coordination

Authors’ address: Daniel Klug, dklug@cs.cmu.edu; Christopher Bogart, cbogart@cs.cmu.edu; James D. Herbsleb, herbsleb@
cs.cmu.edu, Carnegie Mellon University, USA, 5000 Forbes Ave, Pittsburgh, Pennsylvania, 15213.

() @

This work is licensed under a Creative Commons Attribution International 4.0 License.

© 2021 Copyright held by the owner/author(s).
2573-0142/2021/4-ART158. https://doi.org/10.1145/3449232

Proc. ACM Hum.-Comput. Interact., Vol. 5, No. CSCW1, Article 158. Publication date: April 2021.

https://doi.org/10.1145/3449232
https://doi.org/10.1145/3449232
https://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3449232&domain=pdf&date_stamp=2021-04-22

158:2 Klug et al.

is especially important for infrastructure projects, since by definition the project is an essential
underpinning of many other projects: poorly-considered changes can damage these stakeholders
more than they would if the project was merely an incidental dependency of other projects, that
they could simply swap out for an alternative. Coordination of work in self-organizing systems[27]
poses a difficult and important problem in CSCW.

How can software infrastructure projects ensure that they will not only be maintained in
the future, but will preserve values that their users depend on? Unlike in commercial software
development, in OSS “developer community” [78] software projects there is no manager who has
direct control over which features or attributes developers choose to spend their time on, yet these
projects still need to somehow coordinate, stabilize, and make visible their development priorities.
Open source projects do have governance, but governance models do not generally dictate what
features will be added and when. For example, even in the highly orchestrated work in the Linux
kernel, there are multiple coordination processes, driven by the open source norm that contributors
self-select their tasks [75].

Much preexisting work in CSCW has focused on the tensions between infrastructure contribu-
tors’ work on infrastructure and their own priorities, often driven by the primary work they do that
the infrastructure is intended to support. For example in scientific software written by academic
collaborators, short-term paper deadlines can lead people to focus on needed new features over
long-term maintainability [68]; on the other hand infrastructure development can offer contributors
new opportunities leading them to realign their own priorities [11], perhaps helping build consen-
sus. Researchers have identified a broad spectrum of ways that OSS communities can organize
themselves to coordinate development and avoid tragedy-of-the-commons problems [50], but in
some cases preexisting social networks among contributors drive much of the work done [46].
Some OSS projects have taken the approach of borrowing planning tools that originated in com-
mercial development, milestones and issue tracking (e.g. Scala !), beta testing (e.g. PostgreSQL %)
or roadmaps (e.g. Rust), despite the fact that these techniques were originally conceived for very
different contexts, i.e. strong top-down control and profit motives, in which executives and man-
agers make final decisions about goals and timelines, and rank-and-file developers are responsible
for carrying out these plans. Developers in open source communities, in contrast, are often free to
choose their own tasks, so this bottom-up power may have an impact on how planning tools work
in the open-source world.

Investigating how diverse OSS projects attempt to shape collaboration in a stable visible way
requires considering the bottom-up forces at work: developers’ motivation whether and how to
contribute, users’ motivation to choose, support, or influence development, and factors that make
one project survive while another fails [98], as well as the top-down techniques leadership employs
in projects despite the relative lack of power that OSS leaders have over their communities [75].

In this research we investigate how consensus around a community’s direction is constructed,
maintained, and evaluated. We approach this by considering how roadmaps as an originally top-
down technique from industry are adapted and reconfigured to work for an OSS project. Roadmaps
can be understood as a layout of existing plans to make future decisions. They are usually a
visualization of further steps [97] intended to be open to later revision [79]. We do not investigate
what effect the choice of roadmapping had over some other method of coordination the community
could have chosen, or the process of deciding on the use of roadmaps in the first place; but rather
how they carried out the particular method they did choose, and its immediate effects during

Thttps://github.com/scala/scala/milestones
Zhttps://www.postgresql.org/developer/beta/

Proc. ACM Hum.-Comput. Interact., Vol. 5, No. CSCW1, Article 158. Publication date: April 2021.

https://github.com/scala/scala/milestones
https://www.postgresql.org/developer/beta/

How an Open Source Software Community Uses Roadmaps 158:3

one iteration. We look at an OSS roadmap’s creation, how it is applied, and how the community
evaluates its impact, by addressing the following research questions:

RQ1. What functions does a roadmap serve in an open source community?

RQ2. How does an open source community use a roadmap to fulfill those functions?

Our results show that although a roadmap appears superficially to be an edict from project leaders
specifying where resources should be applied, it in fact reflects a consensus among active developers
about where they wish to apply their efforts. Its power derives not just from the core developers’
ability to accept or reject changes, but because it reassures a would-be contributor that productive
developers are already motivated to collaborate with them, if they stick to roadmap-related topics.
The roadmap-building process helps these developers reach consensus, and community members
use the roadmap throughout the year as a rhetorical resource to cut off digressions and to signal
intention to cooperate with community goals.

2 BACKGROUND

These research questions address an apparent mismatch between the idea of volunteers coming
together to do work that motivates them, and roadmaps as plans that on their surface appear to be
telling people what to do. Prior research has only partly explained how open source collaborators
set directions, and literature on roadmapping in corporate settings appears to reveal little about
how roadmapping applies to volunteer projects. In this section we describe prior research in both
these areas.

2.1 The Problem of Coordinating Developer Effort in Open Source Software

In recent years, the use of OSS has become pervasive [35] among software developers resulting in
great economic value of OSS [20, 34] which is, however, largely invisible to the public. Although OSS
is often critical infrastructure [26], it is managed very differently from traditional infrastructure. Its
users can freely distribute, access, adapt, modify and redistribute source code for their own and for
community use. Analyses of OSS projects from various social and organizational perspectives have
shown that managing such a project requires taking into account developers’ distinct motivations
for contributing [5, 15, 38], benefits and rewards of contributing [13, 44, 54], preferred levels of
involvement [4, 62], building and managing social capital [66, 80], networking [60, 76, 77], and
differing communication and interaction strategies [6, 19, 33].

The varying motivations and characteristics raise the question of how OSS communities coordi-
nate to agree to and work towards common goals. We define “coordination” as many individuals
deciding how to work together effectively; that is, how to choose tasks that amount to collective
progress in a mutually agreeable direction as opposed to working at cross-purposes. OSS contribu-
tors and maintainers often work in a distributed and decentralized way, with very little hierarchy or
institutional structure [22, 99], and are more likely to engage in projects and tasks based on personal
interests [5]. Coordinating and organizing work in OSS projects therefore involves matching the
demand for effort (desired features and known bugs that will take time and specialized skills to
fix) with supply of effort (volunteers and paid developers who have their own motivations and
priorities).

2.1.1 Supply of and Demand for Development Work. Like any software, OSS requires maintenance
“to correct faults, improve performance or other attributes, or adapt to a changed environment” [48].
Unfulfilled demand for maintenance may render regular software obsolete. But for infrastructure,
the ramifications of insufficient maintenance are magnified because other projects and their users

Proc. ACM Hum.-Comput. Interact., Vol. 5, No. CSCW1, Article 158. Publication date: April 2021.

158:4 Klug et al.

rely on the infrastructure; thus the demand for development effort is greater, coming from a large
dependent pool of projects and users. Prior research shows the demand for maintenance work,
such as issue fixes, testing, and documentation may depend on many factors: for example, the size
of the user base for a particular feature [56], or extent of upstream or interdependent projects [12].
Research on managing OSS requirements [73, 103] shows how demand is discovered, analyzed,
prioritized, and validated within discussions and issue requests. Popular projects need help triaging
user-reported issues [2, 104]. Infrastructures typically also need coordinators [65] who ensure that
individual projects have features needed for an infrastructure-wide release.

Skilled volunteers are motivated by factors such as their strength of identification with the
community [38], internal (e.g., self-use) and external (e.g., reputation) motivations [36, 45], a desire
to learn [102, 105], or long-term “hobbyist” status, in which developers become more deeply
involved and play a critical role in long-term viability [74]. Developers hired by industry also play
an increasing role in OSS development[28]. Firms are more likely to pay developers to participate
as a way of sharing the cost of innovation, creating demand for their complementary products
or services, establishing their technology as de facto standard, or attracting improvements or
complements for their products [100]. However, industry support for OSS projects carries some
risk of discouraging volunteers. But this can be mitigated by transparency in decision-making[101]
and negotiation of governance, membership, ownership, and control over production[58].

2.1.2 Matches and Mismatches in Effort Supply and Demand. Participants in OSS infrastructure
are generally free to contribute anywhere. These individual decisions bring about an emergent
allocation of effort across projects. But besides the decision-making of individual participants,
it is unclear what mechanism influences participants to apply effort where there is the greatest
need. In contrast, it is clear that in commercial firms participating in markets, the forces of supply
and demand determine price, a strong signal guiding the allocation of resources [9]. Economists
Dalle & David [21] were puzzled about “how, in the absence of directly discernible market links
between the producing entities and ‘customers, the output mix of the OSS sector of the software
industry is determined. Yet, to date, the question does not appear to have attracted any significant
research attention”. We were unable to find research that addresses this issue in the years since
then. The study of requirements management points out the difficulties of discovering, articulating,
and implementing needed features even when development effort is plentiful [103]. The lack of
development effort has been documented in the highly publicized Heartbleed bug [23], but we are
not aware of systematic studies of under-supply or how to recognize and address it. In total, the
research seems to support the conclusion that there currently is no general mechanism closing
the gap between demand for and supply of effort, except for the perceptions and decision-making
of individual developers. Yet infrastructure and effort mismatch are difficult for participants to
see[68].

2.1.3 Organizing and Allocating Work in Open Source Software Projects. OSS project leaders face
tradeoffs between openness and fostering a productive collaboration. Decision-making behind
closed doors can cause conflict that discourages volunteers, since they may feel their preferences
are not being considered [40]. But too much visibility into disagreements among leadership can
also lead to uncertainty among volunteers that decisions may not be firm and their contributions
may not end up being used [82].

With often only partial control and limited means of enforcement, OSS project leaders may rely
on social factors such as their technical reputation and community traditions to promote a vision
of the project’s direction [55, 64]. Publishing schedules and roadmaps can help get developers
to identify with and take responsibility for community goals [64]. Leaders may develop formal

Proc. ACM Hum.-Comput. Interact., Vol. 5, No. CSCW1, Article 158. Publication date: April 2021.

How an Open Source Software Community Uses Roadmaps 158:5

policies and guidelines for collaboration to give structure to developers’ work [40], and may assert
the authority to reject additions in a given software release [55].

Prior research has identified implicit ways that core members influence newcomers and peripheral
members to adopt cultural norms and practices. Hemetsberger and Reinhardt [37] describe a number
of mechanisms that core members of open-source projects such as KDE use to enculturate peripheral
members: for example that project’s manifesto® may discourage non-like-minded contributors, and
KDE’s leaders enforce norms through mailing list discussions and code review processes. Crowston
and Shamshurin [18] showed that core members of successful Apache incubator projects were more
communicative than in unsuccessful projects, and were more likely to use pronouns in a way that
suggested inclusiveness of the peripheral community. Gallivan [32], however, argues that rigorous
control, standardization, and measurability (“McDonaldization”) helps open source projects achieve
common objectives in virtual, distributed environments where trust relationships are difficult to
form; in particular despite potentially many mutual trust relationships in open-source communities,
control is a one-directional relationship from core to periphery.

2.2 Roadmaps in Commercial and OSS Development

Roadmaps are plans for use of resources over time, often created in iterative and reflective processes
[61] and intended to be open for changes [79]. The goal is to lay out existing plans, future decisions,
and visualize further steps [79, 97] that may be revised based on project results [41]. In commercial
contexts, developer resources and needs are coordinated explicitly by management, and roadmaps
are a tool to create, implement, and manage software in alignment with company strategies, product
life-cycles, and audiences [24, 30, 96].

In Software Product Management (SPM), roadmaps are a communicative tool for knowledge
sharing [81], consensus-reaching, and individual interpretation of goals by people involved in
development processes [47]. For example, product roadmaps present features to manage product
stages [49, 96], select and assign requirements [25], and connect teams to ensure the success of a
product within a larger time frame [30, 96]. To create roadmaps, information about audiences, their
characteristics, and needs is usually collected beforehand [7]. As a communicative tool, roadmaps
describe what will be (or should be) achieved in which way in a project, and how it will meet
business objectives [57].

Many OSS projects generate roadmap documents, including large OSS communities such as
React [67], Facebook Libra [84], Scala [85], and QT [95] as well as industry-produced OSS such as
AWS CloudFormation [14] and industrial coalitions like Open Service Broker [3]. These roadmaps
appear to have varying roles in the communities. Some seem to have multiple versions as if they are
being maintained and revisited, while others are one-time descriptions of envisioned future features.
However it is difficult for a casual observer to tell what importance these roadmap documents play.
In this research we choose the Rust Language community as particular example to examine its use
of roadmaps.

3 CASE STUDY: ROADMAPS IN THE RUST LANGUAGE PROJECT

Based on our theoretical propositions, we selected the Rust programming language as a single-case
study. It is appropriate both because of its popularity and its openness. Its popularity as infrastructure
means that there are many users who may pressure participants to make and implement good
choices about features and priorities. Its openness means that a rich variety of data about the Rust
compiler community’s working and decision-making processes is available from blogs, forums,
and GitHub repositories. Thus we have the opportunity to study in great detail a community

Shttps://manifesto.kde.org/

Proc. ACM Hum.-Comput. Interact., Vol. 5, No. CSCW1, Article 158. Publication date: April 2021.

https://manifesto.kde.org/

158:6 Klug et al.

making and implementing consequential choices together. This constitutes what Yin [106] calls a
“revelatory case” as it provides “an opportunity to observe and analyze a phenomenon previously
inaccessible to social science inquiry.”

The Rust programming language has been growing into the role of a popular and important part
of the software infrastructure [59]: many individuals, subteams, and outside organizations have a
stake in its future. Rust is promoted as being suitable for infrastructural code where performance
and reliability are important, such as web browser engines or in hardware devices with limited
resources; for that reason it is used by numerous big tech companies [70], such as Facebook and
Mozilla. The Rust community is organized in teams [69] and work groups. It has a large and active
social community, with a variety of blogs, chat rooms, forums, GitHub discussion threads, and
in-person conferences and meetings worldwide.

The Rust community adopted, then evolved, a roadmapping process, adding to the purposes that
the roadmap serves over time. After the release of version 1.0 in 2015 the Rust core team initiated
a process to organize and prioritize future work and to define future goals in all areas of Rust,
citing a need to sequence feature additions to avoid later rework, and prioritize features that would
solve many problems or benefit many users [51]. In 2016, the Rust team refined their RFC (request
for comments) process; RFCs are documents proposing significant changes to the project [93].
An overarching roadmap process was added to define initiatives as rallying points with concrete
goals, fixed time frames, and clear commitments from individuals. This process involves building
consensus in the community on project-wide goals, then proposing these goals for community
discussion through an RFC, and finally advertising and publishing the agreed upon goals as a yearly
roadmap.

The Rust core team [69] released the first Rust roadmap in February 2017 [94]. To create the
roadmap, the core team gathered priorities through a Rust community survey [92] and a commercial
user survey with companies using Rust [91]. For the 2018 roadmap, in addition to the annual survey
[83], the core team asked the Rust community to blog and post ideas for Rust in the next year
[87]. The Rust community submitted 100 blog posts with suggestions for the roadmap. The core
team then collected and incorporated the suggestions into an RFC for discussion and review [71],
and released the roadmap in March 2018 [88]. The 2019 roadmap followed a similar process [86]:
building on 73 community blog posts [72], a survey [90], and the RFC discussion, the core team
created the roadmap and released it in March 2019 [89]. Unlike previous years, the 2019 roadmap
was explicitly organized around Rust’s team structure, and made explicit mention of those teams
having their own roadmaps.

The process thus has evolved over four years to more thoughtfully sequence development, to
prioritize the worst problems and the most users, to elicit both broad (survey) and deep (narrative
blog post) input from the community, to devolve some planning to the separate teams in the form
of team-specific roadmaps, and, finally, to ensure that chosen initiatives are are not only needed,
but actually supported by people willing to commit to working on them.

3.1 The 2018 Rust roadmap

The 2018 roadmap, available at https://github.com/rust-lang/rfcs/blob/master/text/2314-roadmap-
2018.md, lays out four major goals: shipping a ‘Rust 2018° edition of the language, creating more
documentation support for intermediate-level Rust programmers, encouraging global spread of Rust
by adding internationalization support and links with local Rust groups, and finally, strengthening
the compiler’s work teams and their leadership. The document goes on to identify several concrete
things that need to be done to support those areas.

Proc. ACM Hum.-Comput. Interact., Vol. 5, No. CSCW1, Article 158. Publication date: April 2021.

https://github.com/rust-lang/rfcs/blob/master/text/2314-roadmap-2018.md
https://github.com/rust-lang/rfcs/blob/master/text/2314-roadmap-2018.md

How an Open Source Software Community Uses Roadmaps 158:7

The 2018 compiler release that is the Roadmap’s first goal focuses on support for four identified
use cases for the language: network services, WebAssembly (i.e. use in web browsers), command
line applications, and use in embedded devices.

The document also specifies a rough schedule for the year, starting with design work in February
and March 2019, focusing on RFCs, “buckling down” in April through July, focusing on development
work, “Fun!” in August through November, focused on forward-looking, exploratory features, and
“Reflection” in December.

The document ends with a brief discussion of ‘rationale, drawbacks, and alternatives’.

3.2 Other Rust documents

The Rust project publishes a great many documents defining their product, their community, and
its governance. Documents that are somewhat standard for open source projects, available at
the project’s GitHub site at https://github.com/rust-lang/rust, include a “README.md” telling
users what Rust is and how to install it, copyright and license files positioning the work legally,
“CONTRIBUTING.md” and “CODE_OF_CONDUCT.md” files laying out high level community
norms for how developers can contribute and how they are expected to interact, and “RELEASES.md”
describing the change history of the project at a high level. Beyond that the project provides a
wealth of deeper information, including “The Rust Programming Language™ that teaches the
language itself, the “Guide to Rustc Development™ teaching how the compiler works and going
into great depth about contribution norms and governance.

As of September 2019, beyond the compiler project itself, the Rust community had 147 other
GitHub repositories under its organizational umbrella, including the collection of RFCs and the
discussions around them https://github.com/rust-lang/rfcs (the annual roadmaps are found among
these RFCs); the other repositories hold auxiliary tools, bots, websites, and documents.

4 METHODOLOGY

Understanding how communities work is often a complex research matter that requires large data
collection. Our research benefits from the Rust community being very open and communicative;
they produce lots of publicly accessible artifacts that document community and software related
activities. Therefore, a high volume of data is available to researchers about how the community
builds, maintains, and evaluates consensus about its direction.

4.1 Data Collection

To analyze what functions a roadmap serves to the Rust community and how they use it to fulfill
those functions, we collected the following publicly available data produced by the Rust community.

4.1.1 Yearly Rust Roadmaps. We focused on the community-wide 2018 Rust roadmap and collected
the official roadmap document [88]. Because the Rust community introduced its first roadmap for
2017, analyzing the 2018 roadmap allows to look at the past and the following years’ roadmap to
include the community’s own reflection on how the roadmap was used. We collected 97 of the
100 blog posts [71] (3 were no longer retrievable) submitted by Rust community members during
the process of creating the 2018 roadmap, written in response to the core team’s call for goals and
directions for Rust in 2018.

4.1.2 Direct records of Rust compiler project work. The Rust community uses the RFC process to
find consensus on proposed substantial changes to the language, standard libraries, and also to

4https://doc.rust-lang.org/book/index.html
Shttps://rustc-dev-guide.rust-lang.org/

Proc. ACM Hum.-Comput. Interact., Vol. 5, No. CSCW1, Article 158. Publication date: April 2021.

https://github.com/rust-lang/rust
https://github.com/rust-lang/rfcs
https://doc.rust-lang.org/book/index.html
https://rustc-dev-guide.rust-lang.org/

158:8 Klug et al.

comments in

PRs on GitHub
keyword search to match ualitative content analysis text Likart
ANALYSIS eyw ¢ g v < scale
with 2018 roadmap topics of roadmap related passages answers
answers
descriptive
RESULTS FUNCTIONS OF THE ROADMAP MECHANISMS OF THE ROADMAP | statistics

Fig. 1. We gathered software engineering artifacts, GitHub comments, blog posts, and email interviews. We
analyzed software engineering artifacts and a set of pre-roadmap blog posts for roadmap-relevant content. We
analyzed GitHub comments, chats, blog posts, and interview text through qualitative coding, and statistically
analyzed Likert-scale answers in the email interviews. We describe the functions and mechanisms of the
roadmap by drawing on all three types of analysis.

community standards. Issues and PRs (pull requests: i.e. proposed specific edits to code) are often
linked to RFCs and show where the actual coding work of all contributors happens and to what
Rust contributors allocate their time and effort. Comments in these RFCs, issues, and PRs involve
discussions among contributors and teams. We scraped all code and discussion contents of GitHub
repositories associated with the Rust compiler project from Jan 1, 2018 to Dec 31, 2018, the time
frame for the 2018 roadmap. This data allowed us to analyze how much of which kind of work
(coding work and discussion work) by which people (core or peripheral people) adhered to the
topics called for in the roadmap.

4.1.3 Records of argumentation and discussion. To understand how participants used the roadmap
as a resource for argumentation during the year to affect decisions and priorities, we collected
excerpts from across several communication channels used by the Rust community (Table 1) in
which people explicitly mentioned the roadmap (i.e. explicit mentions of the word “roadmap” or
“road map”):

e Compiler project work We extracted roadmap mentions from the corpus of RFC, issue,
and PR discussions described above, excluding any mentions in the roadmap’s own RFC#2314
(https://github.com/rust-lang/rfcs/pull/2314).

e Posts in Rust blogs and forums Some participants in the Rust project, as in many OSS
communities, maintain personal and official community blogs to post about updates, goals,
ideas, or critical thoughts. To gather samples of participants explicitly using the existence
and content of the roadmap as a resource in argumentation about the project direction, we
searched for roadmap mentions in posts of main publicly accessible Rust blogs (Rust Blog
(https://blog.rust-lang.org), Inside Rust Blog (https://blog.rust-lang.org/inside-rust), Read Rust
(https://readrust.net), This Week in Rust (https://this-week-in-rust.org)) and the Rust Internals
forum (https://internals.rust-lang.org) from Jan 1, 2018 to Apr 23rd, 2019. This time period
was extended past the end of the year specifically to include posts advocating for content
for the 2019 roadmap, since they might contain reflections about the 2018 roadmap and its
content. The 2019 call for roadmap blog posts explicitly asked Rust contributors to reflect on
Rust in 2018 [86].

e Online team meetings: As an OSS community, Rust contributors characteristically are
distributed all over the world which is why meetings are mainly held online. The Rust
compiler team holds weekly meetings on the collaborative chat software Zulip (https://rust-
lang.zulipchat.com) to update, manage, monitor, and plan work, in working groups and

Proc. ACM Hum.-Comput. Interact., Vol. 5, No. CSCW1, Article 158. Publication date: April 2021.

How an Open Source Software Community Uses Roadmaps 158:9

Table 1. total number of collected data and excerpts of each data that mention "roadmap”

RFC, issue, and Blog posts | messages in
Blog and forum . .

PR comments osts reflecting Zulip total

on GitHub P on roadmap | chat threads
data collected 135,234 3,394 73 58,901 197,602
ti f
pentions o 59 110 28 144 341
roadmap

throughout the larger community. Zulip conversations are semi-public: members need to
create a free account and log in to participate, thus setting a low barrier to read or contribute
to the discussions. Anticipating that team members and contributors might use these online
meetings to discuss matters related to roadmaps and roadmap processes, we searched for
roadmap mentions in Rust team meetings held on Zulip starting from Jan 1, 2018 and extending
a few months beyond the end of 2018 to Apr 23rd, 2019, so as to also include reflection on
the 2018 roadmap that happened in early 2019.

In the textual data collected from GitHub comments, online meetings, and blog post we identified
a total of 118 participants by name and username who made at least one comment or multiple
comments regarding roadmaps. We anonymized participants (P001, P002, ..., P118) chronologically
by appearance in the different data sources. Five participants were core team members, 28 were
members of other teams, 85 were non-team members, and five were identified as working group
members (see Fig. 2).

4.1.4 Email Interviews. In addition to our data mining, we conducted short emailed structured
interviews with Rust contributors to contextualize some of our findings about the two research
questions. We generated a sample of community members stratified by level of community involve-
ment. To find highly involved members, we collected a list of all Rust team members and all blog
post authors for the 2018 road map (99 people at the time of the sampling). For the less-involved
members we chose a random sample of the same size, out of all other committers to the compiler
project who listed emails on their Github profiles. After later data cleaning (people with multiple
or invalid emails), we ended up with a list of 190 candidates. We mailed the interview to those
candidates, and 39 people responded (20.5% response rate). 24 of those identified themselves as
belonging to a Rust team, and 15 said they did not (see Fig. 2). As the email interviews were
conducted anonymously, we could not match participants with our existing list of participants in
Rust forums. Therefore, interview participants were anonymized and numbered separately (PS001,
PS002, ..., PS039). The interview questions asked Rust contributors about their experience with and
opinions on all Rust roadmaps of any year. The questions are shown in Appendix A.

4.2 Data Description and Analysis

Our case study includes data collected from GitHub to reconstruct the allocation of effort in code
work, textual data from several Rust community sources to analyze the communicative aspects of
creating and using roadmap documents and discussing work effort related to roadmap topics, and
answers from structured email interviews with Rust community members to triangulate results
obtained from the collected textual data. To analyze how the Rust community creates, uses, and
evaluates roadmaps, we decided to follow a mixed-method approach as quantitative or qualitative
methods by themselves could not sufficiently address our research questions [16]. We simultaneously
used quantitative and qualitative data collection methods and followed a convergent approach
to separately analyze the data sets and then combine results in the interpretation. Following this

Proc. ACM Hum.-Comput. Interact., Vol. 5, No. CSCW1, Article 158. Publication date: April 2021.

158:10 Klug et al.

methodological approach, our goal was to generate a complete and deep understanding [17] of
how roadmaps are used to discuss and allocate effort.

We used a quantitative technique to estimate the proportion of work done during the year that
was relevant to the community-wide 2018 roadmap. We developed a roadmap topic heuristic for
determining whether a given piece of text was relevant to topics mentioned in the roadmap. The
purpose of the heuristic was to give us an objective way of saying whether a unit of discussion or
coding was part of the roadmap or not, and secondarily, which part of the roadmap it pertained to.
The heuristic starts with some hand-written regular expressions built around topics we found in
the 2018 roadmap, and identifies text by applying those regular expressions, and also by making
inferences about topics of “related” items, for example inferring that an issue that claims to track an
RFC probably addresses the same topic as the RFC does. Its output is a list of all issues, pull requests,
RFCs, and commiits, tagged as “in roadmap” or “not in roadmap”. The algorithm is described in
detail in Appendix B. We applied this heuristic to create two datasets:

e To identify where ideas in the roadmap came from, we applied this heuristic to the 97
retrievable blog posts that answered to the 2018 Rust call for roadmap blogs, generating
a mapping between 2018 roadmap topics and the blogs which the core team drew on in
preparing the roadmap. We also identified whether each post was written by a member of a
Rust team.

e To estimate the influence of the roadmap on work done throughout 2018, we applied the
heuristic to all Rust project issues and Rust project PRs, creating a data set consisting of one
record per PR or issue, tagged with: a (possibly empty) set of roadmap topics, the context of
discussion (issue, or PR), the type of contributor (Rust team member or not), and two measures
of work effort: discussion work and coding work. Discussion work was operationalized as
the number of characters of English text in PR and issue discussion threads (after removing
code snippets); coding work was operationalized as lines of code added or removed in the
Rust project commits associated with PRs.

These datasets distinguish individual participants as “team” vs “non-team”: we defined these by
scraping the membership of all Rust teams (Figure 2) from the project’s governance page °.

e

Rust core) All Rust teams) Rust code
team (9) 7 (191) contributors
" (2392)

Fig. 2. We classify Rust community members as “team” (191 people) or “non-team” (other participants,
whether contributing code or other effort), depending on whether they were listed on some team in https:
//www.rust-lang.org/governance on January 3, 2019. Although organizational literature often refers to “core”
and “peripheral” members, to avoid confusion we use the word “core” for the 9-person team the Rust

governance page identified as the “core team”, “team” to refer to the 191 members of teams (including core),
and “non-team” for the larger community periphery.

As a supplemental check on sources of ideas in the roadmap, we manually inspected the ten
commits to the 2018 Rust roadmap document in the GitHub Rust RFC project and summarized the
changes, looking for introductions of new topics (none were found). This was a small, relatively

Ohttps://www.rust-lang.org/governance, in January 2019 as retrieved from https://web.archive.org/web/20190103220022/
https://www.rust-lang.org/governance

Proc. ACM Hum.-Comput. Interact., Vol. 5, No. CSCW1, Article 158. Publication date: April 2021.

https://www.rust-lang.org/governance
https://www.rust-lang.org/governance
https://www.rust-lang.org/governance
https://web.archive.org/web/20190103220022/https://www.rust-lang.org/governance
https://web.archive.org/web/20190103220022/https://www.rust-lang.org/governance

How an Open Source Software Community Uses Roadmaps 158:11

Table 2. Examples for applying codes to excerpts and sorting them into categories

Excerpt Code Category

“a key step in any successful WG is | point out need

going to be forming a **roadmap**” | for a roadmap
"it’s not the kind of change that’s

targeted for the roadmap this year”

creating a roadmap

using roadmaps to decline

rejecting an RFC allocating effort

informal effort since a cursory check showed that little substantial change to the RFC had been
made during the discussion. Complementing this quantitative technique, we also created a dataset
of hand-coded roadmap mentions from project work, team meetings, and blogs. Table 1 shows the
amount of data collected from each source. We extracted 341 excepts that mentioned "roadmap" or
"road map" from the collected data, tracking for each excerpt its author and source.

In our case study of textual data collected from GitHub comments, online meetings, and blog
posts, we followed a qualitative content analysis approach [42, 52] to characterize what people said
about roadmaps in the excerpts of these sampled Rust online artifacts.

We decided to use qualitative content analysis for our case study because the method is rooted
in social research but is not linked to any particular science or concepts [43]. This makes it a very
useful approach to study documents and artifacts across various data sources [8]. Content analysis
is profitable for mixed-method research as it comprises quantitative and qualitative methodology
and qualitative content analysis in particular allows the researcher to extract manifest and latent
information from different textual data [10].

We used a data-driven open coding approach across all collected excerpts from the text-based data
sources (GitHub comments, online meetings, blog posts) [52]. We performed inductive coding and
created preliminary codes to construct a coding scheme while processing through the qualitative
data. Open codes from all data sources were then combined into larger categories. In total, we
generated 91 codes (see Table 2 for code examples), that were then sorted into eight categories (see
Table 3).

Throughout the open coding process, the research team ensured a common shared agreement of
generated and applied codes. The coding of each varying textual data set (GitHub comments, online
meetings, blog posts) was based on the consistent use of codes by one researcher and the subsequent
review of generated and applied codes by a second researcher. In this process, little disagreement
was found. In such cases, the two researchers met to review, discuss, and refine the disagreed upon
codes in relation to the data source and to which research question the coded excerpt relates most.
Through this discussion and refinement, all disagreements were solved and codes were mutually
validated. This way of ensuring validity in qualitative research through agreement is an established
approach in the CSCW community [53] and matches our inductive coding approach for a qualitative
case study across varying textual data sources.

In addition to analyzing blog posts and online meetings, the structured email interviews served
to collect additional data to triangulate results we observed [29]. Interview questions asked about
how roadmaps influence decision-making, how helpful roadmaps are for the community, and how
roadmaps match personal work priorities (see Appendix A). We analyzed the numeric responses,
shown in Table 4. To identify themes in the textual responses, one researcher grouped responses to
each question into categories, and another researcher reviewed and challenged the categorizations.

5 RESULTS

In the following two subsections we answer the research questions: what does the roadmap
accomplish for the Rust community (RQ1), and how does it do so (RQ2).

Proc. ACM Hum.-Comput. Interact., Vol. 5, No. CSCW1, Article 158. Publication date: April 2021.

158:12 Klug et al.

Table 3. Number of excerpts and number of codes applied per category

Category Num. excerpts | Num. codes applied

Creating a roadmap 134 17

Using roadmap to decline
. 33 13

allocating effort
Pointing effor.t to roadmap 26 12
topics

Executing a roadmap 81 28
Asking about a roadmap 11 4
Linking to roadmap documents 28 2
Praising the use of a roadmap 13 6
Criticizing the use of a roadmap 15 9
total 341 91

Table 4. Summary of responses to email interview. Q1-3 asked for textual explanations accompanied by a
Likert-style question on a five-point scale, where 3 would be a neutral answer, and 5 means the roadmap is
high in influence on respondent’s activities, helpfulness to them, and in alignment with the respondent’s
priorities. * = team and non-team differ (t-test, p<0.05). Questions are given in Appendix A

Question Likert answers (mean) Text answers (count)
overall | Team | Non-Team | Team | Non-Team
Q1 influence (1-5 scale) | 2.8 3.2 2.3* 10 6
Q2 helpful (1-5 scale) 4.1 4.2 4.0 11 7
Q3 priorities (1-5 scale) | 3.5 3.7 3.1* 11 3
Q4 improve (text) - - - 15 4
Q5 years (numeric) 3.7 3.8 3.5 - -
Q6 team (yes/no) - 24 yes | 15 no - -

5.1 Functions of the Roadmap

Building and using the roadmap appeared to serve neither the extreme of forcing team members’
agenda on a wider community, nor letting the broader user community choose a direction. Rather
it allowed team members and others to identify areas of consensus around project goals, and keep
focus on those goals through the year.

5.1.1 Reaching consensus of purpose among team members. The Rust team put out a call at the
beginning of 2018 asking the community to submit “blogposts reflecting on Rust in 2017 and proposing
goals and directions for Rust in 2018”. An analysis of those posts and the eventual 2018 roadmap
suggests that the Rust team indeed succeeded at soliciting input from people outside their team
structure: only 18 of the 97 retrievable blog posts collected were authored by people listed as team
members or alumni.

However, the blog posts responding to the solicitation did not seem to be a major source of novel
ideas from outside the central community; the resulting roadmap document was a synthesis of
shared ideas from many sources. Most (23 of 30) of the roadmap topics we could find in the blog
posts were mentioned by both team and non team blog posts. Only three topics were mentioned
only by team members, and four only by non team members. No single blog post contained more
than 12 of the topics, suggesting that the roadmap really is a synthesis of many perspectives, not

Proc. ACM Hum.-Comput. Interact., Vol. 5, No. CSCW1, Article 158. Publication date: April 2021.

How an Open Source Software Community Uses Roadmaps 158:13

Table 5. This table quantifies of two types of effort (discussion and code contribution) applied by the Rust
community, broken down by roadmap-relatedness and type of effort. The “total” figures show most discussion
and coding was about non-roadmap items; however the Bytes per issue and lines per PR figures show that
there was more effort per item about roadmap items.

Total issue # Bytes Total lines lines
+ = . + #PRs =
text issues per issue | of code per PR
Roadmap 31.6 MB + 2899 = 10915.0 246K + 680 = 362.2
Non Roadmap | 78.8 MB + 9092 = 8662.2 923 K + 3320 = 2779

simply a codification of an existing consensus. Nor did the RFC-style process for accepting the
roadmap after the core team had created it elicit completely new ideas from the community; rather
discussion consisted mostly of clarification and acceptance. The roadmap changed little from when
the core team proposed it on Jan 29, 2018, and its adoption on March 5th. Discussion (51 general
comments and 20 comments linked to lines in the document) led to little change during that time.
Besides typos, formatting, and clarifications, the main substantive change was a rewording to
more strongly emphasize compiler performance. In short, the process did not appear to generate
innovative new directions, but rather a consolidation of ideas that already had support but had not
previously been gathered together.

5.1.2 Focusing work during the year. Analysis of effort expended by the Rust community during
2018 demonstrates that the 2018 roadmap was neither followed religiously nor ignored completely.
Rather it represented a community focus, in the sense that its initiatives attracted proportionally
more coding and discussion per issue than issues not on the roadmap. Table 5 quantifies two types
of effort applied by the Rust community, broken down by type of effort (contributing to discussion
in GitHub threads, or writing code).

non-Roadmap Roadmap non-Roadmap Roadmap
non-
65.3 MB 24.7 MB team 353K 88K
non-
team
team 13.4 MB 6.9 MB team 569 K 158 K
Issue discussion (MB) Lines of Code (KLOC)

Fig. 3. Volume of discussion (left) and coding (right), broken down by team (n=191)/non-team (n=2392)
members, and by roadmap/ non-roadmap issues. Left figure measures discussion in megabytes; right figure
measures lines of code in pull requests in thousands of lines of code. Non-roadmap matters dominated in
volume, for both discussion and code. Non-team members did most discussion; team members did some what
more coding overall. Note that team members do more work per person, but there are vastly more non-team
members; and that roadmap issues involve more work per item than non-roadmap issues (see Table 5).

Roadmap matters constitute a minority of the work, but receive outsize attention. In the Rust
compiler project’s issue and PR threads, the Rust community generated 121,457 comments across

Proc. ACM Hum.-Comput. Interact., Vol. 5, No. CSCW1, Article 158. Publication date: April 2021.

158:14 Klug et al.

11,991 different discussion threads during 2018 discussing proposed and ongoing development on
the Rust compiler. The hottest threads (i.e. Rust project issues or pull requests with the most bytes
of discussion) were more likely to be roadmap topics — 6 of the top 10 largest issue threads were
roadmap topics, but overall only 2899 out of 11991 (24%) of issues related directly to the roadmap, as
measured by our heuristic (y? = 6.989, p=.0082). In other words, roadmap topics were a community
focus, but the long tail of smaller efforts actually constituted most of the discussion. Discussion
of roadmap-related issues constituted on average 27.8% more text per issue than non-roadmap
issues. Roadmap issues included more text than non-roadmap issues (p=.0092, 2-tailed t-test of
log-transformed byte counts of issue discussions).

Although 21.1% of the lines of code added and deleted were roadmap-related, the same focus
relationship applied; only about 17.0% of PRs worked on were associated with the roadmap, but
these roadmap PRs were more substantial changes, averaging 30.4% more lines of code per PR
(p<.0001, 2-tailed t-test of log-transformed lines of code per pull request).

Thus although the majority of issues discussed and code changes proposed are not envisioned
in the roadmap, the ones that are in the roadmap consume proportionally more effort per issue,
especially from frequent contributors. The roadmap appears to serve as a focus of attention while
still allowing for a great deal of work outside its boundaries. Not everything the community agrees
on requires consensus-building or needs to be in the roadmap; some priorities, such as bug fixing,
are obvious.

When asked whether they followed the roadmap personally, twelve of the interviewees (PS002,
PS006, PS007, PS008, PS016, PS018, PS020, PS021, PS023, PS027, PS036, PS039) replied that Rust
roadmaps set a common direction for the community. Some emphasized common focus (T think
they give a clear focus point for the year, what the community wants to work on next, (...) see if
we accomplished our goals and what our next ones can or should be” —PS008, email interview),
while others emphasized an open, non-prescriptive attitude (“Ostensibly, they should not be called
roadmaps, but they are helpful in the sense that they set *general™ priorities. Of course, a lot of other
things outside the roadmap will be worked on as you cannot command volunteers to do otherwise”
-PS016, email interview). Another said: “Roadmaps are independent of the actual work that we can
invest, so they can only ever guide” (PS021, email interview).

5.1.3 Prioritizing work for the core. Team members pay more heed to roadmap priorities than
non-team members do. Although the roadmap is pitched as a description of general community
priorities, there is evidence that some people, both team and non-team, perceive the roadmap as
especially relevant to the activities of team developers, and less important or binding for non-team
participants. Four of the 16 people who answered our interview question about how roadmaps
influenced their decisions about what to work on indicated that the roadmap applied most to
highly-involved people. One respondent, who claimed a fairly low (2/5) influence from the roadmap,
said: ‘T started contributing for my own learning and experience, roadmaps didn’t influence me to start
contributing but do influence what I contribute now that I'm more involved” (PS023, email interview).
Another, who claimed high influence (5/5) from the roadmap, said, “I'm on the core team and work
on subteams so the roadmap is directly related to the work I do” (PS039, email interview).

The amounts of text and code generated by participants support the idea that team members were
more likely to pay attention to roadmap issues: 87 out of the 108 team members who contributed
code in 2018 (81%) added a comment to at least one roadmap-related issue, while only 39% of
non-team contributors did so (1065 out of 2757); this difference in proportions was significant
()(2 = 75.98, p<.00001). Still, the bulk of the work they did, regardless of role, was on non-roadmap
matters. 34.1% of the text team members wrote in issue comments was in roadmap-related issues

Proc. ACM Hum.-Comput. Interact., Vol. 5, No. CSCW1, Article 158. Publication date: April 2021.

How an Open Source Software Community Uses Roadmaps 158:15

(6.9MB out of 20.3MB in Figure 3), and 21.7% of the lines of code they wrote were in roadmap-
related PRs. Contributors not in teams had a similar proportion of roadmap work, with 27.4% of
issue comment text and 20.0% of code lines written being roadmap-relevant. It seems that teams’
proportionally greater preference to work on roadmap issues at the individual issue level does not
result in a vastly greater proportion of roadmap work done, by volume; this might be explained, for
example, by team members “touching” many issues in which they do not do the bulk of the work.

Although some developers have very particular issues that they prefer to work on, others,
especially team members, took cues from the roadmap when setting their own priorities. In the
interviews, people gave equivocal answers to the question of whether Rust roadmaps influence
their decision of what work to contribute: the average choice was 2.8 on a 1-5 scale, slightly closer
to “not at all” than the scale’s midpoint of 3. People who said they were on a team rated this higher
(3.2) than non-team respondents (2.3) (t-test, p<.01). Four of the people who elaborated on this
question said that they felt the roadmap was mostly relevant to important issues addressed by
team developers. Two specifically indicated that the presence of a feature in the roadmap gave
developers confidence to work on that feature, knowing that some change they wanted to work on
would be taken up by others in the community. One said they “only contribute drive-by [i.e. as a
one-off edit without much community engagement]when an itch needs scratching; roadmaps do
influence where I see a chance of scratching actually result in usable changes to the language” (PS001,
email interview). In short, the roadmap provides encouragement to work on certain issues, for
certain people, but most developers do not feel constrained to work on roadmap initiatives.

Influence between individual priorities and the roadmap ran both ways among interviewees.
People rated agreement with the roadmap’s priorities slightly positively: an average of 3.5 on the
1-5 scale, with team members significantly higher at 3.7 than non-team members at 3.1 (t-test,
p<.05). Out of 14 who chose to elaborate, causality ran both ways: two said their priorities matched
the roadmap’s because they helped write it, and three said they just happened to agree with its
priorities; on the other hand five said they pursued roadmap initiatives because they didn’t have
their own priorities, and three said they disagreed with the priorities but valued the importance of
having a shared goal more than getting their own way. One person said the roadmap priorities
were too vague to resolve the disagreements that were relevant in their working team.

5.1.4 Creating external visibility. Some saw the roadmap as also serving to communicate the
intentions of the Rust community to those outside the community, to make the community’s
trajectory more predictable. When first proposing the roadmap process, the author of the proposal
listed among its goals “Advertise our goals as a published roadmap.” and “Celebrate our achievements
with an informative publicity-bomb” [1].

In our interviews, four of the 14 people (PS001, PS005, PS006, PS038) who answered our question
about why roadmaps are valuable indicated that they helped the project communicate its vision
and intentions outside the project. One said the roadmap helps users plan by giving them “...) a
sense of which unstable features are OK to use in a project that’s planning to switch to stable in a
reasonable time frame” (PS001, email interview). Another respondent found them helpful as a way
to judge their own plans to use the language: ‘T consider Rust to still be a young language that is
not yet finalized, depending on the direction it goes it could be a deal-breaker for me” (PS038, email
interview).

5.1.5 Building a sense of group identity. In online team meetings on Zulip, the largest number of
roadmap mentions concerned creating roadmaps. The majority of mentions (63%, 91/144) were
by a single participant, P008, a core team member who championed both the roadmap and the
formation and strengthening of Rust’s team structure in 2018. P008’s rhetorical use of the roadmap
included emphasizing the need to start a separate roadmap, e.g. for a subproject, and suggesting

Proc. ACM Hum.-Comput. Interact., Vol. 5, No. CSCW1, Article 158. Publication date: April 2021.

158:16 Klug et al.

and collecting roadmap topics for existing roadmaps. P008 emphasized benefits of having roadmaps,
such as successful collaborative work (“a key step in any successful WG is going to be forming a
**roadmap™*” -P008, core team member, online meeting), structuring work processes (‘I think
encouraging people to outline a roadmap with specific steps is a good idea” —P008, core team member,
online meeting), or reaching bigger and shared goals. They argued, for example, that creating
roadmaps is worth the effort put into it (“it’s worth taking the time to make the roadmap” -P008,
core team member, online meeting) and that work time is needed to create roadmaps.

A few non team members also mentioned a need for roadmaps to organize work effort ("We need
to open issues first, and to have some kind of roadmap" -P040, non team member, online meeting) but
were overall less committed to making decisions of how to create and manage roadmaps ("not sure
if we want to wait and collect all the appropriate tool/subteam roadmaps and publish one collectively?"
-P038, non team member, online meeting). In online meetings, non team members rather make
comments to show mostly strong support for roadmap creation in reaction to suggestions made by
core team members ("I think a roadmap is definitely a good idea, something to get working groups
working towards a goal could be helpful in keeping them active" —P045, non team member, online
meeting) or praise the effort made by team members to create and apply roadmaps ("I applaud all
this, can’t agree more on everything :)” -P048, non team member, online meeting).

Team members understood roadmaps as a useful planning tool for ongoing and future work
and to manage working groups and attract more contributors by presenting work areas and goals.
Roadmaps functioned to manifest topics working groups should focus on over a certain time which
is why team members gently pushed towards creating roadmaps, for example by suggesting a new
group begin with a very lightweight alternative to the complex community-wide process: (“I’'m not
imagining very long ’roadmaps’, just some bullets” -P008, core team member, online meeting). The
team members’ effort to have contributors and working groups start roadmaps illustrates the need
and the goal to organize and manifest work in written form and how especially the core team tries
to manage larger and general goals for the distributed Rust community.

** 2

5.1.6 Summary. The Rust community’s team members began with a diverse set of priorities as
individuals: the roadmap process was a way for team members to decide on a consensus focus of
attention, and commit to applying themselves to those things during the year. It gave them a way
to define themselves more strongly as a group by knowing that they had a shared purpose, and
there is some evidence that it gave peripheral participants a way to assert their identity with a
group, and for in-group members to gently channel outside contributions away from distracting
alternate paths. Although the process explicitly listened to input from outside the community of
Rust team membership, it did not in practice bring significant new ideas from outsiders into the
conversation.

5.2 Mechanisms of the Roadmap

A roadmap written and never referred to again might simply gather dust and bear no relation to
subsequent activity. The Rust community however appears to take the roadmap seriously after it is
written. Individuals used it to gauge whether their own ideas are likely to be supported by others,
to strengthen formation of teams, to discuss and argue with each other to encourage or discourage
proposed efforts, and to reflect on progress.

5.2.1 Assembling work groups. Although the roadmap, during its creation phase, helps the whole
community build consensus about its overall goals, developers also use it to find each other and
form collaborations to do more particular tasks.

In blog posts, team and non team members alike mentioned personal or project roadmaps as a
way to inform each other about work activities and promote plans of action. For example, they

Proc. ACM Hum.-Comput. Interact., Vol. 5, No. CSCW1, Article 158. Publication date: April 2021.

How an Open Source Software Community Uses Roadmaps 158:17

referred to detailed goals in project roadmaps (“There’s a bit more detail on the project roadmap”
-P091, non team member, blog post) or pointed out roadmap goals for work groups (“‘Embedded is
one of the four target domains in the Rust 2018 Roadmap (...)” -P084, non team member, blog post).
In one issue comment, a contributor motivated others to contribute ideas to the roadmap call for
blog posts to influence the Rust roadmap (“Please write a Rust 2019 blog post and express this concern.
I think if enough of us do that, we can influence the roadmap” -P021, team member, issue comment).

Core team members in early 2018 pushed for creation of formal working groups for domains
that were defined as focus in the roadmap. In blog posts, team members emphasized that work
effort would be aimed at domain working groups (“the primary focus of this year’s project is (...)
the domain working groups that we kicked off with our 2018 Roadmap” —P076, core team member,
blog post) and team leaders advertised to the community to allocate their resources to domain
working groups. Blog posts at the time announced new working groups for a domain or argued for
reorganizing existing working groups to better meet roadmap goals (“The dev-tools team should be
reorganised to continue to scale and to support the goals in this roadmap” —P077, team member, blog
post).

Conversely, although the roadmaps are not promoted as being a complete list of things to work
on, they also serve to pre-warn developers that some things they might work on would not likely
attract much support or collaboration. In some RFC, issue, and PR comments, team members used
the roadmap to refer to the overall direction Rust should take. Even without definite future goals,
the mere existence of a roadmap process served to reject proposals not matching potential goals.
This included explanations such as, it is not the right time, not the right trend (“While the details of
roadmap is still in play, (...) this seems like a clear expansion with insufficiently strong motivation”
-P008, core team member, RFC comment), or not the right perspective (T don’t think that major
rework of enums currently aligns well with our current priorities or those priorities we are likely to set
in the upcoming roadmap” —P008, core team member, RFC comment).

5.2.2 Discouraging non-roadmap RFCs and basis for rejecting proposals. Team membership appears
to affect how people talk about the roadmap. Roadmap mentions by team members in RFC, issue,
and PR comments intended to point contributors to roadmap topics and away from the RFC
proposal (‘T'd like to draw attention to our 2018 roadmap” -P012, core team member, RFC comment).
However, team members often still valued developers’ ideas and motivated future work. For example,
they presented the prospect that a feature could make it on the upcoming roadmap (“could be an
interesting thing to consider for next year’s roadmap” —P002, team member, RFC comment).

The roadmap gave a justification for team members and especially for core team members to
dismiss proposals that did not fit well with the community’s vision for Rust, or that would take
too much significant effort away from current efforts. In comments on GitHub, the roadmap was
mostly mentioned as an argument in discussions for team members to decline proposed RFCs when
they did not seem to fit roadmap goals (“it’s not the kind of change that’s targeted for the roadmap
this year” -P002, team member, RFC comment). This argumentative strategy seems to go against
the perception of the roadmap as a mere guideline, instead posing roadmap goals as delimiting
boundaries to which work and effort should be allocated. Only some comments gave additional
explanations for declining such RFCs in relation to the roadmap. For example, the roadmap was
treated as a strict work plan when proposals are a possible threat to achieving roadmap goals (‘T
am pretty worried if we delay now we will have a hard time delivering on our roadmap for the year”
-P007, team member, issue comment). Team members also used the roadmap to reinforce something
perceived to be a true but insufficient reason to end RFC or issue discussions, for example, when a
proposal did not generate enough community interest (“There hasn’t been a lot of activity on this
RFC (...) it also doesn’t particularly fit the roadmap” —P008, core team member, RFC comment). They

Proc. ACM Hum.-Comput. Interact., Vol. 5, No. CSCW1, Article 158. Publication date: April 2021.

158:18 Klug et al.

also defined adequacy of RFC discussions against the roadmap goals (‘T also don’t think this RFC is
of high enough priority to the Rust roadmap to devote a lot of attention to reaching consensus” -P018,
core team member, RFC comment). In other words, features that did not match the roadmap were
not worth the effort to find consensus within the community.

Although non-team members rarely used the roadmap to argue against features, one contributor
mentioned the roadmap to speak out against an issue (“Finally, ‘abstract type’s are not close on
the roadmap” —P011, non team member, RFC comment). Beyond its role then in consolidating
a consensus when it was created, the roadmap also is used as an argumentative resource for
encouraging work on shared goals, and discouraging work (and even extended discussion of work)
that risks becoming a distraction.

5.2.3 Reason to promote particular issues and PRs. We found in issue and PR comments non team
members mostly mentioned the roadmap by referring to, supporting, or emphasizing roadmap
goals in issue discussions or when asking about clarification or the status of roadmap goals. They
often argued in favor of features that were on or related to the roadmap (“Using build systems
other than/in addition to Cargo is explicitly a goal in the 2018 roadmap” ~P028, non team member,
issue comment). They often mentioned the roadmap as a strong reference to argue for working
on or implementing features, sometimes even with reference to previous roadmap topics (“Cargo
being able to integrate into larger build systems was I think on the 2017 roadmap” -P009, non team
member, RFC comment). In discussing work effort in issues and PRs, non team members also
pointed roadmap goals out to others (“Note for those who haven’t seen yet: macros 2.0 is apparently
slated to be _stable_ later this year, according to the proposed roadmap” —P021, team member, issue
comment).

5.2.4 Shared basis for later reflection. The Rust roadmap process promises a retrospective reflection
at the end of each year [1]. As part of that, the Rust core team asked people to reflect on 2018’s
roadmap when posing ideas for the 2019 Roadmap. The reflections within these posts mostly
evaluated progress on the roadmap’s particular initiatives. For example, posters praised progress on
WebAssembly (“2018 has been a really cool year for WASM and Rust” —-P116, team member, blog post
reflecting) or on futures and async/await (“A lot of progress was made on Futures async/await in 2018”
-P110, team member, blog post reflecting). People also criticized lack of progress in unfinished
tooling (“Tooling was a large part of the goal for Rust 2018. If one gets lucky, tooling around editor
and IDE support can “just work”, but many times it doesn’t.” -P071, non team member, blog post
reflecting) or missing libraries. Other posts commented on the features themselves, claiming that
changes made had no actual benefit for the users or were mistimed.

Reflections about the process itself were relatively rare. Developers mentioned that community
collaborative work processes had not yet improved as planned and that the community still needed
to better manage exhaustion and time spent on topics in general (“many of the key contributors to
rustc (...) were put under an enormous amount of pressure to get their changes shipped by the deadline”
-P086, non team member, blog post reflecting). Moving into 2019 as the efforts to reflecting on 2018
waned, blog posts mentioning roadmaps mostly highlighted work group achievements, such as
developments in the Rust package manager, cargo; WebAssembly goals and stabilization; and the
growth and increased productivity of Rust teams. This seems consistent with the 2019 roadmap’s
shift in emphasis towards team-specific roadmaps.

In our email interviews, 19 people (PS002, PS005, PS006, PS007, PS008, PS013, PS016, PS018,
PS021, PS023, PS025, PS028, PS029, PS030, PS032, PS035, PS036, PS037, PS039) responded to our
question about how roadmaps could be improved; all but two of these were people on teams. Most of
the suggestions seemed aimed at reinforcing the roadmap’s role as a commitment to achieve goals.
The most common suggestion (7 respondents: PS006, PS007, PS008, PS028, PS030, PS032, PS035)

Proc. ACM Hum.-Comput. Interact., Vol. 5, No. CSCW1, Article 158. Publication date: April 2021.

How an Open Source Software Community Uses Roadmaps 158:19

was better reflection about the process, in most cases at the end of the year during preparation of
the next roadmap. One respondent said: “Tt’d be nice to have a retrospective that examines how much
work for the year kept to plan, and to give a summary of how the language advanced in the desired
direction” (PS007, email interview). Seven respondents were satisfied with the process (PS002,
PS036, PS037) or said they had no opinion (PS005, PS013, PS023, PS029), but the rest had ideas for
improvements. Other suggestions were: less ambitious goals, more specific/concrete goals, and
better estimation of effort levels. Only two non-team members responded to this question; one of
these called for more stakeholder involvement, saying: “Figuring out low threshold way of bringing
library stakeholders into the projects where minimal time commitment is paramount” (PS018, email
interview).

5.2.5 Summary. The intention and process for creating a roadmap gave the community an oppor-
tunity and shared artifact around which to talk about and balance priorities, and define boundaries
and shared purpose when forming teams. During the year it was in effect, community members
used it in online discourse as justification for discouraging off-topic work, and as justification for
encouraging on-topic work. It also tipped the balance for individual decisionmaking about work
allocation by providing evidence that on-topic efforts would be supported by other community
members. Afterwards it served as a standard against which to evaluate progress over the year.

6 DISCUSSION

Rust’s roadmap process strikes a balance between openness to new ideas and people, and
unifying around common goals. As a popular programming language, there are many potential
contributors who could be welcomed and encouraged to help; but as mentioned above in Subsec-
tion 2.1.3, eliciting help from the peripheries of a community requires a balance between welcoming
openness, and predictable direction. Rust’s process seems to strike that balance by creating some
ceremony around the transition from openness to direction: they welcome input when building
the roadmap, then visibly commit to one direction when the roadmap is released. Although few
new ideas from outsiders appear to enter the roadmap through this process, they are enumerated,
summarized, and listened to. The fact that new ideas from outsiders have a non-zero chance of
being heeded may well be important for encouraging participation, just as the infinitesimal but
non-zero chance of winning a lottery is effective in encouraging broad participation.

Another advantage of the transparent roadmap creation process is that it confers legit-
imacy on the governing process [31]. A document with no visible grounding in such a process
might not be trusted as out of date, or as one individual’s interpretation of the community’s goals,
or even as intentions of a sponsoring organization like Mozilla. In contrast, by offering prospective
contributors the ability to gain knowledge and trust of a community’s true intentions, Rust might
be allowing them to more quickly gain a sense of belongingness to the community, a well-studied
motivator for contribution [38]. The fact that we observed non-team participants encouraging
others to work on PRs relevant to the roadmap suggests that they may be visibly signalling their
commitment to the community by demonstrating their familiarity with the roadmap.

When individual contributors can trust that planned work will be done by others in a
known timeframe, “divide and conquer” approaches to coordination may become more
viable. Howison and Crowston [39] found concurrent development of dependent contributions to
be rare in open source. When studying how open source projects performed complex multi-person
tasks, Howison and Crowston only observed developers either immediately adding contributions
when the necessary supporting code was already in place, or deferring contributions in the hopes
that someday that support would become available. They did not observe a pattern of multi-person
interdependent work, in which one developer proceeded on a feature, trusting that another developer

Proc. ACM Hum.-Comput. Interact., Vol. 5, No. CSCW1, Article 158. Publication date: April 2021.

158:20 Klug et al.

would be writing supporting code at the same time. We hypothesize that such co-work may be
more common in projects that provide some trustable signal about others’ intentions. Searching
for such examples in Rust would be fruitful future work.

Team members, particularly the core team itself, play an important role in curating
suggestions and articulating a common vision. The core team influences the consensus built
and maintained by the roadmap process by:

e Framing community survey questions and requests for pre-roadmap blog posts, then choosing
among the answers to build a coherent set of initiatives.

e Using their visibility and respect to argue for their vision publicly, in blog posts, RFC and
issue discussions, forums, team meetings.

e Holding voting privileges over RFCs and merge rights for PRs; as mentioned earlier, while
most accepted RFCs do not align with the roadmap, the roadmap is sometimes used a way to
frame rejection of RFCs, usually that are problematic for other reasons.

e A roadmap allows core team members to take a role similar to a manager; this can be seen,
for example, in P008’s strategy in steering team and contributor effort by using the roadmap
as an agreed upon validation.

7 IMPLICATIONS FOR OTHER PROJECTS

A case study is useful for providing a deep example of how a process has played out in the real
world: as such it can provide experiences that other projects can learn from, but other projects
considering roadmapping need to consider how it applies to their own context.

A project may want to consider a roadmapping process if it is struggling to balance diverging
priorities and wants to strengthen a sense of shared direction. Based on our observation of a single
case, we suggest the following guidance:

o Actively solicit input from the larger community of developers as well as the core team. As
we saw in this case, the overlap in ideas can be very helpful in identifying areas of consensus
that already exist, and in letting those harboring ideas lacking in consensus that there is
unlikely to be significant effort, in the aggregate, applied to their ideas.

e Adopt a non-zero number of ideas from the community. It seems likely that in order to keep
the larger community engaged and interested, a few of the ideas from beyond the core team
should make it into the roadmap.

e The evaluation process should be open and fair. As with any form of governance, fairness
and openness convey a sense of legitimacy around the decision-making and enhance the
likelihood that the community will accept and act on the roadmap.

e Don’t expect all — or even most — of the development work and discussion to focus on
roadmap items. Nevertheless, significant progress on these items can be made, especially by
the most frequent contributors.

e Reflecting on the community’s progress against the roadmap and on the process by which
the roadmap was constructed can be helpful in creating future versions.

As we caution in the next section, however, this paper describes Rust’s experience building a
roadmap process for its own particular needs. It is not clear how this process would need to be
different for a community building different software, with different developers, for different users.

8 THREATS TO VALIDITY

Our results rely in part on detailed qualitative analysis. Qualitative studies mostly do not aim
at generalizability but at providing “a rich, contextualized understanding of human experience
through the intensive study of particular cases” [63]. We looked at the Rust community as a case

Proc. ACM Hum.-Comput. Interact., Vol. 5, No. CSCW1, Article 158. Publication date: April 2021.

How an Open Source Software Community Uses Roadmaps 158:21

study example on how OSS communities use roadmaps as organizational tools to manage and
allocate work effort to shared work goals. Interviewees may not have been representative of the
entire community; although our response rate was fairly high, there is a long tail of contributors,
and there may be some self-selection bias especially among low-volume contributors.

We do not know how typical Rust is of OSS communities with regard to its roadmap, so we only
speculate about how our findings might apply beyond Rust.

We identified a specific list of roadmap topics, and classified issues, PRs, and RFCs according to
those topics using a heuristic, described in Appendix B, that may undercount what work is or is
not from the roadmap. The boundaries of these topics are not well-defined, since features interact,
and work on a non-roadmap feature may be needed where it interacts with a roadmap feature, or
vice-versa. However we relied on titles and labels assigned by the community themselves, and our
mapping from roadmap topics to labels in many cases had a great deal of face validity.

We do not attempt to tease out the effectiveness of roadmaps as a coordination mechanism,
as compared to other ways of governing. Our focus was on understanding how this community
constructed and used roadmaps. Future work could address questions of effectiveness by, for
example, comparing quality, productivity, or community satisfaction before and after roadmap
adoption

9 CONCLUSIONS

In this work we set out to understand the functions of roadmaps for the Rust community, and how
they used it to fulfill those functions. To do this, we qualitatively examined the creation, management,
and reflection on consensus through the roadmap process, and estimated the proportions of
roadmap-related work done throughout the planned year.

We have shown that roadmap’s purposes included building and legitimizing consensus, focusing
and prioritizing collective attention, particularly for team members, building group identity, and
creating external visibility for the community’s plans.

The community accomplishes these purposes by assembling work groups around the roadmap’s
structure, using roadmap goals as justification for directing people towards roadmap-related work,
and by using the roadmap to ground reflection at the end of the year when planning for the next
year.

The power that the roadmap has to influence contributors’ choices during the year comes from
the fact that it comprises exactly those initiatives where collaborators are willing to help. Its
transparent process provides evidence of that willingness to other developers who are deciding
where to contribute their effort. During the roadmapped year, instead of strictly constraining
activity, the roadmap rather functioned to nudge contributors to work on collectively agreed upon
topics in case their focus would wander off to other, individually motivated, topics. In this way, the
roadmap enables the community to guide itself to areas of mutual interest, rather than commanding
effort on shared goals.

It thus guides the community, without the need to exert hierarchical power, and provides a useful
prediction about future development for people working on dependent projects.

REFERENCES

[1] Brian Anderson. 2016. Feature: north-star. https://github.com/brson/rfcs/blob/north-star/text/0000-north-star.md
Last accessed 13 January 2020.

[2] John Anvik, Lyndon Hiew, and Gail C Murphy. 2006. Who Should Fix This Bug?. In Proc. International Conference
on Software Engineering (Shanghai, China) (ICSE ’06). ACM, New York, NY, USA, 361-370.

[3] Open Service Broker API. 2019. Roadmap & Release Planning. https://github.com/openservicebrokerapi/
servicebroker/projects/1 Last accessed 13 January 2020.

Proc. ACM Hum.-Comput. Interact., Vol. 5, No. CSCW1, Article 158. Publication date: April 2021.

https://github.com/brson/rfcs/blob/north-star/text/0000-north-star.md
https://github.com/openservicebrokerapi/servicebroker/projects/1
https://github.com/openservicebrokerapi/servicebroker/projects/1

158:22 Klug et al.

(4]
(5]
(6]

(71

(13]
(14]

(15]

[17

—

(18]

(19]

[20]

[21]

—_ —
[NSR
SN
0

A Barcomb, A Kaufmann, D Riehle, K Stol, and B Fitzgerald. 2018. Uncovering the Periphery: A Qualitative Survey of
Episodic Volunteering in Free/Libre and Open Source Software Communities. IEEE Trans. Software Eng. (2018), 1-1.
Hoda Baytiyeh and Jay Pfaffman. 2010. Open source software: A community of altruists. Comput. Human Behav. 26,
6 (Nov. 2010), 1345-1354.

Stefan Kambiz Behfar, Ekaterina Turkina, and Thierry Burger-Helmchen. 2018. Knowledge management in OSS
communities: Relationship between dense and sparse network structures. Int. J. Inf. Manage. 38, 1 (Feb. 2018),
167-174.

Willem Bekkers, Inge van de Weerd, Marco Spruit, and Sjaak Brinkkemper. 2010. A Framework for Process Improve-
ment in Software Product Management. In Systems, Software and Services Process Improvement. Springer Berlin
Heidelberg, 1-12.

Mariette Bengtsson. 2016. How to plan and perform a qualitative study using content analysis. NursingPlus Open 2
(2016), 8-14.

Yochai Benkler. 2002. Coase’s Penguin, or, Linux and “The Nature of the Firm”. Yale Law J. (2002), 369-446.

Bruce Lawrence Berg, Howard Lune, and Howard Lune. 2004. Qualitative research methods for the social sciences.
Vol. 5. Pearson Boston, MA.

Matthew J Bietz, Eric P S Baumer, and Charlotte P Lee. 2010. Synergizing in Cyberinfrastructure Development.
Comput. Support. Coop. Work 19, 3-4 (July 2010), 245-281.

Christopher Bogart, Christian Késtner, James Herbsleb, and Ferdian Thung. 2016. How to Break an API: Cost
Negotiation and Community Values in Three Software Ecosystems. In Proc. International Symposium on Foundations
of Software Engineering (Seattle, WA, USA) (FSE 2016). ACM, New York, NY, USA, 109-120.

Yuanfeng Cai and Dan Zhu. 2016. Reputation in an open source software community: Antecedents and impacts.
Decis. Support Syst. 91 (Nov. 2016), 103-112.

AWS Cloudformation. 2018. CloudFormation Public Coverage Roadmap. https://github.com/aws-cloudformation/aws-
cloudformation-coverage-roadmap Last accessed 13 January 2020.

J Coelho, M T Valente, L L Silva, and A Hora. 2018. Why We Engage in FLOSS: Answers from Core Developers. In
Intl. Workshop on Cooperative and Human Aspects of Software Engineering (CHASE). 114-121.

John W Creswell and Vicki L Plano Clark. 2017. Designing and conducting mixed methods research. Sage publications.
John W Creswell and Cheryl N Poth. 2016. Qualitative inquiry and research design: Choosing among five approaches.
Sage publications.

Kevin Crowston and Ivan Shamshurin. 2016. Core-Periphery Communication and the success of free/libre open
source software projects. IFIP Advances in Information and Communication Technology 472 (2016), 45-56. https:
//doi.org/10.1007/978-3-319-39225-7

Laura Dabbish, Colleen Stuart, Jason Tsay, and Jim Herbsleb. 2012. Social Coding in GitHub: Transparency and
Collaboration in an Open Software Repository. In Proc. Conference on Computer Supported Cooperative Work
(Seattle, Washington, USA) (CSCW ’12). ACM, New York, NY, USA, 1277-1286.

Carlo Daffara. 2012. Estimating the economic contribution of open source software to the European economy. In The
First Openforum Academy Conference Proceedings. books.google.com.

Jean-Michel Dalle, Paul A David, and Others. 2003. The allocation of software development resources in ‘open
source’production mode. SIEPR-Project NOSTRA Working Paper,(15th February)[Accepted for publication in Joe
Feller, Brian Fitzgerald, Scott Hissam, Karim Lakhani, eds. , Making Sense of the Bazaar, forthcoming from MIT Press
in 2004] (2003).

Premkumar Devanbu, Pallavi Kudigrama, Cindy Rubio-Gonzalez, and Bogdan Vasilescu. 2017. Timezone and Time-
of-day Variance in GitHub Teams: An Empirical Method and Study. In Proc. International Workshop on Software
Analytics (Paderborn, Germany) (SWAN 2017). ACM, New York, NY, USA, 19-22.

Zakir Durumeric, Frank Li, James Kasten, Johanna Amann, Jethro Beekman, Mathias Payer, Nicolas Weaver, David
Adrian, Vern Paxson, Michael Bailey, and J. Alex Halderman. 2014. The Matter of Heartbleed. In Proc. Internet
Measurement Conference (Vancouver, BC, Canada) (IMC ’14). Association for Computing Machinery, New York, NY,
USA, 475-488. https://doi.org/10.1145/2663716.2663755

Christof Ebert. 2007. The impacts of software product management. J. Syst. Softw. 80, 6 (June 2007), 850-861.
Christof Ebert and Sjaak Brinkkemper. 2014. Software product management-An industry evaluation. J. Syst. Softw.
95 (2014), 10-18.

Nadia Eghbal. 2016. Roads and Bridges: The unseen labor behind our digital infrastructure. Technical Report. Ford
Foundation.

Anna Filippova and Hichang Cho. 2016. The Effects and Antecedents of Conflict in Free and Open Source Software
Development. Proc. Conf. on Computer Supported Cooperative Work & Social Computing (CSCW) (2016), 705-716.
Brian Fitzgerald. 2006. The Transformation of Open Source Software. MIS Quarterly 30, 3 (2006), 587-598.

Uwe Flick. 2018. An introduction to qualitative research. Sage Publications Limited.

ACM Hum.-Comput. Interact., Vol. 5, No. CSCW1, Article 158. Publication date: April 2021.

https://github.com/aws-cloudformation/aws-cloudformation-coverage-roadmap
https://github.com/aws-cloudformation/aws-cloudformation-coverage-roadmap
https://doi.org/10.1007/978-3-319-39225-7
https://doi.org/10.1007/978-3-319-39225-7
https://doi.org/10.1145/2663716.2663755

How an Open Source Software Community Uses Roadmaps 158:23

(30]
(31]

(32]

(33]

(34]
(35]
(36]

(37]

(38]
(39]
(40]
[41]

(42

—

(45]

[46

—

(47]

(48]
[49]
(50]

(51]

(53]

(54]
(55]

[56]

Samuel A Fricker. 2012. Software product management. In Software for People. Springer, 53-81.

Archon Fung. 2006. Varieties of Participation in Complex Governance. Public Administration Review 66, s1 (2006),
66-75.

Michael J. Gallivan. 2001. Striking a balance between trust and control in a virtual organization: A content analysis of
open source software case studies. Information Systems Journal 11, 4 (2001), 277-304. https://doi.org/10.1046/].1365-
2575.2001.00108.x

Mohammad Gharehyazie, Daryl Posnett, Bogdan Vasilescu, and Vladimir Filkov. 2015. Developer initiation and social
interactions in OSS: A case study of the Apache Software Foundation. Empirical Software Engineering 20, 5 (Oct.
2015), 1318-1353.

Shane Greenstein and Frank Nagle. 2014. Digital dark matter and the economic contribution of Apache. Research
Policy 43, 4 (May 2014), 623-631.

Gordon Haff. 2018. How Open Source Ate Software: Understand the Open Source Movement and So Much More.
Apress.

A. Hars and Shaosong Ou. 2001. Working for free? Motivations of participating in open source projects. In Proc.
Hawaii International Conference on System Sciences. 9 pp.—.

Andrea Hemetsberger and Christian Reinhardt. 2009. Collective development in open-source communities: An
activity theoretical perspective on successful online collaboration. Organization Studies 30, 9 (2009), 987-1008.
https://doi.org/10.1177/0170840609339241

Guido Hertel, Sven Niedner, and Stefanie Herrmann. 2003. Motivation of software developers in Open Source projects:
an Internet-based survey of contributors to the Linux kernel. Research Policy 32, 7 (July 2003), 1159-1177.

James Howison and Kevin Crowston. 2014. Collaboration through open superposition: a theory of the open source
way. Miss. Q. 38, 1 (2014), 29-50.

Chris Jensen and Walt Scacchi. 2010. Governance in open source software development projects: A comparative
multi-level analysis. In IFIP International Conference on Open Source Systems. Springer, 130-142.

Hans-Bernd Kittlaus and Samuel A Fricker. 2017. Software Product Management: The ISPMA-Compliant Study Guide
and Handbook. Springer.

Florian Kohlbacher. 2006. The use of qualitative content analysis in case study research. In Forum Qualitative
Sozialforschung/Forum: Qualitative Social Research, Vol. 7. Institut fiir Qualitative Forschung, 1-30.

Klaus Krippendorff. 2018. Content analysis: An introduction to its methodology. Sage publications.

Sandeep Krishnamurthy, Shaosong Ou, and Arvind K Tripathi. 2014. Acceptance of monetary rewards in open source
software development. Research Policy 43, 4 (2014), 632-644.

K Lakhani. 2005. Why Hackers Do What They Do: Understanding Motivation and Effort in Free/Open Source Software
Projects. Perspectives on Free and Open Source Software (2005), 3-21.

Charlotte P Lee, Paul Dourish, and Gloria Mark. 2006. The human infrastructure of cyberinfrastructure. Comput.
Support. Coop. Work (2006), 483-492.

Jung Hoon Lee, Hyung-Il Kim, and Robert Phaal. 2012. An analysis of factors improving technology roadmap
credibility: A communications theory assessment of roadmapping processes. Technol. Forecast. Soc. Change 79, 2
(Feb. 2012), 263-280.

M M Lehman, J F Ramil, P D Wernick, D E Perry, and W M Turski. 1997. Metrics and laws of software evolution-the
nineties view. In Proceedings Fourth International Software Metrics Symposium. IEEE, 20-32.

Andrey Maglyas, Uolevi Nikula, and Kari Smolander. 2013. What are the roles of software product managers? An
empirical investigation. J. Syst. Softw. 86, 12 (Dec. 2013), 3071-3090.

M Lynne Markus. 2007. The governance of free/open source software projects: Monolithic, multidimensional, or
configurational? Journal of Management and Governance 11, 2 (2007), 151-163.

Niko Matsakis. 2015. Priorities after 1.0. https://internals.rust-lang.org/t/priorities-after-1-0/1901 Last accessed 13
January 2020.

Philipp Mayring. 2004. Qualitative content analysis. A companion to qualitative research 1 (2004), 159-176.

Nora McDonald, Sarita Schoenebeck, and Andrea Forte. 2019. Reliability and inter-rater reliability in qualitative re-
search: Norms and guidelines for CSCW and HCI practice. Proceedings of the ACM on Human-Computer Interaction
3, CSCW (2019), 1-23.

Rebeca Méndez-Durén. 2013. Do the allocation and quality of intellectual assets affect the reputation of open source
software projects? Information & Management 50, 7 (Nov. 2013), 357-368.

Martin Michlmayr, Francis Hunt, and David Probert. 2007. Release management in free software projects: Practices
and problems. IFIP Int. Fed. Inf. Process. 234, December 2006 (2007), 295-300.

A Mockus, D M Weiss, and Ping Zhang. 2003. Understanding and predicting effort in software projects. In 25th
International Conference on Software Engineering, 2003. Proceedings. IEEE, 274-284.

Proc. ACM Hum.-Comput. Interact., Vol. 5, No. CSCW1, Article 158. Publication date: April 2021.

https://doi.org/10.1046/j.1365-2575.2001.00108.x
https://doi.org/10.1046/j.1365-2575.2001.00108.x
https://doi.org/10.1177/0170840609339241
https://internals.rust-lang.org/t/priorities-after-1-0/1901

158:24 Klug et al.

[57] Jirgen Miinch, Stefan Trieflinger, and Dominic Lang. 2019. Product roadmap—from vision to reality: a systematic
literature review. In 2019 IEEE International Conference on Engineering, Technology and Innovation (ICE/ITMC).
IEEE, 1-8.

[58] Siobhan O’Mahony and Beth A Bechky. 2008. Boundary organizations: Enabling collaboration among unexpected
allies. Administrative science quarterly 53, 3 (2008), 422-459.

[59] Stack Overflow. 2019. Most Loved, Dreaded, and Wanted Languages. https://insights.stackoverflow.com/survey/
2019#technology-_-most-loved-dreaded-and-wanted-languages Last accessed 13 January 2020.

[60] Gang Peng, Yun Wan, and Peter Woodlock. 2013. Network ties and the success of open source software development.

The Journal of Strategic Information Systems 22, 4 (Dec. 2013), 269-281.

Robert Phaal and Gerrit Muller. 2009. An architectural framework for roadmapping: Towards visual strategy. Technol.

Forecast. Soc. Change 76, 1 (Jan. 2009), 39-49.

[62] Gustavo Pinto, Luiz Felipe Dias, and Igor Steinmacher. 2018. Who Gets a Patch Accepted First?: Comparing the
Contributions of Employees and Volunteers. In Proceedings of the 11th International Workshop on Cooperative and
Human Aspects of Software Engineering (Gothenburg, Sweden) (CHASE ’18). ACM, New York, NY, USA, 110-113.

[63] Denise F Polit and Cheryl Tatano Beck. 2010. Generalization in quantitative and qualitative research: Myths and
strategies. International journal of nursing studies 47, 11 (2010), 1451-1458.

[64] German Poo-Caamarfio, Eric Knauss, Leif Singer, and Daniel M German. 2017. Herding cats in a FOSS ecosystem: a
tale of communication and coordination for release management. Journal of Internet Services and Applications 8, 1
(2017).

[65] German Poo-Caamario, Leif Singer, Eric Knauss, and Daniel M German. 2016. Herding cats: A case study of release

management in an open collaboration ecosystem. IFIP Adv. Inf. Commun. Technol. 472 (2016), 147-162.

Huilian Sophie Qiu, Alexander Nolte, Anita Brown, Alexander Serebrenik, and Bogdan Vasilescu. 2019. Going Farther

Together: The Impact of Social Capital on Sustained Participation in Open Source.

[67] Hector Ramos. 2018. Open Source Roadmap. https://facebook.github.io/react-native/blog/2018/11/01/0ss-roadmap
Last accessed 13 January 2020.

[68] David Ribes and Thomas A Finholt. 2009. The long now of infrastructure: Articulating tensions in development.
Journal of the Association for Information Systems (JAIS) (2009).

[69] Rust. 2019. Governance. https://www.rust-lang.org/governance Last accessed 13 January 2020.

[70] Rust. 2019. Production users. https://www.rust-lang.org/production/users Last accessed 13 January 2020.

[71] Read Rust. 2018. Rust 2018: Hopes and dreams for Rust in 2018. https://readrust.net/rust-2018 Last accessed 13
January 2020.

[72] Read Rust. 2019. Rust 2019: Ideas from the community for Rust in 2019, and the next edition. https://readrust.net/rust-
2019 Last accessed 13 January 2020.

[73] W Scacchi. 2002. Understanding the requirements for developing open source software systems. IEE Proceedings -

Software 149, 1 (Feb. 2002), 24-39.

Sonali K Shah. 2006. Motivation, Governance, and the Viability of Hybrid Forms in Open Source Software Development.

Manage. Sci. 52, 7 (July 2006), 1000-1014.

[75] Maha Shaikh and Ola Henfridsson. 2017. Governing open source software through coordination processes. Information
and Organization 27, 2 (2017), 116-135.

[76] Cuihua Shen and Peter Monge. 2011. Who connects with whom? A social network analysis of an online open source
software community. First Monday 16, 6 (June 2011).

[77] Param Vir Singh, Yong Tan, and Vijay Mookerjee. 2011. Network Effects: The Influence of Structural Capital on Open
Source Project Success. MIS Quarterly 35, 4 (2011), 813-829.

[78] Matthias Stiirmer. 2013. Four types of open source communities. https://opensource.com/business/13/6/four-types-
organizational-structures-within-open-source-communities. Accessed: 2020-1-5.

[79] Tanja Suomalainen, Outi Salo, Pekka Abrahamsson, and Jouni Simild. 2011. Software product roadmapping in a
volatile business environment. Journal of Systems and Software 84, 6, 958-975.

[80] Yong Tan, Vijay Mookerjee, and Param Singh. 2007. Social capital, structural holes and team composition: Collaborative
networks of the open source software community. Proc. International Conference on Information Systems (2007),
155.

[81] Antony Tang, Taco de Boer, and Hans van Vliet. 2011. Building roadmaps: a knowledge sharing perspective. In Proc.
International Workshop on SHAring and Reusing Architectural Knowledge. 13-20.

[82] Niels C Taubert. 2008. Balancing requirements of decision and action: Decision-making and implementation in
free/open source software projects. Science, Technology & Innovation Studies 4, 1 (2008), 69-88.

[83] Jonathan Taylor. 2017. Rust 2017 Survey Results. https://blog.rust-lang.org/2017/09/05/Rust-2017-Survey-Results.
html Last accessed 13 January 2020.

(61

—

(66

—

=

[74

flam

Proc. ACM Hum.-Comput. Interact., Vol. 5, No. CSCW1, Article 158. Publication date: April 2021.

https://insights.stackoverflow.com/survey/2019#technology-_-most-loved-dreaded-and-wanted-languages
https://insights.stackoverflow.com/survey/2019#technology-_-most-loved-dreaded-and-wanted-languages
https://facebook.github.io/react-native/blog/2018/11/01/oss-roadmap
https://www.rust-lang.org/governance
https://www.rust-lang.org/production/users
https://readrust.net/rust-2018
https://readrust.net/rust-2019
https://readrust.net/rust-2019
https://opensource.com/business/13/6/four-types-organizational-structures-within-open-source-communities
https://opensource.com/business/13/6/four-types-organizational-structures-within-open-source-communities
https://blog.rust-lang.org/2017/09/05/Rust-2017-Survey-Results.html
https://blog.rust-lang.org/2017/09/05/Rust-2017-Survey-Results.html

How an Open Source Software Community Uses Roadmaps 158:25

(84]
(85]
(86]
(87]
(88]
(89]
[90]
[91]
[92]
(93]
(94]
[95]
[96]
[97]
(98]

[99]

[100]
[101]
[102]

[103]

[104]

[105]

[106]

Libra Engineering Team. 2019. Libra Core Roadmap #2. https://developers.libra.org/blog/2019/12/17/libra-core-
roadmap-2 Last accessed 13 January 2020.

Scala Team. 2017. Scala 2.13 Roadmap. https://www.scala-lang.org/news/roadmap-2.13.html Last accessed 13
January 2020.

The Rust Core Team. 2018. A call for Rust 2019 Roadmap blog posts. https://blog.rust-lang.org/2018/12/06/call-for-
rust-2019-roadmap-blogposts.html Last accessed 13 January 2020.

The Rust Core Team. 2018. New Year’s Rust: A Call for Community Blogposts. https://blog.rust-lang.org/2018/01/03/
new-years-rust-a-call-for-community-blogposts.html Last accessed 13 January 2020.

The Rust Core Team. 2018. Rust’s 2018 roadmap. https://blog.rust-lang.org/2018/03/12/roadmap.html Last accessed
13 January 2020.

The Rust Core Team. 2019. Rust’s 2019 Roadmap. https://blog.rust-lang.org/2019/04/23/roadmap.html Last accessed
13 January 2020.

The Rust Survey Team. 2018. Rust Survey 2018 Results. https://blog.rust-lang.org/2018/11/27/Rust-survey-2018.html
Last accessed 13 January 2020.

Jonathan Turner. 2016. 2016 Rust Commercial User Survey Results. https://internals.rust-lang.org/t/2016-rust-
commercial-user-survey-results/4317 Last accessed 13 January 2020.

Jonathan Turner. 2016. State of Rust Survey 2016. https://blog.rust-lang.org/2016/06/30/State-of-Rust-Survey-
2016.html Last accessed 13 January 2020.

Aaron Turon. 2016. Refining Rust’s RFCs. http://aturon.github.io/blog/2016/07/05/rfc-refinement/ Last accessed 13
January 2020.

Aaron Turon. 2017. Rust’s 2017 Roadmap. https://blog.rust-lang.org/2017/02/06/roadmap.html Last accessed 13
January 2020.

Tuukka Turunen. 2018. QT Roadmap for 2018. https://www.qt.io/blog/2018/02/22/qt-roadmap-2018 Last accessed
13 January 2020.

I van de Weerd, S Brinkkemper, R Nieuwenhuis,] Versendaal, and L Bijlsma. 2006. Towards a Reference Framework
for Software Product Management. In International Requirements Engineering Conference (RE’06). 319-322.
Konstantin Vishnevskiy, Oleg Karasev, and Dirk Meissner. 2015. Integrated roadmaps and corporate foresight as tools
of innovation management: The case of Russian companies. Technol. Forecast. Soc. Change 90 (Jan. 2015), 433-443.
Georg Von Krogh, Stefan Haefliger, Sebastian Spaeth, and Martin W Wallin. 2012. Carrots and rainbows: Motivation
and social practice in open source software development. MIS Quarterly (2012), 649-676.

Kangning Wei, Kevin Crowston, U Yeliz Eseryel, and Robert Heckman. 2017. Roles and politeness behavior in
community-based free/libre open source software development. Information & Management 54, 5 (July 2017),
573-582.

Joel West and Scott Gallagher. 2006. Challenges of open innovation: the paradox of firm investment in open-source
software. R&D Management 36, 3 (2006), 319-331.

Joel West and Siobhan O’Mahony. 2008. The Role of Participation Architecture in Growing Sponsored Open Source
Communities. Industry and Innovation 15, 2 (April 2008), 145-168.

Chorng-Guang Wu, James H Gerlach, and Clifford E Young. 2007. An empirical analysis of open source software
developers’ motivations and continuance intentions. Information & Management 44, 3 (2007), 253-262.

Xuan Xiao, Aron Lindberg, Sean Hansen, and Kalle Lyytinen. 2018. “ Computing” Requirements for Open Source
Software: A Distributed Cognitive Approach. Journal of the Association for Information Systems 19, 12 (2018),
1217-1252.

J Xie, M Zhou, and A Mockus. 2013. Impact of Triage: A Study of Mozilla and Gnome. In International Symposium
on Empirical Software Engineering and Measurement. IEEE, 247-250.

Yunwen Ye and Kouichi Kishida. 2003. Toward an Understanding of the Motivation Open Source Software Developers.
In Proc. International Conference on Software Engineering (Portland, Oregon) (ICSE ’03). IEEE Computer Society,
Washington, DC, USA, 419-429.

Robert K Yin. 2017. Case study research and applications: Design and methods. Sage publications.

Proc. ACM Hum.-Comput. Interact., Vol. 5, No. CSCW1, Article 158. Publication date: April 2021.

https://developers.libra.org/blog/2019/12/17/libra-core-roadmap-2
https://developers.libra.org/blog/2019/12/17/libra-core-roadmap-2
https://www.scala-lang.org/news/roadmap-2.13.html
https://blog.rust-lang.org/2018/12/06/call-for-rust-2019-roadmap-blogposts.html
https://blog.rust-lang.org/2018/12/06/call-for-rust-2019-roadmap-blogposts.html
https://blog.rust-lang.org/2018/01/03/new-years-rust-a-call-for-community-blogposts.html
https://blog.rust-lang.org/2018/01/03/new-years-rust-a-call-for-community-blogposts.html
https://blog.rust-lang.org/2018/03/12/roadmap.html
https://blog.rust-lang.org/2019/04/23/roadmap.html
https://blog.rust-lang.org/2018/11/27/Rust-survey-2018.html
https://internals.rust-lang.org/t/2016-rust-commercial-user-survey-results/4317
https://internals.rust-lang.org/t/2016-rust-commercial-user-survey-results/4317
https://blog.rust-lang.org/2016/06/30/State-of-Rust-Survey-2016.html
https://blog.rust-lang.org/2016/06/30/State-of-Rust-Survey-2016.html
http://aturon.github.io/blog/2016/07/05/rfc-refinement/
https://blog.rust-lang.org/2017/02/06/roadmap.html
https://www.qt.io/blog/2018/02/22/qt-roadmap-2018

158:26 Klug et al.

A EMAIL INTERVIEW QUESTIONS

e Q1. How much do Rust roadmaps influence your decision about what work you contribute
to the Rust project?
No influence at all 1 2 3 4 5 A lot of influence

e Explain (optional)

e Q2. In your opinion, how helpful are roadmaps for the Rust community?
Not at all helpful 1 2 3 4 5 Very helpful

e Can you explain in what way they are helpful or unhelpful? (optional)

¢ Q3. How much do Rust roadmaps (e.g. for working groups or projects) match your own
priorities for Rust?
Do not at all represent my priorities 1 2 3 4 5 Represent my priorities very
well

e Explain (optional)

e Q4. How could the use of roadmaps in Rust be improved in the future?

e Q5. How many years have you been involved with Rust?

e Q6. Have you been on any official Rust team or working group?
Yes No

B ROADMAP TOPIC HEURISTICS

We began by manually extracting a list of topics from the 2018 roadmap. To assign topics to
particular issues, PRs, and RFCs, we used the following method:

e Two researchers independently compiled a list of topics from this document, identifying
bullet points or lists in the text that appeared to identify specific features. One researcher’s
list was strictly longer (36 items) than the other’s (23 items), so the two discussed each of the
additional topics and included all but two of them, resulting in 34 topics.

Using the generated list, one researcher generated a list of proposed search keywords for

each topic, using acronyms, distinctive terms, or word sequences found in that part of the

roadmap, that the researcher judged would have high selectivity for distinguishing text about

that topic from general Rust discussion. The final list is shown in Table B

Labels (short strings used by GitHub to tag issues, RFCs, and pull requests) were assigned

to roadmap topics by applying the keywords to the labels’ descriptions as shown here:

https://github.com/rust-lang/rust/labels; for example the label A-net was assigned to topic

“network services” because it matched the search term “networking”. Both researchers checked

through this list of labels and their descriptions, and agreed that they matched the topics.

o This mapping was used to assign topics to all issues, PRs, and RFCs in rust (excluding so-called
“Rollup” PRs). An issue, PR, or RFC was assigned to a topic if it was tagged with a label that
mapped to that keyword.

o Topics were also assigned to RFCs, and tracking issues (a subset of issues formally tied to

certain RFCs) if the search terms matched the item’s title.

We then spread activation from RFCs to issues, issues to PRs and RFCs, and PRs to issues: that

is, an issue inherits the topic of an RFC if the RFC lists the issue as an official tracking issue.

A PR inherits the topic of an issue if the PR mentions the issue ID in its initial description.

This was not done recursively.

e We assign a commit to a topic if it was part of a non-Rollup PR of that topic that was eventually
merged into the main thread. We omitted commits with multiple parents (to avoid double
counting merges of commits) and commits of more than 100 files (to avoid commits that were
mass moves of files).

Proc. ACM Hum.-Comput. Interact., Vol. 5, No. CSCW1, Article 158. Publication date: April 2021.

https://github.com/rust-lang/rust/labels

How an Open Source Software Community Uses Roadmaps 158:27

o “Discussion effort” was operationalized as characters of text in the header and commentthread
of each RFC discussion, issue, or PR, excluding code embedded in those comments(which is
delimited by triple backticks).

e "Coding effort” was operationalized as lines of code deleted plus lines of code added.

e "Team contributors” were operationalized as anyone who was a member of the one of the
teams listed on Rust’s governance page at the beginning of 2018.

Also note that some development happened outside these repositories; for example there is a
rust-lang/cargo repository; we only capture aspects of development that affect the main compiler
project.

Table 6. Search terms for identifying 2018 roadmap topics in labels and text. The left and middle columns are
used as search terms within the descriptions of labels; the right column shows the labels that matched.

2018 Topic

Search Terms

Labels

add edition flag to rust-
fix

(edition AND rustfix) OR (2018
AND lint* AND rustfix)

async/await (async AND await) OR A-async-await,
(async/await) AsyncAwait-Triaged,
AsyncAwait-Focus,
AsyncAwait-OnDeck, F-async_await
build system integra-
tion
cargo custom registries (Cargo AND registry) OR A-registry
(Cargo AND registries)
Cargo/Xargo integra- cargo AND xargo
tion
CLI apps (CLI app*) OR (CLI application®)
OR (command AND line AND
app*) OR (command AND line
AND application®)
Clippy (Clippy AND rustup) OR A-lint

(Clippy AND 1.0) OR (Clippy
AND 1 AND 0)

compiler optimizations

(optimization®) OR (optimisa-
tion*) OR (optimize) OR (opti-
mise)

A-optimization, A-LLVM, A-mir-opt

compiler parallelization

(parallelization) OR (parallelisa-
tion)

compiler-driven code
completion for RLS

(auto-complete AND RLS) OR
(completion AND RLS)

const generics

A-const-generics,
F-const_generics

custom allocator

custom AND allocator®

A-allocators

custom test frameworks

custom AND test AND frame-
work*

F-custom_test_frameworks

embedded device

embedded

WG-embedded

GATs

(generic AND associated AND
type*) OR (associated AND type
AND constructor®)

F-generic_associated_types

generator

A-generators, F-generators

Proc. ACM Hum.-Comput. Interact., Vol. 5, No.

CSCW1, Article 158. Publication date: April 2021.

158:28

Table 6. (continued)

Klug et al.

2018 Topic

Search Terms

Labels

improve compiler error
message

error* AND message*

A-diagnostics,
F-on_unimplemented

incremental AND complilation

A-incremental,
WG-compiler-incr

A-incr-comp,

incremental compila-
tion
internationalization

(internationalization) OR (inter-
nationalisation)

macros 2.0 hygiene

(macro®* AND hygiene) OR
(macro* AND 2.0) OR (macro*

A-hygiene, A-macros-2.0

AND 2 AND 0) OR (hygiene)
MIR-only rlibs MIR AND rlib*
modules revamp modules A-modules
network services networking A-net
non-lexical lifetimes (NLL) OR (non AND lexical A-NLL, NLL-complete,

AND lifetime*) OR (non-lexical
AND lifetime*)

NLL-diagnostics,
NLL-fixed-by-NLL, NLL-performant,
NLL-polonius, NLL-reference,

NLL-sound
public dependencies in (cargo AND libstd) OR (cargo
cargo AND std) OR (cargo AND
xargo)
revise cargo profiles cargo AND profile* A-profile
RLS 1.0 RLS A-language-server, A-rls

rustdoc RLS-based edi-
tion

RLS AND rustdoc

rustfmt rustfmt

Ship or drop er- (ergonomics AND rfc) OR (er- Ergonomics Initiative
gonomics RFCs gonomics AND initiative)

SIMD A-simd, F-simd_ffi

stabilize impl Trait

impl Trait

A-impl-trait,
F-impl_trait_in_bindings,
F-type_alias_impl_trait

tokio

web assembly

(webassembly) OR (wasm) OR
(web assembly)

0-wasm

Received June 2020; revised October 2020; accepted December 2020

Proc. ACM Hum.-Comput. Interact., Vol. 5, No. CSCW1, Article 158. Publication date: April 2021.

	Abstract
	1 Introduction
	2 Background
	2.1 The Problem of Coordinating Developer Effort in Open Source Software
	2.2 Roadmaps in Commercial and OSS Development

	3 Case Study: Roadmaps in the Rust Language Project
	3.1 The 2018 Rust roadmap
	3.2 Other Rust documents

	4 Methodology
	4.1 Data Collection
	4.2 Data Description and Analysis

	5 Results
	5.1 Functions of the Roadmap
	5.2 Mechanisms of the Roadmap

	6 Discussion
	7 Implications for other projects
	8 Threats to Validity
	9 Conclusions
	References
	A Email Interview Questions
	B Roadmap Topic Heuristics

 HistoryItem_V1
 AddMaskingTape

 Range: From page 1 to page 1
 Mask co-ordinates: Horizontal, vertical offset 40.36, 57.11 Width 412.16 Height 81.57 points
 Origin: bottom left

 1
 0
 BL

 1
 SubDoc
 1

 CurrentAVDoc

 40.3573 57.1095 412.1599 81.5733

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2 2.0
 Quite Imposing Plus 2
 1

 0
 28
 0
 1

 1

 HistoryList_V1
 qi2base

