
42

When and How to Make Breaking Changes: Policies and
Practices in 18 Open Source Software Ecosystems

CHRIS BOGART, CHRISTIAN KÄSTNER, and JAMES HERBSLEB,
Carnegie Mellon University, USA

FERDIAN THUNG, Singapore Management University, Singapore

Open source software projects often rely on package management systems that help projects discover, incor-

porate, and maintain dependencies on other packages, maintained by other people. Such systems save a great

deal of effort over ad hoc ways of advertising, packaging, and transmitting useful libraries, but coordination

among project teams is still needed when one package makes a breaking change affecting other packages.

Ecosystems differ in their approaches to breaking changes, and there is no general theory to explain the rela-

tionships between features, behavioral norms, ecosystem outcomes, and motivating values. We address this

through two empirical studies. In an interview case study, we contrast Eclipse, NPM, and CRAN, demonstrat-

ing that these different norms for coordination of breaking changes shift the costs of using and maintaining

the software among stakeholders, appropriate to each ecosystem’s mission. In a second study, we combine a

survey, repository mining, and document analysis to broaden and systematize these observations across 18

ecosystems. We find that all ecosystems share values such as stability and compatibility, but differ in other

values. Ecosystems’ practices often support their espoused values, but in surprisingly diverse ways. The data

provides counterevidence against easy generalizations about why ecosystem communities do what they do.

CCS Concepts: • Software and its engineering → Collaboration in software development; Software

development process management; Software libraries and repositories; • Human-centered comput-

ing → Empirical studies in collaborative and social computing;

Additional Key Words and Phrases: Software ecosystems, dependency management, semantic versioning,

collaboration, qualitative research

ACM Reference format:

Chris Bogart, Christian Kästner, James Herbsleb, and Ferdian Thung. 2021. When and How to Make Breaking

Changes: Policies and Practices in 18 Open Source Software Ecosystems. ACM Trans. Softw. Eng. Methodol.

30, 4, Article 42 (July 2021), 56 pages.

https://doi.org/10.1145/3447245

This work has been supported by by NSF awards 1901311, 1546393, 1302522, 1322278, 0943168, 1318808, 1633083, and

1552944, the Science of Security Lablet (H9823014C0140), the U.S. Department of Defense through the Systems Engineering

Research Center, and a grant from the Alfred P. Sloan Foundation.

Authors’ addresses: C. Bogart, C. Kästner, and J. Herbsleb, Carnegie Mellon University, Institute for Software Research

TCS Hall 430, 4665 Forbes Avenue, Pittsburgh, PA 15213; emails: {cbogart, ckaestner, jherbsleb}@cs.cmu.edu; F. Thung,

Singapore Management University, School of Computing and Information Systems, 80 Stamford Road, Singapore 178902;

email: ferdiant.2013@smu.edu.sg.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2021 Association for Computing Machinery.

1049-331X/2021/07-ART42 $15.00

https://doi.org/10.1145/3447245

ACM Transactions on Software Engineering and Methodology, Vol. 30, No. 4, Article 42. Pub. date: July 2021.

https://doi.org/10.1145/3447245
mailto:permissions@acm.org
https://doi.org/10.1145/3447245
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3447245&domain=pdf&date_stamp=2021-07-23

42:2 C. Bogart et al.

1 INTRODUCTION

Software ecosystems are communities built around shared programming languages, shared plat-
forms, or shared dependency management tools, which allow developers to create packages that
import and build on each others’ functionality. Software ecosystems have become an important
paradigm for organizing open source software development and maintaining and reusing code
packages. Development within ecosystems is efficient in the sense that common functionalities
need only be developed, maintained, and tested by a single team, instead of many authors reim-
plementing the same functionality.

Coordination is a major challenge in software ecosystems, since packages tend to be highly
interdependent yet independently maintained [2, 3, 6, 21, 55, 68]. In at least some ecosystems,
such as JavaScript, transitive dependency networks are growing rapidly [46]. Improvements that
a maintainer makes to a shared package may affect many users of that package, for example, by
incorporating new features, making APIs simpler, and improving maintainability [10]. Any of these
actions may require rework from developers whose software depends on that package. Package
users may invest in regular rework to keep up with changes, collaborate with upstream projects to
minimize the impact of those changes, decline to update to the latest versions (at the risk of missing
bug fixes or security updates), or replicate functionality to avoid dependencies in the first place [6,
17, 19, 72]. Package maintainers, in turn, have many ways to reduce the burden on their users. For
example, they can refrain from performing changes, announce and clearly label breaking changes,
or help their users to migrate from old to new versions [6, 36, 65, 67]. Many different practices
can contribute to managing change, and adopting various practices can shift some of the cost (in
the form of effort) among different classes of ecosystem participants such as maintainers, package
users, and end-users (e.g., Reference [28]) .

While much is known about some individual practices for managing change, we do not yet un-
derstand how these practices occur in the wild, nor how they can combine to establish the full
design space of practices. Managing change takes time and effort from both upstream and down-
stream developers, and depending on their community’s practices, this cost may be distributed
differently. However, we do not fully understand the distributions of costs that result from various
practices, nor how practices are related to ecosystem culture and technologies. This is impor-
tant not only from a research perspective, to acquire an understanding of ecosystem coordination
mechanisms, but also for practitioners and sponsors who may need to tune the distribution of
costs to accommodate changing conditions. For example, as an ecosystem accumulates a large
and rapidly growing base of applications that use particular packages, its community may wish to
adopt practices to increase the stability of those packages to avoid imposing the costs of change on
a large and growing base of users. What practices could accomplish this? Of this set of practices,
which are likely to be compatible with the adopting ecosystem’s culture and values?

We perform two studies to address questions like this. First, we conducted a multiple case study
(Study 1) of three open source software ecosystems with different philosophies toward change:
Eclipse, R/CRAN, and Node.js/npm. We studied how developers plan, manage, and coordinate
change within each ecosystem, how change-related costs are allocated, and how developers are
influenced by and influence change-related expectations, policies, and tools in the ecosystem. In
each ecosystem, we studied public policies and policy discussions and interviewed developers
about their expectations, communication, and decision-making regarding changes. We found that
developers employ a wide variety of practices that shift or delay the costs of change within an
ecosystem. Expectations about how to handle change differ substantially among the three ecosys-
tems and influence cost-benefit tradeoffs among those who develop packages used by others
(who we will call upstream developers), the developer-users of such packages (who we will call

ACM Transactions on Software Engineering and Methodology, Vol. 30, No. 4, Article 42. Pub. date: July 2021.

When and How to Make Breaking Changes 42:3

downstream developers), and end-users. We argue that these differences arise from different values
in each community and are reinforced through peer pressure, policies, and tooling. For example,
long-term stability is a central value of the Eclipse community, achieved by their “prime directive”
practice of never permitting breaking changes. This practice imposes costs on upstream devel-
opers, who may accept substantial opportunity costs and technical debt to avoid breaking client
code. In contrast, the Node.js/npm community values ease and simplicity for upstream developers
and has a technical infrastructure in which breaking changes are accepted, but signaled clearly
through version numbering.

Our second study builds on and expands the scope of the first, investigating the prevalence of
practices, and attitudes toward the ecosystems values from Study 1, in a larger set of 18 ecosys-
tems. We combine several methods to accomplish this, including data mining of software reposito-
ries to identify those practices that leave visible traces, document analysis to identify policy-level
practices that are stated explicitly, and a large-scale survey to ask developers about many other
practices as well as the importance of various values within the ecosystem. In Study 2, we find that
practices and values are indeed often cohesive within an ecosystem, but diverse across different
ecosystems. We also find that even when ecosystems share similar values, they often achieve it
in different ways, or sometimes fail to achieve it at all, promoting practices that are never widely
adopted or do not work well. Together, our results provide a map of the distribution of values and
practices across these ecosystems and allow us to examine the relationships between values and
practices. Beyond these findings, we make our full anonymized results available to the research
community, in hopes they will be useful in future studies, for example, by providing a basis for
selecting cases with particular combinations of practices and values.

This work builds on and extends our previously published conference paper [6], including much
of the material in Section 4. The data is available as an archived dataset [7] as well as an interactive
web page.1

Our contributions include a description of breaking change-related values and practices in three
ecosystems, a taxonomy of values and of practices, and a mapping of those values and practices
across 18 ecosystems derived from a survey, data mining, and policy analysis.

2 CONCEPTS AND DEFINITIONS

Software ecosystems. For this study, we define software ecosystems as communities built around
shared programming languages, shared platforms, or shared dependency management tools, allow-
ing developers to create packages that import and build on each others’ functionality. In line with
definitions of Lungu [50] and Jansen and Cusumano [43], we focus on “collection[s] of software
projects which are developed and which co-evolve together in the same environment” [50, p. 27],
which have interdependent but independently developed packages, which generally share a tech-
nology platform or a set of standards [43]. Such ecosystems typically center on some means to
package, version, and often host software artifacts, and to manage dependencies among them
[1, 47, 51, 61, 74].

Note that the term “software ecosystem” is overloaded and used with different definitions in
different lines of research [52], including ones that focus on commercial platforms that can be en-
hanced with third-party contributions [40, 56, 81, 83]. We focus especially on open-source commu-
nities developing interdependent libraries (e.g., Maven, npm, CPAN), rather than more centralized
platforms where usually independent extensions provide a single application but do not build on
each other (e.g., Photoshop plugins, Android apps); we also exclude ecosystems that repackage

1http://breakingapis.org.

ACM Transactions on Software Engineering and Methodology, Vol. 30, No. 4, Article 42. Pub. date: July 2021.

http://breakingapis.org

42:4 C. Bogart et al.

software projects and their dependencies for deployment (e.g., Debian packages, homebrew), as
they are often managed by independent volunteers rather than the original software developers.

Breaking changes. There are many relevant software development concerns when maintaining
interdependent artifacts as a community. We focus on the coordination issue of deciding whether
and how to perform breaking changes and how downstream developers respond.

In this article, we define a breaking change as any change in a package that would cause a fault
in a dependent package if it were to blindly adopt that change. We thus include not only cases
where a change in API would cause a downstream package to fail to compile, but also cases where
program behavior would change, leading to incorrect results or unacceptable performance. We
examine breaking-change related practices quite broadly, including not only reactions to actual
breaking changes, but practices meant to signal, mitigate, or prevent breaking changes.

Maintaining dependencies and updating one’s own code to react to breaking changes is a sig-
nificant cost driver when using otherwise free open-source dependencies. Breaking changes are
common in practice [3, 5, 6, 14, 22, 29, 39, 44, 48, 53, 54, 66–68, 89, 90]. For example, Decan et al.
[22] found that 5% of package updates in CRAN were backward incompatible, causing 41% of the
errors in released dependent packages. Xavier et al. [90] report that 28% of releases of frequently
used Java libraries break backward compatibility, with the rate of breaking changes increasing over
time. Information hiding [63], centralized change control [29, 73], and change impact analysis [8,
84] can all guide decision making, but cannot entirely prevent the need for breaking changes in
practice, given the large-scale, open, and distributed nature of software ecosystems [6, 59, 62, 76,
90].

Package managers structure the problem and make dependencies and versions explicit [3, 47,
51], and practices like semantic versioning assign semantics to version numbers (e.g., breaking vs.
nonbreaking changes) [65, 67], but these only help to manage change, not prevent the problem or
support decision making about when to perform breaking changes.

Values and practices. The “why” and “how” of managing breaking changes in software ecosys-
tems are values and practices.

Shared values—judgments of what is important or preferred—can explain how developers make
similar decisions. Values have been studied at societal scale in psychology [4], ethics [16], and re-
lated fields [12, 37] (e.g., how education influences personal value systems); however, values and
their influence on practices have been studied mostly in narrow contexts in software engineering:
Pham et al. studied testing culture [64] and Murphy-Hill et al. found that creativity and commu-
nication with non-engineers is valued more by game developers than by application developers,
resulting in less testing and architecture practices in game development [58]. We use the concept
of values to analyze common shared beliefs about what is important for an ecosystem, with a focus
on change-related issues.

With practices, we refer broadly to activities that developers engage in, again primarily with a
focus on managing change. Practices may include specific release strategies, deciding not to per-
form changes, mitigating the impact of changes through documenting migration paths or reaching
out to developers, monitoring changes in dependencies, deciding whether and when to update de-
pendencies, and many more [6].

In ecosystems, practices may be encouraged or mandated by policies (for example, npm and
Eclipse mandate the use of semantic versioning in their documentation) and may be supported or
even enforced by tools (for example, the Eclipse community’s API Tools detect even subtle breaking
changes and CRAN runs automated checks to enforce coding standards and resolve incompatibility
issues) [6]. For simplicity, we use the term practice broadly, including policies and tools.

ACM Transactions on Software Engineering and Methodology, Vol. 30, No. 4, Article 42. Pub. date: July 2021.

When and How to Make Breaking Changes 42:5

Governance in open source and software ecosystems covers community-wide decisions, e.g.,
how to integrate third-party contributions [11], which model for decision making is generally
appropriate [45, 60], how open an ecosystem should be [85], and how people in different roles
should be allowed to participate [86]. While some governance research discusses the need for both
evolvability and stability of an organization [83], research focuses on general market mechanisms
or process documentation and conformance [41, 45] not on technical steps a software engineer
might take.

3 METHODS

3.1 Research Design

As stated in the introduction, our goal in this research is to create a high-level map of values and
practices relating to breaking change across many software ecosystems

We approached this question with an exploratory sequential mixed-methods design [15], be-
ginning a qualitative preliminary case study to first understand how the community deals with
or prevents breaking changes, and why they deal with them in this way. This first study takes a
constructivist view, focusing on how the problem of breaking changes look from the perspective
of participants, and asking why they approach this collaboration problem the way they do. We use
this to inform a second, primarily quantitative study. The second study is not intended specifically
to confirm that the findings generalize (although we do a confirmatory check in Section 5.1), but
rather a broad look to see where it generalizes, and if there is any pattern to the combinations of
values and practices we see in the larger landscape outside the three case study ecosystems. Study
2 casts a broad net at the cost of depth when asking high-level questions about many communities;
however, we recognize and call for research about particular practices, values, or ecosystems that
should be followed up in more depth, bringing more resources to bear for more focused questions.
Study 2 shows that there is not a simple relationship between practices and values—we found that
communities often act on the same value in different ways.

3.2 Study 1: Interview Case Study

For our first look at ecosystem practices, we performed a multiple case study, interviewing 28 de-
velopers in the three ecosystems. Case studies are appropriate for investigating “how” and “why”
questions about current phenomena [92]. We selected three contrasting cases to aim for theoretical
replication [92], a means to investigate the proposition that phenomena will differ across contrast-
ing cases for predictable reasons.

Eclipse and Node.js/npm served as cases that contrast sharply in their approach to change:
Eclipse has interfaces that have not changed for over a decade, while Node.js/npm is a relatively
new and fast-moving platform. We expected that Eclipse’s policies and tools might impose costs
on developers in a way that encouraged them to act consistently with the ecosystem’s values of
stability. The R/CRAN ecosystem serves as a useful third theoretical replication, since its policy
favors compatibility among the latest versions of packages over Eclipse’s long-term compatibility
with past versions. In addition, CRAN acts as a gatekeeper for a centralized repository in contrast
to npm’s intentionally low hurdles for contributions.

We began by mining lists of packages and their dependency relationships from these three
ecosystems. We assembled a database of packages, their dependency relationships, and version
change histories from the npm repository (metadata from which was retrieved from https://
registry.npmjs.org/ in json format), CRAN repositories (scraping metadata from web pages starting
from http://cran.r-project.org/web/packages/available_packages_by_name.html), and git reposi-
tories of Eclipse (https://git.eclipse.org/c/).

ACM Transactions on Software Engineering and Methodology, Vol. 30, No. 4, Article 42. Pub. date: July 2021.

https://registry.npmjs.org/
https://registry.npmjs.org/
http://cran.r-project.org/web/packages/available_packages_by_name.html
https://git.eclipse.org/c/

42:6 C. Bogart et al.

Table 1. Interviewees. R2 and N4 Were Pairs of Close
Collaborators, Identified as R2a, R2b, N4a, and N4b

Code Case Field Occupation
E1 Eclipse Programming tools/HCI University
E2 Eclipse Soft. Eng./CS Education University
E3 Eclipse Soft. Eng./Research University
E4 Eclipse CS Education University
E5 Eclipse Software engineering Retired
E6 Eclipse Software engineering Industry
E7 Eclipse Eclipse infrastructure Industry
E8 Eclipse Software engineering Industry
E9 Eclipse Software engineering Industry
R1 CRAN Soil science Government
R2a,b CRAN Statistics University
R3 CRAN Medical imaging University
R4 CRAN Genetics University
R5 CRAN Soil science University
R6 CRAN Web apps Industry
R7 CRAN Data analysis Industry
R8 CRAN R infrastructure Industry
R9 CRAN R infrastructure Industry
R10 CRAN R infrastructure University
N1 NPM Telephony Industry
N2 NPM Tools for API dev. Industry
N3 NPM Web framework Startup
N4a,b NPM Web framework Startup
N5 NPM Cognitive Science University
N6 NPM Database, Node infrastr. Startup
N7 NPM Database, Node infrastr. Industry

All owned packages with both upstream and downstream dependencies.

We pursued two complementary recruitment strategies for our interviews. To find package
maintainers who would have recent, relevant insight about managing dependencies from both
sides of the dependency relationship, we used our mined repository datasets to identify packages
that had at least two downstream dependencies and two upstream dependencies, and that both
the focal package and at least one of the upstream dependencies had had a version update in the
year before the interview (2015).2

We emailed a random sample of these packages’ owners choosing at random from the package
list mentioned above in small batches, handwriting emails to the authors using emails and details
supplied in the npm and CRAN repositories, or the Eclipse commit logs, and set up interviews
with people who responded. We also interviewed three developers that we or our colleagues knew
personally. In all, we contacted 92 people and conducted 26 interviews. Our interviews focused on
their personal practices and experiences managing upstream and downstream dependencies.

After 20 interviews, we were hearing similar ideas from each new interviewee but we recognized
the need for deeper experience with the ecosystem-wide origins and impacts of the ecosystem’s

2The code implementing this filtering is available at https://github.com/cbogart/depalyze/blob/

1d867cc92d7a5f18274358ae02574915026a30d5/depalyze/versionhistory.py#L354.

ACM Transactions on Software Engineering and Methodology, Vol. 30, No. 4, Article 42. Pub. date: July 2021.

https://github.com/cbogart/depalyze/blob/1d867cc92d7a5f18274358ae02574915026a30d5/depalyze/versionhistory.py#L354
https://github.com/cbogart/depalyze/blob/1d867cc92d7a5f18274358ae02574915026a30d5/depalyze/versionhistory.py#L354

When and How to Make Breaking Changes 42:7

Fig. 1. Conceptual overview: upstream vs. downstream and influence of platform and community.

policies, so we decided to additionally interview individuals with some role (current or historical)
in the development of the ecosystem’s tools or policies. As these individuals are fewer and there
are more demands on their time, we only attempted to find a few key people in each ecosystem;
thus, we recruited 8 additional developers; asking a few of the same questions but also adding
questions about the ecosystem’s history, policy, and values. All 28 interviewees were active soft-
ware developers with multiple years of experience, but their background ranged from university
research to startup companies; Table 1 gives an overview.

We conducted semistructured phone interviews that lasted 30–60 minutes. We generally fol-
lowed an interview script shown in Appendix A, but tailored our questions toward the intervie-
wees’ personal experiences. With the interviewees’ consent, we recorded all interviews.

In keeping with our constructivist approach to the first study, we analyzed the interviews us-
ing Thematic Analysis [9]. We transcribed the recordings, then tentatively coded the transcripts
looking for interesting themes, using Dedoose [23], then iteratively discussed, redefined, and
recoded. Codes that emerged in the first round included labels such as “expectations towards
change,” “communication channels,” “opportunity costs of backward compatibility,” and “moni-
toring.” We combined redundant codes, eliminated ones that did not recur or address our research
questions, then grouped the remainder into seven high-level themes: “Change planning: reasons
for changes,” “change planning: costs to the changer,” “Change planning: Technical means, prac-
tices,” “Change planning: reasoning about cost tradeoffs,” “Coping with change,” “Communica-
tion,” and “Ecosystem-wide policy and technology.” Next, we gathered tagged quotes from each
high-level category, and two researchers checked that they agreed with the low-level tags for each
quote in the category, revising any disagreements through discussion.

Thematic analysis does not claim to find reproducible phenomena within the interviews; for
example, we did not attempt to compute interrater reliability, since we make no claim that two
researchers trained themselves to reliably identify exactly the same utterances from interviewees
as examples of “expectations towards change,” nor that we have exhaustively identified all in-
stances of such an expectation among our interviewees. As such, we do not apply statistics to our
qualitative results or attach much importance to counts; the purpose of the interviews and our
thematic analysis is to discover the broad categories of attitudes and strategies towards change
that interviewees experienced, with illustrative examples of typical practices and motivations that
constitute those strategies.

To complement our interviews, we explored policies, public discussions, meeting minutes, tools
in each ecosystem.

In our analysis, we distinguish between decisions made in the roles upstream and downstream
developer, as depicted in Figure 1.

Validity check. To validate our findings from the case study, we adapted Dagenais and Robillard’s
methodology [18] to check fit and applicability as defined by Corbin and Strauss [13, p. 305].
We presented interviewees with both a summary and a full draft of Sections 4.2–4.3, along with

ACM Transactions on Software Engineering and Methodology, Vol. 30, No. 4, Article 42. Pub. date: July 2021.

42:8 C. Bogart et al.

questions prompting them to look for correctness and areas of agreement or disagreement (i.e.,
fit), and any insights gained from reading about experiences of other developers and platforms
(i.e., applicability).

Six of our interviewees responded with comments on the results; all six indicated general agree-
ment (e.g., R5: “It brings a structure and coherence to issues that I was loosely aware of, but that are
too rarely the centre of focus in my everyday work.”); corrections included small factual errors, (e.g.,
the number of CRAN packages had increased since the initial writeup, and is now over 14,000); and
suggestions of ways to sharpen our analysis (e.g., R7 noted that CRAN’s policy to contact down-
stream developers does not apply to the majority of users outside CRAN). We incorporated their
feedback when it was consistent with a recheck of our data and added clarifications otherwise.

3.3 Study2

We then conducted a systematic mapping of values and practices in a broad sample of ecosystems,
primarily making use of a survey. Because of the large number and diversity of practices (Tables 4,
5, and 6), we could not measure them all with one methodology. We asked about a large subset
of them in the survey (e.g., doing research about dependencies before using them; bottom section
of Table 6). We also analyzed documentation and policies to identify practices that are enacted
ecosystem-wide by organizations or tools (e.g., Ecosystem-wide synchronized release; Table 4);
finally, we mined Github repositories and the libraries.io package metadata dataset for practices
that leave visible traces (e.g., “Continue critical updates to older versions”; Table 5). Out of the
55 practices we identify, there are 19 that we do not attempt to measure in Study 2 (e.g., socially
connected developers following each other on Twitter, going to conferences; top section of Table 6).

First, we describe the survey methods, then in subsequent subsections describe the policy anal-
ysis (Section 3.3.5) and data mining (Section 3.3.6) methods.

3.3.1 Ecosystems. We solicited survey participants from ecosystems with a dependency network
structure, in which packages can depend on other packages and a standardized infrastructure helps
with sharing and compatibility. We started with a list of software repositories from Wikipedia’s
“Software Repository” page and added additional ecosystems with an active community that we
could find.

We excluded ecosystems with a flat structure where packages depend only on a single shared
platform (e.g., Android) and ecosystems obviously too small to hope to get at least a few dozen
responses. We also excluded ecosystems if they were different enough that it was not possible to
write clear questions that would apply across ecosystems. This excluded, for example, operating-
system-level package managers such as apt, rpm, and brew, and scientific workflow engines.

We conducted the survey with 31 ecosystems. For our analysis, we somewhat arbitrarily set
the minimum number of participants for each ecosystem at 15, feeling this would give us a rea-
sonable claim to some breadth in the responses. This led us to exclude 13 ecosystems: C++/Boost,
Bower, Perl 6, Smalltalk, Tex/CTAN, Julia, Clojure/clojars, Meteor, Wordpress, SwiftPM, PHP’s
PEAR, Racket, and Dart/pub, leaving us with 18 ecosystems for our analysis, shown in Table 2. All
but 2 had more than 40 complete responses.

3.3.2 Survey Goals and Recruitment. The survey consisted of 108 questions: seven long free text
questions (marked as optional opportunities for clarification), three short text questions (ecosys-
tem, package name, and gender), and the rest multiple-choice scales. After an informed consent
screen, participants first were asked to choose an ecosystem in which they had published or used
a package (they could choose from a list, or type in another; we grouped rare answers as “other”
for analysis).

ACM Transactions on Software Engineering and Methodology, Vol. 30, No. 4, Article 42. Pub. date: July 2021.

When and How to Make Breaking Changes 42:9

Table 2. Survey Statistics by Ecosystem

3.3.3 Recruitment. We invested in significant outreach activities to recruit participants for the
survey. First, we created a web page and Twitter account to describe the state of current research
in this area, in a form easily accessible to practitioners.3 We encouraged readers of the web page
to take the survey to contribute additional knowledge about values in ecosystems. Second, we at-
tended community events, including npm.camp 2016, to talk to developers and community leaders
from multiple ecosystems about our research; as a result, several prominent community members
tweeted about our web page and survey, resulting in surges of responses (CRAN and npm particu-
larly). Third, we promoted our web page and the survey in ecosystem-specific forums and mailing
lists to “developers who write <ecosystem> packages,” hoping that our web page would spark in-
terest in the topic. We also posted on Twitter with hashtags appropriate for different ecosystems.
Finally, for 21 ecosystems in which our outreach activity did not yield sufficient answers, we so-
licited individuals directly by email. We sent 8,137 emails to package authors. We sampled these
from authors of packages culled from libraries.io for targeted ecosystems.

Participants and their demographics. We succeeded in recruiting 2,321 participants to partially or
fully complete the survey between August and November of 2016. Of this number, 932 completed
the survey; however, we put value questions near the beginning, so there are 1,466 answers to
those questions. Statistical analysis of answers to early questions did not reveal any systematic
differences between people who completed the survey and those who did not (mean difference
between answers to 65 Likert-scale questions between respondents who completed the survey and

3https://breakingapis.org.

ACM Transactions on Software Engineering and Methodology, Vol. 30, No. 4, Article 42. Pub. date: July 2021.

https://breakingapis.org

42:10 C. Bogart et al.

those who did not, was 0.13 scale points (out of 4 or 5, depending on the question). The maximum
difference was .83 scale points; but the maximum difference among questions where more than
one “incomplete” respondent answered was .54 Likert-scale points). Since the partial responses
were similar to full responses, we include data for the incomplete responses.

To correct for careless responses in which people appeared to be answering many questions
without careful consideration, we excluded as “careless” those sections of a person’s response
in which they rated all items exactly the same. We performed this test on eight sections of the
survey, and the number of excluded blocks ranged from 11 (for a set of upstream practices) to 76
(for a set of downstream practices). When people were excluded from one block, their responses to
other questions did not appear to be outliers (mean difference between answers to 65 Likert-scale
questions between respondents excluded from some other block, and respondents who were not,
was 0.15 scale points (out of 4 or 5, depending on the question). The maximum difference was
.50, for the question “How important do you think the following values are to the <ecosystem>
community: stability”). Because the answers were similar for all questions, we did not exclude
entire people if they were apparently careless in any of the eight blocks.

Table 2 shows participation by ecosystem. Participants averaged 8.8 years of development expe-
rience, 7.2 years in open source, and 4.6 in the ecosystem they answered about. Slightly more than
half (59%) had college degrees in CS. The most frequently claimed role in the ecosystem was pack-
age lead developer (59%); Others ranged from the 8.5% who claimed a role in the founding or core
team of the ecosystem, to 11% who only drew on ecosystem packages for their own projects. The
average age was 33, with 152 18–24-year-olds, and 6 over 65. Of those who gave their gender, 95.9%
identified themselves as male, 3.2% as female, and 0.8% gave another gender. These demographic
proportions are quite similar to a contemporaneous Github community survey [31].

3.3.4 Survey Design. Our goal in the survey was to investigate the prevalence of values and
practices across as many ecosystems as was feasible. We asked a larger number of questions than
is typical for a survey of this sort. Long surveys often have reduced completion rates, however,
we mitigated this by keeping the questions diverse and hopefully interesting to the participants,
and by putting the questions we were most interested in up front. As a result, we got a reasonably
high completion rate (40%) and partial completion rate (62% for value questions at the beginning)
considering the length of the survey, resulting in an encouragingly rich and deep dataset. In this
article, we focus on describing the values and practices responses, but additional data is available
in the accompanying data release [7].

Values. To explore as complete a list as possible of values relevant to managing change, we began
with values derived from our interviews in Study 1. We then searched each of the web pages of
all our candidate ecosystems for clues of other potential values. For example, “fun” is mentioned
as an explicit value in the Ruby community; in an interview Ruby founder Matsumoto said, “That
was my primary goal in designing Ruby. I want to have fun in programming myself” [82]. Note that
some values initially seem not directly related to breaking change, but we included them if we
thought they could indirectly influence breaking change practices. For example, we expected that
perhaps if some practices are more efficient, but less rewarding to carry out, then a “fun”-valuing
ecosystem might avoid them.

We assembled a list of 11 values with the following descriptions:

• Stability: Backward compatibility, allowing seamless updates (“do not break existing
clients”).

• Innovation: Innovation through fast and potentially disruptive changes.

ACM Transactions on Software Engineering and Methodology, Vol. 30, No. 4, Article 42. Pub. date: July 2021.

When and How to Make Breaking Changes 42:11

• Replicability: Long-term archival of current and historic versions with guaranteed integrity,
such that exact behavior of code can be replicated.

• Compatibility: Protecting downstream developers and end-users from struggling to find a
compatible set of versions of different packages.

• Rapid Access: Getting package changes through to end-users quickly after their release (“no
delays”).

• Quality: Providing packages of very high quality (e.g., secure and correct).
• Commerce: Helping professionals build commercial software.
• Community: Collaboration and communication among developers.
• Openness and Fairness: Ensuring that everyone in the community has a say in decision-

making and the community’s direction.
• Curation: Selecting a set of consistent, compatible packages that cover users’ needs.
• Fun and personal growth: Providing a good experience for package developers and users.

In the survey, we asked participants about the perceived values of the community—“How impor-
tant do you think the following values are to the <ecosystem> community?” We used a seven-point
rating scale, adapted from Schwartz’s value study [71]: “extremely important,” “very important,”
“important,” “somewhat important,” “not important,” “community opposes this value,” and “I don’t
know.” The first five options were separated visually from the last two to make clear that only the
former were designed to approximate regular intervals (as recommended by Dillman et al. [27]).

In addition, we asked participants a similar value question on the same scale about their own
values with respect to a single package they worked on in the ecosystem. To encourage participants
to think about concrete work that they are doing, we asked for the name of a specific package that
they worked on and used that package in the question: “How important are each of these values in
development of <package> to you personally?”

Recognizing that despite taking values from multiple sources, we may not have captured all
values relevant to managing change, we asked survey participants in an open-ended question
about other values important to their ecosystem. Their answers are summarized in Section 5.2.

Practices. The practices part of the survey asked about many software-engineering practices,
many of which we mention throughout our analysis (Tables 4, 5, and 6); the full list and exact
phrasing of our questions can be found in Appendix B. Surveyed practices encompassed the par-
ticipant’s personal practices and experiences with respect to documentation, support, timing, and
version numbering for releases, selecting packages on which to depend, and monitoring dependen-
cies for changes. These were asked, as appropriate, either on an agreement Likert scale as above
or on a frequency scale from “never” to “several times a day.” A subset of 15 questions relating
to communication with developers of downstream packages were skipped for participants who
indicated that they did not maintain a package used by others. To limit the length of the survey,
we focused primarily on questions that cannot be answered or are difficult to answer by mining
software repositories or reading explicit policy documents (see “M” and “P” labels in Tables 4, 5,
and 6) in the Study 2 Methods column.

Survey analysis. 483 participants (21%) gave an answer to at least one of the seven optional free-
response questions; 11 people gave answers to all seven. We used a grounded approach to analyze
answers to the question about other values: one researcher performed open coding to identify a
set of candidate codes, then two researchers iteratively combined and revised these to achieve a
consensus set of codes and to apply them to the responses.

Layout of Figures. Figures 2, 3, and 4 were drawn by eliminating skipped or “don’t know” values,
merging “Not important” with “opposed to this value” answers, and drawing a violin plot, with a

ACM Transactions on Software Engineering and Methodology, Vol. 30, No. 4, Article 42. Pub. date: July 2021.

42:12 C. Bogart et al.

Fig. 2. Perceived community values; showing distribution of raw ratings, sorted by mean value, to emphasize
range of answers.

Fig. 3. Practices of package maintainers and frequency of performing breaking changes.

diamond symbol at the mean position. The violin bodies are smoothed, so the image portrays the
mean and a rough distribution.

For Table 10, we wanted to derive a ranking of the importance of the values in each ecosystem
and provide an indication of the consensus around the ranking. The method we adopted calculates
highest ranked values for each ecosystem by identifying, for each person in the ecosystem, their
highest rating of any of the 11 values, then incrementing a count for all values that person assigned
that highest rating to. This has the effect of counting the number of people who ranked each value
as the highest while accounting for ties. The table lists the values with the three highest counts,
and the consensus numbers are as described in the caption.

3.3.5 Policy Analysis Method. We examined each ecosystem’s online presence and summarized
their sanctioned practices. Practices of the ecosystems were derived from documentation pages
within each language’s and repository’s websites, specifically seeking out documentation about
how to define a package and submit it to the repository, as these documents typically communicate
policies to authors in a clear, actionable way. The columns of the table were defined as follows:

• Dependencies outside repository. Standard tools in all but two ecosystems (Stackage
and LuaRocks) allow developers to additionally specify packages that are not part of the
standard repository, for example by a reference to a GitHub repository or an alternate spe-
cialized site. We checked the documentation for each package manager’s syntax about how

ACM Transactions on Software Engineering and Methodology, Vol. 30, No. 4, Article 42. Pub. date: July 2021.

When and How to Make Breaking Changes 42:13

Fig. 4. Practices of package users and frequency of facing breaking changes.

to declare dependencies, to see if there was a way to specify a URL for a package not formally
in the repository. We marked these as having the feature if it could be specified directly as a
URL; as “alternate repo” if this could be accomplished only through an alternate repository,
or a custom server that mimics the repository’s API.

• Central Repository. This captures whether the ecosystem supplies packages in a central
repository or simply provides an index to author-hosted download sites.

• Access to dependency versions. This denotes whether ecosystem documentation recom-
mends (through examples in the documentation page) for packages to refer to dependen-
cies by version number, or to simply assume the latest version of a dependency is desired
(R/CRAN and Go).4 In two cases (Stackage and Bioconductor), a set of mutually compatible
versions is provided to be used together as a set.

• Gatekeeping Standards. Ecosystem repositories vary in the amount of vetting of the pack-
ages they include. We determined this by looking at the submission requirements for pack-
ages. An open circle in the table means that no more than cursory metadata such as name of
the package and list of dependencies are required; a closed circle means that platform tools
or volunteers perform some deeper investigation of the package: vetting of the submitter,
automated or manual tests (of the package or of other packages that depend on it), or virus
checks. Two were marked as “staged releases,” because submissions are tested collectively
along with a cohort of packages being released simultaneously.

• Synced Ecosystem. This simply denotes whether ecosystem packages (or some important
subset) are released all at once on a regular, synchronized schedule.

3.3.6 Data Mining. We mined data from two sources to capture data about the prevalence of
seven additional practices.

First, the list of packages to query was derived from the libraries.io (libraries.io/data) cross-
ecosystem package index. Libraries.io lists versions, their release dates, dependencies with their
version constraints, and their source repositories. It was only available for a subset of our 18 ecosys-
tems (Atom, R/CRAN, Perl/CPAN, Ruby/Rubygems, Rust/Cargo, Python/Pypi, NuGet, Maven,
PHP/Packagist, Node.js/NPM, Erlang,Elixir/Hex). Partial information was available for CocoaPods

4Recommendations have evolved since 2016 for Go: see https://blog.gopheracademy.com/advent-2016/saga-go-

dependency-management/.

ACM Transactions on Software Engineering and Methodology, Vol. 30, No. 4, Article 42. Pub. date: July 2021.

libraries.io/data
https://blog.gopheracademy.com/advent-2016/saga-go-dependency-management/
https://blog.gopheracademy.com/advent-2016/saga-go-dependency-management/

42:14 C. Bogart et al.

Table 3. Ecosystem Statistics

Ecosystem Founded Num. Avg. >3 >0
Pkgs deps deps deps

Atom (plugins) 2014 4,424 1.2 10.0% 38.2%
CocoaPods 2001 14,493 0.4 1.7% 21,1%
Eclipse (plugins) 2001 14,954 6.4 55.7% 100%
Erlang,Elixir/Hex 2013 1,304 1.0 5.3% 50.5%
Go 2013 76,632 10.6 57.1% 88.3 %
Haskell (Cabal/Hackage) 2003 8,593 6.4 57.9% 91.6%
Haskell (Stack/Stackage) 2012 1,337 8.3 65.0% 93.9%
Lua/Luarocks 2007 966 0.8 5.7% 34.7%
Maven 2002 114,404 2.1 20.6% 41.8%
Node.js/NPM 2010 229,202 5.6 49.8% 81.2%
NuGet 2010 66,486 1.6 11.4% 58.3%
Perl/CPAN 1995 31,641 7.6 56.5% 79.6%
Python/PyPi 2002 65,622 0.2 2.0% 8.1%
PHP/Packagist 2012 63,860 3.1 28.1% 82.7%
R/Bioconductor 2001 1,104 4.9 48.9% 74.2%
R/CRAN 1997 7,922 2.9 27.9% 86.7%
Rust/Cargo 2014 3,727 2.1 20.1% 71.5%

Package dependency and founding year data for ecosystems. # Pkgs = number of packages

in the repository we checked as of January 2016; Avg. deps = average number of depen-

dencies sampled packages had; >3 deps = percentage of packages having more than three

dependencies. >0 deps = percentage having any dependencies.

and Hackage, but not dependencies. Dependency counts for Bioconductor, Hackage, Stackage, Lua,
Eclipse, and CocoaPods were scraped from their respective repository websites. We did not find
Go dependencies listed centrally in any repository, so we extracted this information from World of
Code [57], a massive mirror of GitHub, GitLab, Bitbucket, and other open source software reposito-
ries, indexed and searchable in ways that make it more convenient for data mining than GitHub’s
APIs allow. One data product World of Code provides is dependencies of packages, parsed from
source code files; we used this to count Go dependencies. Table 3 shows that packages in the
ecosystems are interdependent, but in widely differing degrees.

Beyond package counts and dependencies, further information about these packages was
queried about packages in all ecosystems from World of Code [57].

• Dependency Version Constraints. We ran pattern-matching on the dependency con-
straints of all packages in libraries.io, for packages released during 2016 and flagged for
each package whether it used a particular type of constraint on any one or more of its de-
pendencies at any time during the year. Note that percentages add up to over 100%, since a
package may use more than one kind of dependency constraint.
—Exact: Dependency version is constrained by a fully specified version number, such as

1.3.2.
—Min only: Version constraints such as >1.3.2, or use of conventions like caret (^) in npm

that has the same effect (e.g., ^1.3 is the same as >= 1.3.0).
—Range: Constraints with a minimum and maximum version, like >1.3.2,<2.0; or use of

conventions like tilde (~) in npm that has the same effect (e.g., ~1.3.2 means >=1.3.2,<2.0).

ACM Transactions on Software Engineering and Methodology, Vol. 30, No. 4, Article 42. Pub. date: July 2021.

When and How to Make Breaking Changes 42:15

—Unconstrained: The dependency name is specified with no version constraints; either the
constraint is blank or some symbol like “*” is used. 5

For a more fine-grained analysis of version constraints across many ecosystems, see
Dietrich et al. [26].

• Lock files. Using World of Code [57], we examined files committed during 2016 in each of
the ecosystem’s packages, looking for references to a lock file, which specifies exact versions
of all dependencies, direct and transitive (i.e., dependencies of dependencies). These differ
by ecosystem and vary in how canonical their use is. The filenames we used in this search
are shown in Table 11 in Appendix D. Including a lock file in an end-user distribution of a
program makes it more likely the program will run correctly, since it preserves the exact
versions of dependencies that the program was tested on. However, developers including
many dependencies in their own projects may prefer not to specify the exact versions of all
their transitive dependencies, since they may be in conflict with each other, and they have
the means and opportunity to resolve any conflicts themselves (then perhaps locking in a
consistent set of dependencies when producing a release for their own users) [78].

• Maintaining old versions. Making bug fixes to outdated versions of code, or even back-
porting new features, can be helpful for users who cannot update to the cutting-edge ver-
sions for some reason. We define prior-version maintenance operationally as simply any
release whose version number is smaller than expected and hence out of sequence: For ex-
ample, if a sequence of releases was “2.0.1,” “2.0.2,” “1.5.3,” “2.0.3,” then we identify “1.5.3”
as a likely bugfix or backported feature introduced in 2.0.1 or 2.0.2, introduced as a courtesy
to those users currently using 1.5.2 who choose not to upgrade to the 2.0 series. Specifically,
this measure captures the percentage of packages in each ecosystem whose version number
ever decreased in 2016, per data from Libraries.io.

• Cloning. We measured the percentage of packages in each repository whose projects bor-
rowed a file in 2016 from another package. We did this by building a list of SHA hashes of
files (blobs) associated with each commit in each project in the ecosystem through World of
Code [57], and looking for overlaps. We count a project as having cloned a file, if a commit
incorporates a blob over 1 kb in 2016 that was previously seen in some other package in
the ecosystem. We only considered blobs derived from other packages in the ecosystem’s
repository, not ones derived from projects in the broader realm of open source. We chose
to count these within-repository clones specifically, since the developer could have tried to
use the ecosystem’s dependency management system to incorporate the desired code by
reference, but chose not to. Previous research has also mapped cloning behaviors [33, 49].

3.4 Threats to Validity

We chose our methods carefully to answer our research questions, and the survey in particular
differs from a more typical statistically focused survey technique. We therefore describe the threats
to the validity of the study before presenting the results, so readers can have these in mind as they
read our findings.

As described, Study 1 used case selection criteria [92] appropriate for contrasting cases, but they
may not be typical of all ecosystems, and so one needs to be careful when generalizing beyond the
three cases. Our results may be affected by a selection bias, in that developers who did not want to
be interviewed may have had different experiences. Finally, the differences we found among cases

5Note that this weighs most heavily the state of packages for which more versions were released or that had more depen-

dencies.

ACM Transactions on Software Engineering and Methodology, Vol. 30, No. 4, Article 42. Pub. date: July 2021.

42:16 C. Bogart et al.

may be confounded with the reasons we selected them, such as their popularity or the availability
of data about them.

As for Study 2, as is typical of surveys in our field, our survey sample is not truly random; there
may be selection bias relating to who we were able to reach via the venues we chose. We tried to
mitigate this by recruiting from forums, Twitter, and direct e-mail. The survey was also quite long
(and was advertised as such up front). People with less patience for long surveys, or less interest
in questions of breaking changes, values, and practices, may have self-selected out. This could be
significant if people with impatience for long surveys also have different software-engineering
practices and beliefs.

Another possible concern is that respondents may apply different standards in their ratings.
For example, if the expectation of stability is extremely high in a particular ecosystem, then par-
ticipants may rate the perceived importance of stability lower, because they are applying a very
stringent standard for how focused everyone should be on stability. A similar focus on stability
in a different ecosystem might lead to participants in that ecosystem to rate the importance of
stability higher. We tried to mitigate this by requiring at least 15 participants for each ecosystem,
which should give some breadth of experience behind the responses.

While we tried to avoid using terminology that differed among ecosystems, we were not al-
ways successful. For example, the word “snapshot” means different things in different ecosystems’
practices, which caused some confusion. Even the term “breaking change” may be interpreted dif-
ferently; for example, they might define it more narrowly as a change that simply would cause
downstream compilation to fail, while we intended it to also include changes that would cause
wrong behavior in downstream software.

Respondents may also have given answers to a few questions influenced by social desirability.
For example, they may have felt obliged to say that “quality” is extremely important because that
is the “right” answer, or that people follow certain practices because they are what they know to
be expected. Our mitigation approach was ensuring confidentiality of responses and avoiding, to
the extent possible, questions with clear desirable and undesirable responses.

We had difficulty recruiting sufficient participants from smaller ecosystems, such as Perl 6 or
Clojure; small ecosystems may have different characteristics than large ones. We do have two small
ecosystems, Stackage and Lua, and they are outliers in some ways. So, further exploration of small
ecosystems, for example with interviews or analysis of artifacts, should be a priority for future
work.

4 STUDY 1: QUALITATIVE MULTIPLE-CASE STUDY

In Study 1, we investigated the decision-making involved in making breaking changes, and prac-
tices they adopt to ease the burden:

RQ1.1: How do developers make decisions about whether and when to perform breaking
changes and how do they mitigate or delay costs for other developers?

We also wanted to see how developers responded to breaking changes that affected them:
RQ1.2: How do developers react to and manage change in their dependencies?
Finally, we wanted to know whether developers perceived tensions between platform policies

and their intended effects:
RQ1.3: Did platform policies or tools ever have unintended consequences?

4.1 Case Overview

To understand the identified different practices and policies, it is important to understand the
purpose and history of each ecosystem. In the following, we provide a brief description of all

ACM Transactions on Software Engineering and Methodology, Vol. 30, No. 4, Article 42. Pub. date: July 2021.

When and How to Make Breaking Changes 42:17

three ecosystems and their values, informed by both public documentation and our interviews.
Platform-level features or practices relevant to breaking change are identified in Table 4.

4.1.1 Eclipse. The Eclipse foundation publishes more than 250 open source projects. Its flagship
project is the Eclipse IDE, created in 2001. The IDE is built from the ground up around a plugin ar-
chitecture, which can be used as a general purpose GUI platform and in which plugins can depend
on and extend other plugins. Projects can apply to join the Eclipse foundation through an incuba-
tion process in which their project and practices come under the Eclipse management umbrella.
It is also common practice to develop both commercial and open-source packages separately from
the foundation, and publish them in a common format on a third-party server. In addition, the
“Eclipse marketplace” is a popular registry, listing over 1,600 external Eclipse packages that can be
installed from third-party servers through a GUI dialog.

The Eclipse foundation coordinates a “simultaneous release” of the Eclipse IDE once a year and
(as of 2016) three “update releases” for new features in between. Many external developers align
with those dates as well.

The Eclipse foundation is backed by corporate members, such as IBM, SAP, and Oracle. Its poli-
cies are biased toward backward compatibility; packages (e.g., commercial business solutions) de-
veloped 10 years ago will often still work in a current Eclipse revision without modification.

A core value of the Eclipse community is backward compatibility. This value is evident
in many policies, such as “API Prime Directive: When evolving the Component API from release
to release, do not break existing Clients” [25]. Although not entirely uncontroversial (as we will
explain), this value was confirmed by many interviewees.

4.1.2 R/CRAN. The Comprehensive R Archive Network (CRAN) has managed and dis-
tributed packages written in the R language since 1997. R is an interpreted language designed for
statistics. The R language itself is updated approximately every six months, but new development
snapshots are available daily. R has multiple repositories with different policies and expectations,
including Bioconductor and R-Forge; we focus on CRAN, the largest one. CRAN formally exists
under the umbrella of the R Foundation, but sets its own policies.

CRAN contains over 8,000 packages. Of these, 29 are either required or “recommended,” and are
bundled in binary installs. About 2,200 more are cataloged as useful for 33 different specializations
such as finance and medical imaging. Distributing R software as a CRAN package gives it high
visibility, since installation from CRAN is automated in the command-line version of R and the
popular IDE RStudio [69].

R and CRAN are used by many developers without a formal computer-science or programming
background. CRAN pursues snapshot consistency in which the newest version of every package
should be compatible with the newest version of every other package in the repository. Older
versions are “archived”: available in the repository, but harder to install. When a new package
version is submitted to CRAN, it is evaluated by the CRAN team’s partly automated process. The
package must pass its own tests and must not break the tests of any downstream packages in CRAN
that depend on it without first alerting those package’s authors so they can make corresponding
fixes. Package owners need to react to changes in the platform or in upstream packages within a
few weeks, otherwise their package may be archived.

A core value of the R/CRAN community is to make it easy for end-users to install the

most up-to-date packages. Although not explicitly represented in policy documents, this value
was apparent from many interviews; for example, R10 said, “CRAN primarily has the academic
users in mind, who want timely access to current research.”

ACM Transactions on Software Engineering and Methodology, Vol. 30, No. 4, Article 42. Pub. date: July 2021.

42:18 C. Bogart et al.

Table 4. Platform and Community-level Practice Choices: Who: (P)latform, (U)pstream, (D)ownstream,
(3) Third party; Study 2 Method: (P)olicy Analysis, (S)urvey, (M)ining

Who Study 2 Practice

Method

P P Existence of centralized repository or directory of packages

P P Mechanism for referring to dependencies distributed outside official repositories (e.g.,
via github directly)

P P Make historical versions of package easy or difficult to rely on

P P Mechanism to remove or reassign unmaintained packages (e.g., maintainers do not
respond to emails)

P S Releasing changes on a fixed, advertised schedule per package

P S,P Ecosystem-wide synchronized release

P P Repository personnel check standards of submitted code before making available on
the repository

P Allow multiple versions/only one version of a package to be loaded at the same time

P/U “Stability attributes” (in Rust) saying which API points will not change

P Use nightly unstable builds to get exciting new features (at cost to compatibility for
downstream users)

P Disallow wildcard dependencies

P Test compiler changes against all published software using it to prevent breaking
things

P Constrained rules about version numbering (e.g., cargo disallowing wildcards)

3 P Third-party curation of sets of useful packages or compatible versions

P Dynamic language feature to help backward compatibility (optional parameters in R)

P Centralized testing infrastructure for all packages

P Vulnerability tracking (e.g., Node security platform)

U S Private arrangement among package authors to release at the same time

For ecosystem-by-ecosystem breakdown of policies, see Section 5.

4.1.3 Node.js/npm. Node.js is a runtime environment for server-side JavaScript applications re-
leased initially in 2009, and npm is its default package manager. npm provides tools for managing
packages of JavaScript code and an online registry for those packages and their revisions. The npm
repository contains over 250,000 packages with rapid growth rates.

The Node.js/npm platform has the somewhat unusual characteristic that multiple revisions of a
package can coexist within the same project. That is, a user can use two packages that each require
a different revision of a third package. In that case, npm will install both revisions in distinct places
and each package will use a different implementation.

A core value of the Node.js/npm community is to make it easy and fast for developers

to publish and use packages. In addition, the community is open to rapid change. Ease for devel-
opers was one of the principles motivating the designer of npm [75]. Therefore, npm explicitly does
not act as a gatekeeper; it does not have review or testing requirements; in fact, the npm repository
contains a large number of test or stub packages. The focus on convenience for developers (instead
of end-users) was apparent in our interviews.

4.2 Study 1 Results: Planning Changes (RQ1.1)

We first discuss managing change from the perspective of a developer planning to perform changes
that may affect downstream users. While we observed similar forces and concerns regarding

ACM Transactions on Software Engineering and Methodology, Vol. 30, No. 4, Article 42. Pub. date: July 2021.

When and How to Make Breaking Changes 42:19

change across all three ecosystems, we observed differences in how the community values affect
the ways package maintainers mitigate or delay costs for downstream users.

4.2.1 Breaking Changes: Reasons and Opportunity Costs. Although breaking changes to APIs
are costly to downstream users in terms of interruptions and rework, our interviewees gave many
reasons why they had to perform such changes; there are corresponding opportunity costs that
arise when deciding not to perform the change, such as the cost of maintaining obsolete code,
working around known bugs, or postponing desirable new features.

Obvious and expected reasons for breaking changes included requirements and context changes
and rippling effects from upstream changes. Beyond that, we found surprisingly frequent mentions
of stylistic and performance reasons, as well as difficult bug fixes.

Technical debt. Surprisingly, 12 interviewees (E3, E9, R1, R3, R4, R5, R6, R7, R8, N1, N7) men-
tioned concerns about technical debt, rather than bugs, new features, or rippling upstream changes,
as the trigger for breaking changes. By technical debt, we refer to code that is functionally suffi-
cient but has outstanding stylistic issues developers want to fix, such as poorly chosen object
models or method names, lack of extensibility or maintainability, or little-used or long-deprecated
methods.

We conjecture that the reason interviewees brought up these kinds of changes so often in dis-
cussion was because they had thought about them in depth. Technical debt often arises from the
tension between tools and practices that encourage developers to preserve backward compatibility
(e.g., Eclipse’s “prime directive”), versus general pressure for evolution and improvement. Devel-
opers often postpone breaking changes until the technical debt becomes intolerable; for example,
E3 mentioned as the reason for planning to finally remove some deprecated code: “What we did
there was to provide old methods as deprecated. But that gets quite messy. At one point almost half
of the methods were deprecated.” E9 similarly told us about an upcoming long-postponed major
version change: “since we don’t do it often, probably once every five years, [. . .] let’s take advantage
of that opportunity to do some of the things that would be good that we couldn’t do before.”

Old interfaces can come to seem old fashioned and unattractive in a swiftly changing com-
munity. Three interviewees said they made breaking changes for syntactic reasons: to harmonize
syntax (R1) or improve “weird” or “bad” names (R3, R4) in their interfaces. N7 talked about adopt-
ing a new JavaScript programming paradigm that was far more attractive: N7: “You can’t just stay
on that old stuff for forever, it’s just not going to work. And so we drastically rewrote the internals at
the transport to be a stream, because that’s sort of, essentially what it is, right? Like, it’s a little stream
that takes logs and sends them places.” However, four interviewees (E1, E5, E6, R6) talked about the
consequences when not being able to make such changes, i.e., having to preserve old interfaces
over long periods, caused opportunity costs, since it hindered attracting new developers, lured by
cutting-edge things. E6, for example, told us that: “If you have hip things, then you get people who
create new APIs on top of that in order to [for example] create the next graphical editing framework
or to build more efficient text editors. These things don’t happen on the Eclipse platform anymore.”

Efficiency. Four interviewees (E6, R1, R4, N1) reported cases in which efficiency improvements
required breaking changes. For example, N1’s package offered an API for requesting paged data
that the server could not provide efficiently; they deprecated and eventually removed that function
rather than spending money on hardware.

Bugs. Bug fixes were another reason for breaking changes (E4, E7, R7, R9). Bug fixes can
break downstream packages if those packages depend on the actual (broken) behavior instead
of the intended behavior. A lack of well-defined contracts in most implementations makes as-
signing blame and responsibilities difficult in practice. As E5 told us, “If someone likes the broken

ACM Transactions on Software Engineering and Methodology, Vol. 30, No. 4, Article 42. Pub. date: July 2021.

42:20 C. Bogart et al.

semantics, then they’re not going to like the fixed semantics.” Thus, even fixing an obvious mistake
in code under the control of a single person can require significant coordination among many
people.

Throughout our interviews, we heard many examples of how bug fixes effectively broke down-
stream packages, and the difficulty of knowing in advance which fixes would cause such problems.
For example, R7 told us about reimplementing a standard string processing function and finding
that it broke the code of some downstream users that depended on bugs that his tests had not
caught. R9 commented on the opportunity cost of not fixing a bug in deference to downstream
users’ workarounds for it: “If the [downstream package] is implemented on the workaround for your
bug, and then your fix actually breaks the workaround, then you sort of have to have a fallback . . .
[pause] It gets nasty.”

4.2.2 Dividing and Delaying Change Costs. Our previous discussion already hinted that there is
flexibility regarding who bears the costs of a breaking change. For instance, a package’s developer
can decide between making a breaking change, pushing costs for rework to maintainers of down-
stream packages; or not making the change, accepting opportunity costs such as technical debt.
Even when deciding to make the change, the developer faces strategic choices about whether to
invest more effort when making the change to reduce the interruption and rework costs for down-
stream users as well as to affect timing of when those costs are paid (Table 5). For example, by
documenting how to upgrade, the developer invests more effort to reduce effort for downstream
maintainers. Different developers and different communities have different attitudes toward who
should pay the costs of a change and when, as we will show.

Awareness of Costs to Downstream Users. Almost all (24 out of 28) of our interviewees stated
that, when possible, they avoid breaking changes that would affect downstream users. Reasons
included looking out for their users’ best interests and knowing that costs to affected users would
come back to them, as users ask for help adapting to the change, ask for the change to be reverted,
or seek alternative packages. Two interviewees (E1 and R4) specifically mentioned concern for
downstream users’ scientific research (R4: “We’re improving the method, but results might change,
so that’s also worrying—it makes it hard to do reproducible research”).

Interviewees’ concern for impacts on users was tied to the size and visibility of the user base and
the perceived importance and appropriateness of their usage. Nine interviewees across all ecosys-
tems (E4, E5, E6, R1, R4, R6, R7, R9, N7) were aware of their users and were concerned specifically
about the number of users affected and the quantity of complaints that a change would imply, e.g.,
R9: “I wanted to rename it to something that more specifically describes that this is actually a new V8
context, but, you know, I can’t because so many packages are already importing the new context func-
tion.” N1: “we happen to know that paging is not the feature that was [. . .] often used from Node module
customers” Another npm developer said, N7: “. . . that was strictly a breaking change for [feature], and
so we really didn’t want to break all the community [feature]. Like, we didn’t want all 700 of these to
give out ‘the code you’re using, you have to upgrade . . .Good luck, bro.”’ An R/CRAN developer said,
R7: “I’m very cautious about making changes to it, and then when I make changes I often regret it. Even
for a small change on a package used by a lot of people, it improves 90% of people’s lives, but makes 10%
of people’s lives worse, and 1% complain, which, with [package] can be a lot of people.” Three intervie-
wees (E1, R4, R8) noted that their sensitivity toward avoiding breaking changes grew with experi-
ence and with a growing user base, as they learned from feedback received about earlier breaking
changes.

Of course some developers also themselves work on such downstream packages. Four of our
interviewees mentioned doing so (E5, N4, N7, R6) (see discussion in Section 4.3.1); these are pre-
sumably aware of the impact of the changes they make to their own other packages.

ACM Transactions on Software Engineering and Methodology, Vol. 30, No. 4, Article 42. Pub. date: July 2021.

When and How to Make Breaking Changes 42:21

Only four developers were not particularly worried about breaking changes. Three (E6, N1, N5)
had strong ties to their users and felt they could help them individually (N5: “We try to avoid
breaking their code—but it’s easy to update their code”). Interviewee N6 expressed an “out of sight,
out of mind” attitude: “Unfortunately, if someone suffers and then silently does not know how to reach
me or contact me or something, yeah that’s bad but that suffering person is sort of [the tree] in the
woods that falls and doesn’t make a sound.”

Finally, developers described tradeoffs in fixing mistakes that downstream users had come to
depend on. E8 talked about being stuck with a poor design “If you make a mistake in your API
[. . .] sorry, you’re stuck with it, so you have to kind of work around it.” R9 mentioned circumstances
where users depended on buggy behavior, but the upstream code had to be fixed anyway: “After
upgrading the parser some people complained that their script was no longer working. But the problem
was that their syntax was invalid to begin with. It’s obviously their fault.”

Techniques to Mitigate or Delay Costs. Despite a strong general preference for avoiding break-
ing changes, there are many cases where the opportunity costs of not making a change are too
high. Our interviewees identified several different strategies for how they, as package maintain-
ers, routinely invest effort to reduce or delay the impact from their changes for downstream
users.

Maintaining old interfaces. Across all ecosystems, preserving the old interface alongside a new
one is a very common approach to mitigate an immediate impact of a change on downstream
users. While specifics depend on the language and tools, common strategies to avoid breaking
downstream implementations include documenting methods as deprecated and providing default
implementations for new extension points or parameters. In these strategies, the package devel-
oper invests additional effort now to preserve backward compatibility, accepting technical debt in
the form of extra code to maintain for some time, in exchange for preventing an immediate down-
stream impact of the change. The developer may at some later time clean up the code, affecting
downstream users that have not updated in the meantime [68].

Similarly, many interviewees (E2, E3, E5–E8, R1, R6–R9, N1, N7) told us about various techniques
to perform changes without breaking binary compatibility. They prevent rework costs for existing
users by accepting more complicated implementations and harder maintenance in the changed
package, while possibly also creating costs for new downstream users who have to deal with more
complicated mechanisms.

Parallel Releases Seven developers (E5, E6, R1, R2, R4, R7, R8) reported strategies to maintain
multiple parallel releases, such that downstream developers can incorporate minor nonbreaking
changes (e.g., bug fixes) without having to adopt major revisions. Node.js/npm’s caret operator
allows package authors to support parallel releases with different version numbers: An author
can publish an update 1.0.1 to their version 1.0.0, even after 2.0.0 has been released; users who
wish to stay with the 1.* series but still receive updates may refer to version ^1 or ^1.x to re-
ceive anything less than 2.0.0.6 It is a common practice to provide security patches7 including for
older releases.8 In contrast, CRAN only supports sequential version numbering,9 causing some
developers to fork their own packages (e.g., reshape2 was introduced as backward incompatible
revision to reshape). However, R8 told us this is discouraged by CRAN: R8: “Because <package>2,
it’s the second version of <package>, at what point can you just freeze an API and leave it there, and

6https://docs.npmjs.com/misc/semver.
7Current npm security alerts are listed at https://www.npmjs.com/advisories.
8e.g., https://www.npmjs.com/advisories/1482.
9According to https://cran.r-project.org/web/packages/policies.html, “Updates to previously-published packages must

have an increased version.”

ACM Transactions on Software Engineering and Methodology, Vol. 30, No. 4, Article 42. Pub. date: July 2021.

https://docs.npmjs.com/misc/semver
https://www.npmjs.com/advisories
https://www.npmjs.com/advisories/1482
https://cran.r-project.org/web/packages/policies.html,

42:22 C. Bogart et al.

jump n+1 version and just continue with that? I think there’s some lingo in [CRAN’s instructions for
package authors] that they’d rather not have that.” In each case, the fact that they are adding code
to multiple versions suggests that developers are investing significant additional effort to reduce
the (immediate) impact on downstream users. For example, N1 told us that they were conservative
about making major new versions, since their package “has changed major version numbers a lot
over last few years, many things backported to earlier versions; irritating to do major revisions every
couple of months.”

A variant of this strategy is to maintain separate interfaces for different user groups with differ-
ent stability commitments within the same package (see the façade pattern in Reference [30]). For
example, interviewee E5 provided in parallel both a detailed and frequently changing API for ex-
pert users and a simpler and stable API that insulated less sophisticated users from most changes.
Similarly, interviewee R1 has split packages into smaller packages, with the intention that each
user could depend only on parts relevant to them and would be exposed to less change. In both
cases, the developer accepts the higher design and maintenance costs of multiple APIs for reduced
impact on specific groups of users with distinct needs.

Release Planning. Individual developers and communities may take consideration of downstream
users by planning when to release changes. R1 keeps versions of his package with a quickly chang-
ing API in a separate repository and batches multiple updates together in CRAN less frequently
when he wants to release a version to a broader audience. While in R/CRAN and Node.js/npm pack-
ages are released by individuals whenever they want, the core packages of the Eclipse community
coordinate around synchronized yearly releases10 (a strategy also common in other package sys-
tems such as Debian11 and Bioconductor).12 Delaying releases may incur coordination overhead
and opportunity costs in slowing down development for the changer, but reduces the frequency
(though not necessarily the severity) with which downstream users are exposed to changes and
gives downstream users a planning horizon.

Communication with users. Finally, developers communicate in various ways with users to re-
duce the impact of a breaking change. Seven interviewees (E6, R4, R7, R8, R9, N6, N7) made early
announcements to create awareness and receive feedback. R7 explained that “two weeks or a month
before the actual release, I do sort of a pre-release announcement on Twitter [and] tell people to use
the README.” He told us during the validation phase that he has since written a script to email all
downstream maintainers before a release.

Another reason for communicating with downstream users was to help them deal with the
aftermath of change. In the simplest case, a developer could invest effort in documenting how
to upgrade. Nine interviewees (E7, R2, R3, R7–R9, N1, N4, N5) mentioned being aware of their
users personally, and could reach out to them individually; for example, N1 contacted users who
were still using an old API, to help them migrate, and N5 had most users present on-site and
could therefore help them migrate their code. E7 went so far as to create individual patches for
all downstream packages within the Eclipse core to get them to adopt a new interface and move
away from an old deprecated one. In all these cases, package maintainers invest effort to reduce
costs for downstream users.

4.2.3 The Influence of Community Values. The previously discussed techniques are mechanisms
that developers can use for tweaking who pays for the costs of a change and when. Individual de-
velopers often adopt patterns and, in fact, six interviewees (E1, R3, R4, R5, R8, N6) described gradual

10https://wiki.eclipse.org/Simultaneous_Release.
11https://www.debian.org/doc/manuals/debian-handbook/sect.release-lifecycle.ro.html.
12According to https://www.bioconductor.org/developers/package-submission/, “There are two releases each year, around

April and October.”

ACM Transactions on Software Engineering and Methodology, Vol. 30, No. 4, Article 42. Pub. date: July 2021.

https://wiki.eclipse.org/Simultaneous_Release
https://www.debian.org/doc/manuals/debian-handbook/sect.release-lifecycle.ro.html
https://www.bioconductor.org/developers/package-submission/

When and How to Make Breaking Changes 42:23

Table 5. Practices (Mostly Upstream) to Communicate and Mitigate Effects of Change

Who Study 2 Practice

Method

U S Freeze APIs to protect downstream users from change

U Release a major change as a new package name, rather than a new version

U Mark API points as deprecated to warn of future removal

U Remove deprecated API points eventually

U Parallel releases to protect users who do not want to upgrade

U S Release changes in a batch rather than as they are made, to make less churn for users

U S Write new code as backward compatible, possibly at the cost of incurring technical
debt

U S Proactively notify users about upcoming changes

U S Assist users who are having trouble upgrading to a new version with a breaking
change

U S Write a migration guide to help users upgrade

U S Write a change log to document compatibility problems with prior releases

U S Use semantic versioning to signal the kinds of changes being made

U/P S Platform rules requiring package authors to negotiate compatibility before releasing
(snapshot consistency)

U M Continue critical updates to older versions, to give users a way to avoid an expensive
major upgrade

U/P Ways to check that APIs have not changed, e.g., API tools, @since tags, documentation

adoption of more formal processes over time, as they learned their value through experience. At
the same time, we could clearly observe that attitudes and practices differ significantly among the
three ecosystems and are heavily influenced by ecosystem values, tools, and policies.

Eclipse. Developers are willing to accept high costs and opportunity costs to further Eclipse’s
value of backward compatibility, especially for core packages. The community has developed edu-
cational material explaining Java’s binary compatibility and giving recommendations for backward
compatible API design [24, 25]. With API Tools,13 the community has developed sophisticated tool
support to detect even subtle breaking changes and enforce change-related policies, such as adding
@since tags to API documentation. Breaking changes in core packages are in fact very rare [38].

Even though they arguably make the platform harder to learn and maintain, Eclipse develop-
ers have identified and documented [25, part 3] workarounds for extending an interface while
maintaining old interfaces, such as creating additional interfaces to avoid modifying existing ones
(e.g., IDetailPane2, IDetailPane3, IHandler2) and runtime weaving. Deprecating interfaces and
methods is common, but actually removing them is not14; for example, like many other methods,
org.eclipse.core.runtime.Plugin.startup() as of this publication was still included despite
being deprecated for over 15 years.15 E6 noted that this backward compatibility prevents modern-
izing APIs, such as replacing arrays with collections.

13https://www.eclipse.org/pde/pde-api-tools/.
14e.g., a guide published by the Eclipse foundation about evolving APIs says that, “Obsolete API elements should be marked

as deprecated and point new customers at the new API that replaces it, but need to continue working as advertised for a

couple more releases until the expense of breakage is low enough that it can be deleted.” [25].
15This method was deprecated in 2004: https://github.com/eclipse/eclipse.platform.runtime/commit/

a46e757a1938edb0a7109dafef349c3a3ffc58ea and was still present in 2020: https://github.com/eclipse/eclipse.platform.

runtime/blob/9aedff3f2141631a8bc5fa6d1abe005ea633f107/bundles/org.eclipse.core.runtime/src/org/eclipse/core/runtime/

Plugin.java.

ACM Transactions on Software Engineering and Methodology, Vol. 30, No. 4, Article 42. Pub. date: July 2021.

https://www.eclipse.org/pde/pde-api-tools/
https://github.com/eclipse/eclipse.platform.runtime/commit/a46e757a1938edb0a7109dafef349c3a3ffc58ea
https://github.com/eclipse/eclipse.platform.runtime/commit/a46e757a1938edb0a7109dafef349c3a3ffc58ea
https://github.com/eclipse/eclipse.platform.runtime/blob/9aedff3f2141631a8bc5fa6d1abe005ea633f107/bundles/org.eclipse.core.runtime/src/org/eclipse/core/runtime/Plugin.java
https://github.com/eclipse/eclipse.platform.runtime/blob/9aedff3f2141631a8bc5fa6d1abe005ea633f107/bundles/org.eclipse.core.runtime/src/org/eclipse/core/runtime/Plugin.java
https://github.com/eclipse/eclipse.platform.runtime/blob/9aedff3f2141631a8bc5fa6d1abe005ea633f107/bundles/org.eclipse.core.runtime/src/org/eclipse/core/runtime/Plugin.java

42:24 C. Bogart et al.

The Eclipse community invests significant effort into release planning, at the cost of some re-
sulting friction, as reported by multiple interviewees. E9: “Eclipse has a release process, and some
projects have to release at the same time as the platform, some projects the day after, some projects the
day after, [so] you’re expected to be available a little bit before, so you can make sure that yours bills
properly right? [. . .] So, that’s kinda a complexity.” The required coordination is invested toward en-
suring stability and smooth transitions at few plannable times for downstream users. An Eclipse
release is a complex process with steps aimed at maintaining not only technical interoperability
with prior versions, but also maintaining a consistent level of legal compatibility, usability stan-
dards, security, and so on.16 This culture of conservative change contrasts with what, for example,
an R developer told us: R7: “On one hand I try to be careful, but on the other hand I don’t want to
inflict harm and be like paralyzed by the fact that anything I do might make someone’s life worse.
Sometimes you have be like go ahead and accept that things are going to break and it’s not the end of
the world.”

In Eclipse, maintenance releases for old major revisions are not common (Table 7); presumably
because with backward compatibility users can simply be told to update to the latest release.

R/CRAN. As the R/CRAN community values making it easy for users to get a consistent and
up-to-date installation, developers invest significant effort to achieve consistency.

There is no policy against CRAN packages making changes that affect the larger body of code
outside of CRAN. However, when changes affect other CRAN packages, upstream developers are
asked to bear the significant extra cost of reaching out to and coordinating with maintainers of af-
fected packages17 (termed “forward impact management” by De Souza and Redmiles [19]). Down-
stream maintainers then may also bear the cost of pressure to update their packages first before
the upstream developer can make a breaking change, to ensure that all CRAN packages are con-
sistent. CRAN’s policy requires (and verifies) that developers maintain constant synchronization
with each other, and 5 of our 10 interviewees (R2, R3, R7, R8, R9) specifically mentioned reach-
ing out individually to known, downstream developers (in contrast to three Node.js interviewees
(N1, N4, and N5) and one Eclipse interviewee (E7)). Synchronization is thus continuous, but more
decentralized and localized than with Eclipse’s simultaneous releases.

Among our interviewees, five developers of specialized R packages targeted small and close
communities and knew their users personally. For example, R3 mentioned that “no one used” a
feature, and when asked how they knew that, they replied that “statisticians working on a lot of
medical imaging [. . .] type of applications in R is a very small community. There’s only so many people
to know.” R3 said he got to know those users because of interactions about the dependency. Only a
one of our Node and Eclipse interviewees (E6) mentioned personal connections with downstream
users, but our sample is too small to be sure this is not just sampling bias.

Consistency is enforced by manual and automated checks on each package update.18 The change
management process is collaborative but also demanding of a maintainers time; R7 said the time-
line to adapt to an upstream change “might be a relatively short timeline of two weeks or a month.
And that’s difficult for me to deal with because I try to sort of focus one project for a couple weeks
at a time, just so I can remain productive.” Node developers, in contrast, can ignore changes until
they feel like updating (N5: “Why don’t we upgrade more often? It’s more work than you’d hope.”),
while Eclipse developers rarely need to worry about change (e.g., E1: “When a new version comes

16https://wiki.eclipse.org/Development_Resources/HOWTO/Release_Reviews.
17https://cran.r-project.org/web/packages/policies.html#Submission “If an update will change the package’s API and hence

affect packages depending on it, it is expected that you will contact the maintainers of affected packages and suggest

changes, and give them time (at least 2 weeks, ideally more) to prepare updates before submitting your updated package.”
18https://cran.r-project.org/web/packages/policies.html#Submission.

ACM Transactions on Software Engineering and Methodology, Vol. 30, No. 4, Article 42. Pub. date: July 2021.

https://wiki.eclipse.org/Development_Resources/HOWTO/Release_Reviews
https://cran.r-project.org/web/packages/policies.html#Submission
https://cran.r-project.org/web/packages/policies.html#Submission

When and How to Make Breaking Changes 42:25

out every year in July or whenever, I’d go ahead and test if my plugin works correctly in that new
version; if it does, I don’t care much about that. [. . .New features] were mostly irrelevant. I didn’t care
that much about that.”)

The platform is not conducive to multiple parallel releases—on CRAN a package revision must
have a higher version number than the one it supersedes, so an old major version cannot be up-
dated; policies also discourage forking a project and submitting it with a separate name.19 There
is no central release planning, perhaps because it is perceived to slow down access to cutting-edge
research.

Overall, we observed much more communication and coordination with downstream users
about individual changes than in Eclipse, but also more flexibility with regard to performing break-
ing changes.

Node.js/npm. The Node.js/npm community values ease for upstream developers and the possi-
bility to move fast [75]. It is much less demanding for a developer to make a breaking change.
Six of the Node.js interviewees talked about the importance of signaling change through semantic
versioning.

This sharply contrasts with the R developers we asked about this: two R interviewees spoke
out against semantic versioning; for example, R7: “I’m familiar with the semantic versioning stuff.
It’s just I don’t find that useful personally, because most R users aren’t familiar with that and I think
[convention] is a little bit on the ridiculous side. [. . .] For most R users I don’t think version numbers
send a terribly strong signal, and they are likely to not know what version they are using currently
anyway.”

Semantic versioning in Node allows developers to make breaking changes as long as they clearly
indicate their intentions. Because the technical platform allows downstream developers to still eas-
ily use the old version without fearing version inconsistencies, breaking changes do not as easily
cause rippling effects or immediate costs for downstream users. While they still avoid breaking
changes and employ various strategies to maintain old interfaces, in our interviews, Node.js/npm
developers were generally willing to perform breaking changes in the name of progress and in
fighting technical debt, including experimenting with APIs until they are right. For example, N6
told us that if a downstream user was concerned about a breaking change: “I could tell this person,
well look if you have this problem at least for now your workaround is very simple. Change your
dependency to be this exact dependency so instead of saying we depend on package fooversion *.
Change it to just exactly that version [. . .], and you will still be using the old one that you know and
love. And that will postpone your problem until the day that you need some new thing that’s come
out which is no longer backported into the old version. [. . .] So knowing that, I do kind of feel kind
of confident enough to just say yeah we’re gonna bump the major version, we’re gonna announce or
whatever that takes, but I don’t really myself feel too much desire to kind of read for the backward
compatible people.”

As mitigation strategy, maintenance releases for old versions are common, made easy by the
platform and associated tools. Analyzing the npm repository, we found that 24 of the 100 most
“starred” packages did this at least once; this was more common than in Eclipse or R/CRAN
(Table 7).

Summary of RQ1.1 results: Developers are motivated to change code for many reasons, such
as requirements and context changes, bugs and new features, rippling effects from upstream
changes, and technical debt from postponed changes. There are also opportunity costs from

19https://cran.r-project.org/web/packages/policies.html#Submission.

ACM Transactions on Software Engineering and Methodology, Vol. 30, No. 4, Article 42. Pub. date: July 2021.

https://cran.r-project.org/web/packages/policies.html#Submission

42:26 C. Bogart et al.

forgoing or postponing changes. Opposing this motivation is their awareness of costs to down-
stream users of such changes, especially when their userbase is large and visible to them; in
most cases developers want to avoid imposing those costs on users. Their choice is not binary,
however; there are ways of softening the impacts of change, such as maintaining old interfaces,
making parallel releases, and making and communicating plans about upcoming changes. De-
velopers weigh these choices differently depending on the ecosystem’s values: Eclipse core
package developers are discouraged heavily against change, and thus opt for techniques to al-
low strictly backward-compatible additions. R/CRAN developers are not officially discouraged
from making changes, but they are aware that the ecosystems rules (no parallel releases, onus
on downstream users to update) are burdensome for downstream users, so they emphasize com-
munication and collaboration in their updates. Node.js/npm developers are encouraged to make
changes, by mechanisms that signal downstream users about changes, yet insulating them from
the requirement to adopt the changes; as a result upstream developers are quite likely to opt
for change, and to police each others’ rigorous use of the signaling mechanisms for change
(semantic versioning).

4.3 Study 1 Results: Coping with Upstream Change (RQ1.2)

Just as upstream developers have some flexibility in planning changes that may affect downstream
developers, downstream developers have flexibilities regarding whether, when, and how to react
to upstream change, again influenced by values, policies, and technologies (Table 6). Having to
monitor and react to upstream change can be a significant burden on developers (e.g., mismatch
between schedules has been shown to be a barrier to collaboration [42]). The urgency of reacting
to change can depend significantly on the development context and platform mechanisms.

When discussing how frequently they react to upstream change, our interviewees described a
spectrum ranging from never updating (E3) to closely monitoring all changes in upstream packages
(N1, N2, R9). Two interviewees mentioned explicitly ignoring certain upstream changes (N3, N7);
others upgraded dependencies only at the time of their own releases (N3, N5) or during deliberate
house-cleaning sweeps (N7, E2). Even when the platform does not require updates, developers
often prefer to update their dependencies to incorporate new fixes and features (E3, N2) or to avoid
accumulating technical debt (R6, N5). But they avoid updating when updates require too much
effort (e.g., by causing complicated conflicts; N5, E3) or cause too much disruption downstream
(N7).

4.3.1 Monitoring Change. When developers have to or want to react in a timely fashion to up-
stream changes, they need to monitor the upstream projects in some way. The platform itself, e.g.,
Node.js, R core, and the CRAN infrastructure, is often an additional source of changes that devel-
opers need to keep up with. In our interviews, we discovered many different strategies for moni-
toring, including technical and social strategies. Their strategies varied along with the urgency of
their needs, from active monitoring of upstream activity, to general social awareness of upstream
activities, to a purely reactive stance where developers wait for some kind of notifications.

Active monitoring. Only four interviewees (E5, R9, N1, N4) reported actively monitoring up-
stream changes, in the sense of maintaining personal awareness of upstream changes, by regu-
larly looking at activity going on in their upstream dependencies. R9, N1, and N2 said they used
GitHub’s notification feed with some regularity (N2 only for changes to the Node.js platform, not
to upstream packages). N4 kept up by following Twitter feeds, blogs, and attending conferences.
R7 indicated that raw notification feeds, in their current form, are a significant burden with a low

ACM Transactions on Software Engineering and Methodology, Vol. 30, No. 4, Article 42. Pub. date: July 2021.

When and How to Make Breaking Changes 42:27

signal to noise ratio, saying that “The quantity of notifications I get on GitHub [on my own project]
already is to the point of overwhelming. So I don’t even mostly read them unless I’m actually working
on the project at that moment.” He later told us that after our interview he tried scaling back to
watching just the three to five projects he is actively working on. Only one interviewee (R9) did
not feel overwhelmed, saying that occasional skimming of GitHub feeds was useful way to get an
overview of activity.

Upstream participation. In seven cases, developers mentioned monitoring upstream changes not
as outsiders following a stream of data, but as active participants in those projects, collaborating
to influence them toward their own needs (E5, N4, N7, R6) or providing direct contributions to
those packages (E7, E9, R7). For example, in describing the challenge of getting upstream projects
to prioritize changes that he needed, an Eclipse developer said, “I touch everything that I care about,
because it’s really hard to convince other people to do things that I need to do. I find it much easier to
just learn all the projects and when I need something, to do it myself.” This aligns with de Souza and
Redmiles’ observation of exchange of personnel as a common strategy for cooperation among de-
pendent projects[19]. Such developers wear hats in both projects: They maintain active awareness
of the upstream project, as downstream developers, and as upstream developers, their downstream
work informs their understanding of the upstream project’s requirements.

Others like E5 actively compiled and tested their project with development versions of upstream
dependencies, emphasizing the importance of giving timely reactions: “if you report it within a
week there’s a better chance the developer might remember what they did [. . .] which provides a good
chance that they can revert their change before they hit their milestone.”

Social awareness. Many interviewees tried to maintain a broad awareness of change through
various social means. The most frequently mentioned mechanism, especially in the Node.js com-
munity, was Twitter (E9, R7–R9, N2, N3, N4a, N4b, N6, N7). For example, N4a commented, “the
people who write the actual software are fairly well connected on Twitter, [. . .] like water cooler
type of thing. So we tend to know what’s going on elsewhere.” In each ecosystem, interviewees (E5,
R9, N4, N6) mentioned the importance of face-to-face interactions at conferences for awareness
about important changes in the ecosystem. Other mentioned social mechanisms to learn about
change were personal networks (R6, R8), blogs (E1, R4, R7, R8, N4, N7), and curated mailing
lists (N1).

Reactive monitoring. Although our research questions led us to probe interviewees about the
aforementioned active and social monitoring practices, a reactive strategy is also possible for de-
pendencies. That is, rather than maintain some awareness and understanding of plans and activity
in an upstream project, for example, by watching a Github feed and keeping track of why they fol-
low each project and which changes might be relevant to them, a developer may instead ignore
upstream projects’ activity until they are given actionable evidence that their own project needs to
adapt in some way. The developer waits to hear about problems from others (in advance, or after
things had broken): Upstream developers contacting them about breaking changes, failing tests
after dependency updates, or platform maintainers warning of changes that would affect them.
There are tools that enable this reactive stance, that generate targeted notifications on certain
kinds of changes. The specific tools differ among the platforms and support different practices or
policies. Policies and common practices (e.g., testing practices) in the platform strongly in turn
affect the reliability of a reactive strategy and corresponding tools.

Four developers (R3, E5, N2, and N7) mentioned the use of continuous integration to detect
compile-time issues caused by breaking changes in upstream packages early. The tools gemna-
sium [32] and greenkeeper [35] allowed Node.js/npm developers to get notifications about new

ACM Transactions on Software Engineering and Methodology, Vol. 30, No. 4, Article 42. Pub. date: July 2021.

42:28 C. Bogart et al.

Table 6. Practices (Mostly Downstream) to Monitor Change and Manage or Avoid Its Effects

Who Study 2 Practice

Method

Awareness and coordination

D S Reactively track what upstream packages are doing (when it breaks; when you’re
notified somehow)

D S Proactively track (maintain awareness via github notifications, mailing lists, etc.)

D S Submit feature requests and bug reports to upstream package authors

D S Participate in decision-making about upstream package’s future

D S Tool-based notifications about upstream changes (e.g., Greenkeeper)

D Regularly test against unreleased development versions of dependency to give
timely feedback

P Socially connected group of developers following each other on Twitter, going to
conferences, etc.

P Political work among core people to get buy in on making a breaking change

Protection against each potential change

D S Do not update dependencies; just leave them at old versions known to work

D Upgrade dependencies all at once only when making a new release

D S Dependency hell: manual manipulation of dependency version constraints to get
a set of dependencies to be mutually compatible

U S Violate semantic versioning for trivial changes to prevent rippling updates that
version change would require

D M Lock file: fix versions of all upstream packages (incl. transitive dependencies)
with release

D Report wrong semantic versioning as a bug

D M,S Specify an exact version number of a specific dependency

D M,S Specify a range of legal version numbers of dependencies (e.g., allow minor but
not major upgrades)

D M,S Specify only a dependency’s name and do not constrain what version of it is to be
used

Protection against dependencies themselves

D S Do significant research about each dependency weighing whether to adopt it

D S Wrap the dependency in an abstraction layer to decrease risk of change

D S Avoid use of dependencies, roll your own

D S,M Clone the dependency’s code and maintain the new code yourself

D M,S Copy dependency code into your own repository (“vendoring”) to get exact
version needed

releases of upstream packages. Gemnasium alerted developers of package releases that fix known
vulnerabilities, whereas greenkeeper submitted pull requests to automate a continuous integration
run against the new release. In either case, developers could react to notifications by email or pull
requests.

CRAN’s requirement that upstream developers notify their downstream dependents when a
change is coming appears to encourage downstream developers across the ecosystem to take a
reactive stance (in contrast to Eclipse and Node.js/npm, where individual downstream developers
need to employ optional monitoring tools). R7 defended the practice of waiting to be told about
breaking changes as a principled attention-preserving choice, consistent with ecosystem norms;
while R2 was apologetic about being reactive: “I guess I’ll sound crass about this and say it. For things

ACM Transactions on Software Engineering and Methodology, Vol. 30, No. 4, Article 42. Pub. date: July 2021.

When and How to Make Breaking Changes 42:29

like that I would wait to hear from CRAN when something broke. Because I don’t think I can keep up
with all of it.” CRAN enforces this policy with manual and automated checking on each package
update, running the package’s tests and the test of all downstream packages in the repository, as
well as some static checks. The CRAN team may then warn an affected downstream developer of
an upcoming change by email.

4.3.2 Reducing the Exposure to Change. Many developers have developed strategies to reduce
their exposure to change from upstream modules and, thus, reduce their monitoring and rework
efforts. The degree to which developers adopt such mitigation strategies again depends on the
technology, policies, and values, as we will discuss.

Limiting dependencies. Most of the CRAN and Eclipse interviewees that we asked (11 intervie-
wees: R1, R2, R3, R4, R6, R7, E1, E2, E4, E5, E9) felt that it was better to have fewer dependencies.
Reasons for limiting dependencies included limiting one’s exposure to upstream changes and not
burdening one’s users with a lot of modules to install and potential version conflicts (“depen-
dency hell”). Interviewee E5 represents a common view: “I only depend on things that are really
worthwhile. Because basically everything that you depend on is going to give you pain every so often.
And that’s inevitable.” Apart from removing no longer needed dependencies (tooling provided in
Eclipse), six developers described more aggressive actions to avoid dependencies, including copy-
ing (R4) or recreating (R1, R6, R7, N6) the functionality of another package. N6 had to fork and
recreate an upstream dependency as a temporary measure because of a licensing issue, but he did
not feel dependencies were a burden generally.

In contrast, due to Node.js/npm’s ability to use old versions and Eclipse’s stability, three devel-
opers (E3, N1, N5) specifically said that they did not see dependencies as a burden.

Selecting appropriate dependencies. When limiting themselves to appropriate dependencies,
interviewees mentioned a variety of different signals they looked for; these fell into five
categories:

• Trust of developers: Seven interviewees (E4, R1, R5, R6, R7, N4, N6) mentioned basing deci-
sions on personal trust of package maintainers. Criteria included being a large organization
(E4), having a reputation for high quality code (R6, N6), and being consistent with mainte-
nance (R6). One interviewee (R7) deliberately sent bug reports to a package to test whether
the developer would be responsive before depending on it.

• Activity level: Five interviewees (E4, N6, N2, R1, R6) considered the activity level of the
community of developers; for example, distinguishing a “real” ongoing project from an
abandoned research prototype. Both high and low activity levels can be a positive indi-
cator depending on the state of the project, as stated by N2: “ Ones with activity are mostly
better maintained; they have lots of people contributing, like express. It’s likely the community
will have eyes on the ball, consider backward compatibility, ramifications [. . .]. Ones with little
activity are small projects that don’t change often, so change isn’t an issue either.”

• Size and identity of user base: Four developers mentioned the size of the user base was using
signals such as daily download counts (E2, N3, N5), whether projects of trusted developers
use it (N6), or, as E2 said, “Whether I’ll actually jump on it or not is about how I perceive
other software projects are using it.” N5 told us, “We look to see how many people are using
it: number of downloads per day. If it’s low, that’s a clue that it’s sketchy, but not a perfect
heuristic.”

• Project history: Four interviewees said they assumed that past stable behavior of a package
would predict future stability (R1, R4, R6, E2). Signals included their own experience with
the package (N4, E5), its status as part of the platform’s core set of packages (E4), or its

ACM Transactions on Software Engineering and Methodology, Vol. 30, No. 4, Article 42. Pub. date: July 2021.

42:30 C. Bogart et al.

visible version history, such as lack of recent updates and a version number above 1.0 (E3,
N1, N4).

• Project artifacts: Finally, developers mentioned signals from project artifacts, including cod-
ing style (R1, R6), documentation (R1), good maintenance (N6), perceived ease of adop-
tion (R1), code size (E2, N4, N7), and conflicts with other dependencies (N5).

Encapsulating change. Interestingly, there was almost no mention of traditional encapsulation
strategies to isolate the impact of changes to upstream modules, contrary to our expectations and
typical software-engineering teaching [63, 73, 88]. Only N6 mentioned developing an abstraction
layer between his package and an upstream dependency, implemented because of an anticipated
change. Questions about encapsulation were not in our interview protocol, so we did not ask
about it specifically, but one possible explanation is that since upstream package already generally
try to avoid gratuitous API changes, the ones that are necessary would require changes to an
encapsulating class’s API, obviating the point of the encapsulation.

4.3.3 Platform Values and Developer Values. Because policies, tools, and practices support dif-
ferent values in each ecosystem, they impose different costs on developers depending on whether
their attitude towards some particular dependency aligned or conflicted with the community’s
broader values. In some situations developers will treat a dependency as a fixed resource to draw
functionality from (also termed API as contract [20]), but in other situations, they treat the interface
as open to negotiation and change (also API as communication mechanism [20]).

Eclipse’s value on backward compatibility and predictable release planning is convenient for
developers and corporate stakeholders who wish to rely on the released core platform code as
a a fixed resource. Stability ensures that most developers relying on the platform packages do
not need to monitor upstream changes, reacting at most to the yearly releases. Signals about
whether to trust an upstream package are primarily social in the sense they can trust the packages
that are part of the core, supported by corporations known to be invested in the stability of the
platform.

According to E6, developers working within more volatile parts of the Eclipse ecosystem, such
as using code outside the stable core, or in-development features of the core, have a greater need
for monitoring and may be exposed to more change, sometimes encountering friction associated
with that. E6 told us that “there is a very different understanding of how important compatibility is
and what it means, if you start from the platform, and then to the outer circles of Eclipse.” E5 talked
about recompiling upstream code often to report bugs to them within a week. Thus, although
Eclipse deeply values stability, there is necessarily a sphere of activity with active collaboration
and change where that value is appropriately set aside.

CRAN’s emphasis on consistency and timely access to research seems to encourage the API
as communication rather than the API as contract [20] view of dependencies, in that its snapshot
consistency approach forces maintainers to react to breaking upstream changes quickly (typically
a few weeks [87]). This causes some apparent friction with researchers who might otherwise wish
to publish their software and move on to other things. Many of the interviewees limited their
dependencies, sometimes quite aggressively, by replicating code and reacting to notifications about
change rather than actively following a community of upstream developers. However, an active
and socially connected subset of developers (R7–R9) seemed to welcome collaboration. Although
R7 advocated reacting to upstream changes rather than trying to anticipate them, R7, R8, and R9
emphasized Twitter and conferences to maintain an upstream awareness.

Node.js/npm’s emphasis on convenience for developers has led to infrastructure that seems to
decouple upstream and downstream developers from having to collaborate, since the downstream

ACM Transactions on Software Engineering and Methodology, Vol. 30, No. 4, Article 42. Pub. date: July 2021.

When and How to Make Breaking Changes 42:31

can depend on old versions of the upstream for as long as they like. This should logically lead to
less urgency to monitor upstream changes, except for patching security vulnerabilities. Developers
do nonetheless often choose to take a collaborative approach to development, using tools such
as continuous integration and greenkeeper [32] to force themselves to stay up to date despite the
platform’s permissiveness.

Summary of RQ1.2 results: Downstream developers are motivated to update their dependen-
cies to take advantage of bug fixes and new features and avoid technical debt. However, such
updates can be complex or risky, can disrupt downstream users, and may require some aware-
ness of ongoing activity in an upstream project. Strategies to balance the costs and risks include
different levels of awareness of upstream projects (from social or technical participation, to ac-
tive or merely reactive monitoring), chunking the work by making all updating decisions at
once periodically, or limiting the problem by carefully vetting dependencies to begin with. As
with upstream change decisions, the ecosystem’s context affects participants’ choices. Eclipse’s
extreme interface stability allows downstream developers, at least outside the core, to trust it
and ignore the possibility of change. CRAN’s policy of global consistency among packages cre-
ates pressure for package maintainers to actively collaborate with their upstream counterparts;
a core community seems to be spurred to active collaboration on Twitter and at conferences,
while a peripheral community limits dependencies to avoid this necessity. Finally, NPM’s tool-
ing decouples downstream developers from immediate impact by upstream changes; developers
who nonetheless wish to stay up to date adopt tools like greenkeeper to remind and encourage
them to update.

4.4 RQ1.3 Unintended Consequences

Interviewees told us about instances where policies or their combinations led to unintended
consequences.

Eclipse. One Eclipse developer said that the “political” nature of making changes can drive away
developers and users. “You have to be very patient and know who to talk with and whatnot; you really
have to know how to play that game to get your patches accepted, and I think it’s very intimidating
for some new people to come on.” He explained that with many interdependent packages managed
by different people each with a mandate not to change their interfaces, implementing a rippling
change can require negotiations among people with conflicting interests.

Another consequence of Eclipse’s stability, along with its use of semantic versioning, is that
many packages have not changed their major version number in over 10 years. However, as E8 told
us, strict semantic versioning is impractical to follow, so even for the few cases of breaking changes
that are clearly documented in the release notes, such as removing deprecated functions, major
versions are often not increased. Updating a major version number can ripple version updates to
downstream packages, which can entail significant work for the many downstream projects that
have hard-coded major version numbers for their dependencies.

Node.js/NPM. For Node.js/npm, in contrast, the rapid rate of changes and automatic integra-
tion of patches can raise concerns about reproducibility in commercial deployments. In many
cases, the community then builds tools to work around some of the issues, such as providing
tools that take a specific snapshot of an installation including all transitive package dependencies
(e.g., “npm shrinkwrap” or R/CRAN’s packrat). “In npm, if you install today and tomorrow, you’ll

ACM Transactions on Software Engineering and Methodology, Vol. 30, No. 4, Article 42. Pub. date: July 2021.

42:32 C. Bogart et al.

get 100s of dependencies, and something may have changed. So even if my version is the same, the
servers could be running slightly different code, so customer facing code will differ and be hard to
reproduce.”

R/CRAN. CRAN has a similar issue regarding scientific, rather than deployment reproducibility:
The community’s goal of timely access to current research conflicts with many researchers’ goal
to ensure reproducibility of their studies [61].

In R/CRAN, the opposite dynamic from Node is evident in its versioning policy: The official
policy on version numbers only requires that version numbers increase with each submission20;
but a permissive form of semantic versioning is used and recommended by many developers [87,
91].

These conflicts and unintended consequences suggest that the design of ecosystem practices is
not a solved problem.

Summary of RQ1.3 results: Unexpected community responses to policies included creative
use of semantic versioning, innovative ways of promoting replicability, and stagnation.

5 STUDY 2: A SURVEY ON VALUES AND PRACTICES: PREVALENCE, CONSENSUS,

AND RELATIONSHIPS

The research questions for Study 2 emerged in large part from the results of our first study. Study
2 endeavored to expand the scope beyond these three cases and to ask further questions raised by
our results.

Study 1 revealed substantial differences in our three cases in the practices used to manage break-
ing changes and in the values these practices appeared to serve. This raises the question of how
prevalent such differences are. Some values may be nearly universal, and some practices may be
so fundamental, well-known, and effective that they are employed by nearly all ecosystems. How-
ever, different ecosystems make use of different technologies, have evolved different cultures, and
serve different constituencies, suggesting that at least some values and practices may vary, perhaps
dramatically, among ecosystems. Our questions for Study 2 were therefore:

RQ2.1: To what extent are values and practices for managing breaking changes shared among a
diverse set of ecosystems?

Moreover, we have been making the assumption that ecosystems tend to have a shared view of
values and practices across the ecosystem, i.e., that they are characteristics of ecosystems rather
than individual projects or sub-ecosystem clusters of projects. It seems important to test this as-
sumption, hence:

RQ2.2: To what extent do individual ecosystems exhibit consensus within the community about
values and practices?

Finally, as we observed in Study 1, it seems that some practices are designed to serve the ecosys-
tem’s values, e.g., to insulate an installed base of applications from changes (Eclipse), to make it
easy for end-users to install and use the latest software (R/CRAN) or to allow developers to con-
tribute code as simply as possible (Node.js). Are particular values always associated with specific
practices that further that value? We ask more generally:

RQ2.3: What is the relationship between ecosystem values and practices?
Anonymized survey data is available [7].

20https://cran.r-project.org/web/packages/policies.html.

ACM Transactions on Software Engineering and Methodology, Vol. 30, No. 4, Article 42. Pub. date: July 2021.

https://cran.r-project.org/web/packages/policies.html

When and How to Make Breaking Changes 42:33

5.1 Study 2 Results: Validation of Study 1

Before presenting new results from the survey, we take the opportunity to validate some of the
results of Study 1, since we have available hundreds of survey responses covering similar questions
from the three ecosystems in that study.

Study 1 characterized practices and values of three ecosystems based on interviews with de-
velopers in each ecosystem. The values they inferred for Eclipse and Node.js/NPM align with our
data: Eclipse participants did seem to value backward compatibility as postulated: Stability and
compatibility were their two highest ranked values (Table 10). Aligning with findings from the in-
terviews, Eclipse developers were top-ranked in claiming to make design compromises in the name
of backward compatibility (Figure 3(c)). Aligning with the interview result that showed Node.js de-
velopers to value ease of contributions for developers, Node.js participants in our survey were top
ranked in valuing innovation and ranked highly in both making frequent changes to their own
package (Figure 3(a)) and in facing breaking changes from dependencies (Figure 4(a)), although
they were mid-rank in feeling any less constrained from making changes than other ecosystems
(Figure 3(b)).

CRAN survey participants did not highly rank rapid access as expected from the interviews; and
they were not more averse to adopting dependencies as predicted (not shown), although, as pre-
dicted, they did claim to clone code more (not shown). Aligning with interview results discussing
personal contacts among upstream and downstream developers, they were top ranked in reporting
being personally warned about changes in their dependencies (Figure 4(e)), but, contrary to ex-
pectations, were low ranked in warning their own downstream users (Figure 3(h)). This contrast,
in particular, i.e., frequently being warned but rarely issuing warnings, suggests that our R/CRAN
interviews may be overweighted toward downstream developers.

Although the survey largely validates the interview results, the differences highlight the fact
that different methods with different sampling strategies can produce somewhat different results,
and that even the design intentions of core members responsible for promulgating practices are
not necessarily propagated to the whole community.

5.2 Study 2 Results: To What Extent Are Values and Practices Shared across

Ecosystems? (RQ2.1)

The survey, policy analysis, and data mining revealed an interesting pattern of similarity and dif-
ferences in values and practices across ecosystems. For those that vary across ecosystems, it is
rare that we see a clear division of ecosystems in two distinct groups. Rather, sorting tends to
generate a smooth curve between the extremes. Visible differences between ecosystems at either
end of the spectrum are generally statistically significant, and often a few ecosystems stand out,
as we will discuss. We plot answers to many of our survey questions in Figures 2, 3, and 4 and
Table 7.

All values, except for commerce (Figure 2), were considered at least “somewhat important” in
all ecosystems. Stability, quality, and community are nearly universal values and compatibility,
rapid access, and replicability are also rated highly across most ecosystems (see the bottom rows
of Figure 2 for the few exceptions). For quality in particular, participants felt even more strongly,
and more consistently, that it was of high importance to them personally and to the ecosystem
as a whole (the mean personal value of quality was about 0.8 scale points higher than the mean
ecosystem value). Still, we see strong differences between ecosystems at each end of the spectrum.
Personal values correlate strongly with perceived community values (Spearman ρ = 0.416,p <
.00001,n = 10878, comparing the two answers for each of the eleven values, for each person, as
a separate observation), but participants, on average, rated quality as a much higher personally,

ACM Transactions on Software Engineering and Methodology, Vol. 30, No. 4, Article 42. Pub. date: July 2021.

42:34 C. Bogart et al.

Table 7. Comparison of Data-mined Practices (Data from libraries.io and World
of Code [57]; see Section 3.3.6 for Details

Dependency Version Constraints

Ecosystem (a) Exact (b) min only (c) range (d) unconstrained (e) Cloning
(f) Lock

Files
(g) Maint.
old vers.

Atom (plugins) 22.5% 1.55% 73.7% 1.29% 2.62% 0.1% 1.8%

CocoaPods – – – – – 8.37% 3.85%

Eclipse (plugins) – – – – – n/a –

Erlang,Elixir/Hex 9.09% 9.25% 81.6 % 0.0% – 65.7% 3.95%

Go – – – – 3.24% 14.4% v –

Haskell (Cabal/Hackage) – – – – – 0.5% 1.04%

Haskell (Stack/Stackage) – – – – – 0% n/a

Lua/Luarocks – – – – 3.21% 0% –

Maven 100.0% 0% 0% 0% 0.72% (Java) n/a 25.4%

Node.js/NPM 16.3% 0.44% 78.6% 3.67% 7.03% 0.8% 3.96%

NuGet 5.27% 88.7% 6.01% 0% – 7.2% 17.6%

Perl/CPAN 100.0% 0.0% 0.0% 0.0% 2.30% 1.0% 2.72%

PHP/Packagist 21.3% 3.72% 66.7% 7.99 % 1.16% 16.9% 10.6%

Python/PyPi 14.6% 34.5% 5.86% 44.1% 8.17% n/a 6.07%

R/Bioconductor – – – – 3.59% 0.2% n/a

R/CRAN 0.0% 24.4% 0.0% 75.6% 2.69% 0.8% 0.10%

Ruby/Rubygems 3.78% 49.6% 46.3% 0.94% 1.76% 17.4% 4.54%

Rust/Cargo 3.86% 2.14% 93.6% .40% 6.90% 14.6% 1.4%

Dependency Version Constraints: Over all versions of packages in our data, over each of the packages’ dependencies, what

proportion of dependencies were constrained with Exact version number, specified the minimum version only, a range of

versions, or left the version unconstrained. Dash(–) means no data (dependencies not tracked in libraries.io, or language

files not indexed in WoC). Most common type of constraint for each ecosystem is bolded.

Cloning is percent of packages in repository whose projects borrowed a file from another package.

Maint. old vers. is percent of packages whose version number does not increase monotonically.

Lock files is percentage of packages that use a lock file to set an exact version of transitive dependencies. n/a= no equivalent

of a lock file. v= Go includes projects with a “vendor” directory, which has a similar effect as a lock file.

compared to how they rated it as an ecosystem value (.9 Likert scale points, paired t-test: p<.0001);
they also tended to rate fun slightly higher personally (.6 Likert scale, paired t-test: p<.0001); all
other differences were within half a Likert scale point.

Additional values from open-ended questions. We also asked an open-ended question about other
values important to their ecosystem. Common themes are counted in Table 8. Answers included
usability (15 responses) and social benevolence (good conduct, altruism, empowerment, making
resources available to all; 17 responses). An interesting pair of contrasting values we had not con-
sidered was standardization (12 responses) and technical diversity (17 responses). Technical diversity
advocates valued freedom to implement things and interact with other developers in a diversity of
ways: “the package creator should be in charge of deciding how best to manage his/her package and
organize with other contributors [. . .]” (Node.js/NPM respondent), while standardization advocates
said their ecosystem limited choice to save developers time and effort by promoting wide adher-
ence to standards: e.g., a Python respondent said the platform’s “open ecosystem proposes commonly
used, sensible ways to solve popular problems, enforces de facto standards” and decried the chaos of
“NIH [Not Invented Here] syndrome.”

ACM Transactions on Software Engineering and Methodology, Vol. 30, No. 4, Article 42. Pub. date: July 2021.

When and How to Make Breaking Changes 42:35

Table 8. Number of Respondents Suggesting Other Ecosystem Values: Usability, Social Benevolence,
Standardization, Technical Diversity, Documentation, Modularity, Testability

Ecosystem Usability
Social

Benevolence
Standard-

ization
Technical
Diversity

Docu-
mentation Modularity Testability

Atom (plugins) 1 1

CocoaPods 2 2 1

Eclipse (plugins) 1

Erlang,Elixir/Hex 1 1 1 2

Go 1 4 4 2 1 1

Haskell (Cabal/Hackage) 1

Haskell (Stack/Stackage)

Lua/Luarocks 1 1 2

Maven 1 1

Node.js/NPM 1 1 3 7

NuGet 4 1

PHP/Packagist 1

Perl/CPAN 2 2 3 5 2 1 5

Python/PyPi 1 2 1 2 2

R/Bioconductor 1 4 1

R/CRAN 2 1

Ruby/Rubygems 3 3 2 2 4

Rust/Cargo 1 1 1 1

other 1 1 1 1 1

Other responses to this question we deemed to be not really ecosystem values, but rather fa-
vored technical qualities of code at the package level (64 responses), which might be promoted by
ecosystem culture, such as good documentation (11 responses; 4 of which were Bioconductor par-
ticipants); high modularity (16 responses; 7 of them in Node.js/NPM); and testability (11 responses;
4 each in Ruby and Perl). Finally, 13 (8%) responses objected to the framing of the question, claim-
ing either that no community existed that could be said to share values (5 respondents, 3 of them
in Maven) or saying that multiple subcommunities existed with differing values (8 respondents,
including 2 in Erlang/Hex and 2 in Haskell/Cabal).

Other recent surveys [34, 77] have used similar sets of values. In light of responses to our sur-
vey, we propose the revised list of values in Appendix C. This new list adds the new values of
Standardization, Technical Diversity, Usability, and Social Benevolence, removes Quality (since it
did not distinguish among ecosystems).

Change planning practices. Participants across all ecosystems indicated in the survey (Figure 3)
that they perform breaking changes only rarely: a median of less than once a year both for the
changes that our participants perform (Figure 3(a)) and breaking changes that their package faces
from dependencies (Figure 4(a)). Although prior research suggests that breaking changes are “fre-
quent” (Section 2), this is relative to the overall frequency of change. Applying a back-of-envelope
estimate to Decan et al. [21]’s findings, for example: They report about 5% of updates actually
caused breakages, against a background rate of about 1.2 updates per year per package (1,029
updates to 1,710 packages in a six-month window), or one breakage every 17 years. Given that
breakages may not be evenly distributed, packages have multiple, recursive dependencies, and
developers work on multiple packages, experiencing a breakage once a year is in the range of

ACM Transactions on Software Engineering and Methodology, Vol. 30, No. 4, Article 42. Pub. date: July 2021.

42:36 C. Bogart et al.

Table 9. Comparison of Sanctioned Practices and Features

Ecosystem (a
)

D
ep

en
d

en
ci

es

o
u

ts
id

e

re
p

o
si

to
ry

(b
)

C
en

tr
al

R
ep

o
si

to
ry

(c
)

A
cc

es
s

to
o

ld

d
ep

en
d

en
cy

v
er

si
o

n
s

(e
)

G
at

ek
ee

p
in

g

st
an

d
ar

d
s

(f
)

Sy
n

ce
d

ec
o

sy
st

em

Atom (plugins) � � � � �
CocoaPods � � � � �
Eclipse (plugins) � � � n/a � core

Erlang,Elixir/Hex � � � � �
Go � � � w/extra work n/a �
Haskell (Cabal/Hackage) � alt repo � � � submitter �
Haskell (Stack/Stackage) � � �� � compatibility �
Lua/Luarocks � � � � �
Maven � � � � �
Node.js/NPM � � � � �
NuGet � alt repo � � � Virus-free �
Perl/CPAN � alt repo � � �� staged releases �� staged releases

PHP/Packagist � � � � �
Python/PyPi � � � � �
R/Bioconductor � alt repo � �� �� staged releases �� staged releases

R/CRAN � alt repo � � w/extra work � �
Ruby/Rubygems � � � � �
Rust/Cargo � � � � �
� = ecosystem has feature, � = does not have feature, �� = has feature, but for a group of packages, not for individual

packages. alt repo = through reference to an alternative repository; staged releases = groups of packages are debugged

together and released as a group. submitter = the author, not the package, is vetted. core = core packages only. See

Section 3.3.5 for details.

plausability. So, this is perhaps why their actual experience of dealing with a breaking change
may be infrequent even if breaking changes are frequent overall in the ecosystem.

Respondents in every ecosystem agreed, on average, that they used semantic versioning or com-
parable versioning strategies (Figure 3(f)), batch multiple changes into a single release (Figure 3(d)),
document their changes (Figure 3(e)), and are conservative about adding dependencies to their
projects (Figure 4(c)). These seem to generally be considered as good software-engineering prac-
tices independent of programming language or ecosystem.

Answers that varied more dramatically among ecosystems included reluctance to make breaking
changes (Figure 3(b)), willingness to compromise design for backward compatibility (Figure 3(c)),
and synchronizing with users before releasing changes (Figure 3(h)). Data mining reveals that
ecosystems also vary considerably in how often they make updates to previous versions, ranging
from as high as 25% of Maven projects doing this at least once, to 0.1% of R/CRAN projects doing
so.

Turning to shared community resources, all but two of the ecosystems we studied supply a
central repository server from which packages could be downloaded automatically as needed
(Table 9(b)). Two (Go and Eclipse) only maintain indexes to maintainers’ own servers that must
supply the package and metadata in some standard way. Advertised submission requirements
for packages show that ecosystems differed in the level of vetting (Table 9(e)) of the packages

ACM Transactions on Software Engineering and Methodology, Vol. 30, No. 4, Article 42. Pub. date: July 2021.

When and How to Make Breaking Changes 42:37

these repositories apply. Haskell’s Cabal/Hackage system is unusual in that it vets maintain-
ers, who apply for accounts that are hand-checked by human reviewers, but does not apply
more than minimal automated standards to submitted packages. CRAN has very strict stan-
dards for package submissions and updates,21 which are vetted by hand as well as automated
tests.

Three ecosystems are released all at once on a regular, synchronized schedule (Table 9(f)): the
core set of packages in Eclipse, as well as the whole of Bioconductor (synchronized with releases
of the R runtime), and CPAN. These work by having a staged sequence where a development build
is worked on until it is consistent, then parts or all of it are released as a group into the official
supported release. Other ecosystems allow developers to release packages whenever their authors
wish. This is similar to practices of operating-system-level software ecosystems such as Debian’s
APT22 that repackage software from a variety of languages and ecosystems into compatible re-
leases for an operating system.

Note that Stackage’s sets of compatible packages are curated together post hoc23; their devel-
opment is not synchronized unless developers collaborate on their own to do so.

Practices for coping with dependency changes. Sixteen of the 18 ecosystems offer an optional
(Table 9(b)) but widely used central repository (Table 9(a)) for packages, usually encouraging pack-
ages to refer to dependencies by name and version number.

When asked specifically about their package’s exposure to breaking changes from upstream
packages, participants across all ecosystems again reported low frequencies (Figure 4(a)); only a
quarter of our participants indicated that they saw a breaking change per year. Participants in
ecosystems with more conservative change practices (e.g., Eclipse, Erlang, Perl) are exposed to
slightly fewer breaking changes. Participants across all ecosystems indicated that they are conser-
vative in adding dependencies (Figure 4(c)) and perform significant research first (Figure 4(d)). In
contrast, how they learn about updates (Figures 4(e)–(g); e.g., through personal contacts or tools),
the rate to which they may skip them (Figure 4(h)), and how they declare version constraints on
dependencies (Figure 4(i)) depends significantly on the ecosystem.

Data mining (Table 7) reveals that file cloning is rare (less than 10% of projects) in every ecosys-
tems in which we measured it; developers instead rely on the package dependency infrastructure
(Table 7(e)). Mining also confirmed survey answers about how users of packages chose to constrain
the versions of packages they depended on: While Maven almost universally relies on a fixed ver-
sion number (e.g., package A might depend on precisely version 3.2.1 of package B), other ecosys-
tems typically constrain dependencies to version number ranges (Node.js/NPM, Atom, PHP, and
Rust/Cargo), specifying only a minimum version (NuGet, Ruby/RubyGems) or leaving versions un-
constrained (Python/PyPi, R/CRAN). Survey and mining results differed for one ecosystem, how-
ever: Perl/CPAN users claimed the ecosystem’s typical practice was to specify just the name (43%
of respondents) or version range (36%) of dependencies, yet mining of libraries.io revealed nearly
100% use of exact version numbers. This may be a matter of developer perception: libraries.io
apparently measures precise dependencies captured in the published repository, but tools such
as Dist::Zilla::Plugin::DistINI generate these from less-constrained numbers specified by
developers.

Universal or distinctive. While there is considerable nuance in the differences among ecosys-
tems, overall our results suggest that there are several values that seem to be universal, at least

21https://cran.r-project.org/web/packages/policies.html.
22https://wiki.debian.org/Apt.
23https://github.com/commercialhaskell/stackage#frequently asked-questions.

ACM Transactions on Software Engineering and Methodology, Vol. 30, No. 4, Article 42. Pub. date: July 2021.

https://cran.r-project.org/web/packages/policies.html
https://wiki.debian.org/Apt
https://github.com/commercialhaskell/stackage#frequently asked-questions

42:38 C. Bogart et al.

in the 18 ecosystems we surveyed. Chief among these are stability, quality, and community, while
compatibility, rapid access, and replicability have achieved a near-universal status. The unique
personality of each ecosystem, however, seems to derive from either a few key distinctions (in
values or in practices) that set them apart. There are many examples of this, including:

• Bioconductor and Eclipse stand out as coordinating releases on a synchronized and fixed
schedule and the survey (Figures 3(i) and (j), Table 9(f)) and valuing curation (Figure 2,
Table 9(e)).

• Go has a distinctive version numbering practice that does not require version updates on
all changes (Figure 3(g), Table 9(c)).

• CRAN and Bioconductor have strict requirements for submission and update of packages
(Figure 3(k), Table 9(e)).

• Lua developers value fun, feel least constrained from making changes in their code, and
generally do not coordinate much with others (Figures 3(b),(h), and (i)).

• Rust has a strong stance on openness and is the least prone to make design compromises
for backward compatibility (Figure 3(b) and (c)). Data mining of Cargo projects show they
rarely port fixes to earlier code releases (Table 7(g)).

• CPAN developers universally claim to write change logs (Figure 3(e)).

Value differences by ecosystem are statistically significant for each of the values (Kruskal-Wallis,
run separately on each value to check if it differs by ecosystem: p<.00001, χ 2 ranging from 53.704
for quality to 178.69 for commerce).

Summary of RQ2.1 results: Stability, quality, community, compatibility, rapid access, and
replicability are important across all ecosystems, while openness, curation, standardization,
technical diversity are values that are not universal, but differ by ecosystem. Breaking changes
are experienced only rarely by any one developer (on the order of yearly), even though they
are common within an ecosystem as a whole. Differing ecosystem circumstances lead to great
variety in developers’ willingness to make breaking changes, or conversely to compromise their
designs to ensure backward compatibility; and in turn consumers’ eagerness to incorporate
upstream changes.

5.3 Study 2 Results: To What Extent Is There a Consensus within Ecosystems about

Values and Practices? (RQ2.2)

The distribution of value ratings within each ecosystem was particularly wide for the values repli-
cability, openness, and curation, indicating generally less consensus on these values. There is evi-
dence of broad consensus about the highest ranked value(s) for some ecosystems (Table 10), most
conspicuously in cases in which a value clearly aligns with the core purpose of an ecosystem. An
illustrative example is Stackage and Cabal/Hackage, two Haskell-based ecosystems, contrasted
strongly with each other in compatibility and curation; participants rated these values as much
more important in Stackage than in Hackage/Cabal. Stackage was also rated markedly lower in
rapid access than all other ecosystems. These values are consistent with the stated goals of Stack-
age (“to create stable builds of complete package sets”). Stackage is built on top of Cabal for the
express purpose of curating compatible sets of versions, while Hackage submissions only require
that they be submitted by a developer whose identity has been manually vetted (Table 9(e)). Volun-
teer curators wait until a set of consistent package versions can be assembled and release them as

ACM Transactions on Software Engineering and Methodology, Vol. 30, No. 4, Article 42. Pub. date: July 2021.

When and How to Make Breaking Changes 42:39

Table 10. Values Most Commonly Rated Highest, by Ecosystem

Consensus in %
Ecosystem Top 3 values C1 C2 C3
Haskell/Stack compatibility > replicability > curation 75 55 45
Perl/CPAN stability > replicability > quality 64 40 31
Maven replicability > stability > quality 64 38 32
Lua/Luarocks fun > replicability > quality 64 35 17
Ecilpse stability > compatibility > quality 62 48 37
NuGet replicability > compatibility > stability 59 37 20
Go quality > stability > fun 56 37 19
R/Bioconductor replicability > quality > compatibility 52 32 26
CocoaPods quality > stability > compatibility 52 30 17
Rust/Cargo replicability > stability > community 51 31 23
PHP/Packagist quality > stability > compatibility 50 32 23
Node/NPM rapid.access > community > innovation 50 24 15
Atom rapid.access > fun > openness 50 26 17
Erlang quality > fun > stability 46 24 18
Haskell/Cabal quality > innovation > replicability 43 17 8
Python replicability > quality > stability 42 20 14
Ruby fun = community = rapid.access 41 18 12
R/CRAN replicability > compatibility > innovation 36 20 8

Consensus Cn is the percent of respondents in each ecosystem who did not rate any value higher

than any of the ecosystem’s highest n values. Top three values are listed for each ecosysem; >

indicates relative popularity of the values; = indicates ties.

a unit, trading rapid release for tested compatibility. The Stackage/Hackage choice is controversial
in the Haskell community, which may make their perceived differences in values and practices
more visible.

A few more examples include:

• Maven is primarily a build tool that comes with a centralized hosting platform for Java
packages and was not designed as a collaborative platform. This purpose is reflected in
strongly valuing replicability but least valuing community, openness, or fun.

• Bioconductor is a platform for scientific computation (specifically, analysis of genomic data
in molecular biology) where replicability of research results is a key asset, but commerce is
clearly not a focus.

• Lua is widely used as an embedded scripting language for games; prior work has
shown that the culture of game developers is significantly different from that of appli-
cation developers [58]; for example, game development communities value creativity and
communication with designers over rigid specifications, which makes extensive automated
testing impractical.

Others, like R/CRAN, have markedly less consensus, at least regarding the set of values that we
surveyed.

Some, but not all, practice differences can be explained by enforced policies or design choices
in platform tools. For example, Node.js/npm sets a version range for dependencies by default
when a dependency is added (Figure 4(i)), Bioconductor and the core packages of Eclipse have a

ACM Transactions on Software Engineering and Methodology, Vol. 30, No. 4, Article 42. Pub. date: July 2021.

42:40 C. Bogart et al.

synchronized, central release (Figure 3(i) and (j), Table 9(f)), and Bioconductor and CRAN require
reviews before packages are included in the repository (Figure 3(k), Table 9(e)). Some practices
are supported by optional tooling in the ecosystem, such as tools to create notifications on depen-
dency updates in the Node.js and Ruby community (Figure 4(i); e.g., gemnasium and greenkeeper.io).
Other practices seem to be mere community conventions—for example, providing change logs is
encouraged in the documentation of CPAN but not enforced, yet the practice is apparently univer-
sal (Figure 3(e)).

Interestingly, there are some cases of practices with surprisingly little consensus in some ecosys-
tems given what we know about tools and policies in that ecosystem. For example, 26.6% of Node.js
respondents indicated that a “package has to a meet strict standards to be accepted into the repos-
itory” (Figure 3(k)), even though that community’s npm repository does not have any such checks
(Table 9(e)) and in fact contains many junk packages. It may be that ecosystem members are
not aware of the design space and what practices other ecosystems employ, so they have a bi-
ased interpretation of what a “strict standard” is. Alternatively, participants may be members
in subcommunities with contrasting values and practices. For example, there may be vetting of
revisions among the developers within a specific project or subcommunity that is also hosted on
npm.

The role of roles. We wanted to explore the possibility that survey respondents’ differences in
perceived values and practices may be explained by the role of a respondent in their ecosystem.
The ecosystem may appear different depending on one’s responsibilities and perspective. The sur-
vey asked people what their role was in the ecosystem: choices were user, committer, submitter,
package lead, central package lead (a.k.a. lead+), and founder. We analyzed how core (lead+ and
founder) roles differed from the rest within each ecosystem. We suspected that core and peripheral
ecosystem participants may have different values, but we found little evidence that that was the
case. We tested their ratings on the perceptions of all 11 values and found that only for one value,
replicability, was there a statistically significant difference (t-test, p=0.044, n=1,504); however, this
difference was small (an average rating 3.5 out of 5 for core, 3.68 for non-core, thus a difference
of 0.18 scale points), and there was no evidence that value perceptions differed for other values
(t-test, p between .13 and .73, n ranging from 1,492 to 1,504).

Core people seemed to be more enmeshed in the community than the other roles, in the sense
that they were more likely to collaborate with upstream packages (χ 2 (1, N=932) = 16.571, p <
.0001; 21% more likely to answer yes to the question, “In the last 6 months I have participated
in discussions, or made bug/feature requests, or worked on development of another package
in <ecosystem> that one of my packages depends on.”) have downstream dependencies (χ 2(1,
N=925) = 24.132 p < .0001, 18% more likely to answer yes to the question, “Have you contributed
code to an upstream dependency of one of your packages in the last 6 months (one where you’re
not the primary developer)?”), and claim to know their users’ needs (χ 2(1, N=932) = 62.947 p <
.0001, 29% more likely to answer “Strongly” or “Somewhat agree” to the question, “I know what
changes users of <package> want”). People in core roles felt very slightly more confident in their
answers to the community values questions, (χ 2(1,N=932) = 6.2247 p <.05, 8% more likely to an-
swer “Confident” or “Very confident” to the question “How confident are you in your ratings
of the values of <ecosystem> above?”); this difference was statistically significant, but not very
large.

In short, there are a few features that distinguish core community members from the rest, but
they seem to be culturally a part of their communities in that they perceive its values to be the
same.

ACM Transactions on Software Engineering and Methodology, Vol. 30, No. 4, Article 42. Pub. date: July 2021.

When and How to Make Breaking Changes 42:41

Summary of RQ2.2 results: Ecosystems tend to have many of the same values but distinguish
themselves by virtue of a few distinctive values strongly related to their purpose and audience.
Consensus in practices is largely, but not entirely, driven by the affordances of shared tooling
and the policies that they enforce or encourage. Core and peripheral members of the ecosystem
community share their ecosystem’s values, but core members are more collaborative in their
practices.

5.4 Study 2 Results: What Is the Relationship between Values and Practices: The Case

of Stability (RQ2.3)

One might expect that ecosystems that share similar values would adopt similar practices that
support those values, but for most practices that is not the case. We averaged each value and
practice answer within each ecosystem to get a summary for each ecosystem of mean answers
and looked for correlations between any value and any practice among columns within these
18 rows. There were few strong correlations between values and practices. Out of 418 such value-
practice comparisons, only 29 were significantly correlated (Spearman test, p<0.05); however, even
these may be due to chance: Because of the small sample size (n=18) and the large number of
comparisons, applying a Holm-Bonferroni correction rules out taking any of these correlations as
conclusive.

The fact that practices are not universally associated with particular values implies that the
same value can be associated with the adoption of different practices. For example, of the prac-
tices shown in the violin plots above,24 only one, the perception of the ecosystem’s use of exact
version numbers to refer to dependencies (Figure 4(i), choice E), significantly correlated with the
perceived value of stability to the ecosystem (Spearman correlation of mean answers within each
ecosystem : ρ = 0.506,p < .05,n = 18 ecosystems). We investigate further this relationship with
a comparison of the practices associated with stability in three ecosystems that had high ratings
and high consensus for stability: Eclipse, Perl, and Rust (Figure 2 and Table 10). Our survey re-
sults indicate that these ecosystems achieved stability with different, sometimes nearly opposite,
practices.

• Eclipse: stability through strict standards and gatekeeping. Eclipse’s leadership very strongly
promotes stable plugin APIs. As we mentioned earlier, official developer documentation
includes this “prime directive”: “When evolving the Component API from release to release,
do not break existing Clients” [25]. Eclipse developers rated stability higher than any other
ecosystem, and with the smallest variance in their mean ratings of stability (Figure 2), and
strong consensus that stability was the highest value (cf. Table 10).

Survey answers about practices show that Eclipse relies on gatekeeping (Figure 3(k))
and its developers claim to make design compromises to achieve backward compatibility
(Figure 3(c)); they police each others’ backward compatibility and release together when
they can be sure they will not break legacy code (Figure 3(i)); developers feel constrained
in making changes (Figure 3(b)).

• Rust: stability through dependency versioning and stability attributes. Rust, in contrast, ranked
lowest in design compromises for backward compatibility (Figure 3(c)) and rarely maintains
outdated versions, (Table 7(g)), but is high in semantic versioning (Figure 3(f)). Rust’s Cargo
infrastructure prevents the use of wildcards for dependency versions, although it allows
ranges (Figure 4(i)), which are almost universally used (93.6% of Cargo packages, Table 7(c)).

24Figures 3(b)–(k) and Figures 4(c)–(h) and (j), and the four answers of Figure 4(i) taken separately.

ACM Transactions on Software Engineering and Methodology, Vol. 30, No. 4, Article 42. Pub. date: July 2021.

42:42 C. Bogart et al.

Users were thus prodded to use older versions of dependencies, rather than letting their
tools upgrade them automatically and burdening upstream packages with bug reports when
things change. Other stability features include a “lock” file that records exact versions of
dependencies used by a version (Table 7(f)), and a feature called “stability attributes,” which
tag API elements that are guaranteed to be stable, in contrast to new features that might
change [80].

Survey results show that Rust developers acknowledged the community’s stated value
of stability (Figure 2), despite the fact that participants also perceived the ecosystem’s
packages to be in fact relatively unstable (Figure 4(b)). The Rust language developers had
been consistent in promising stability for the “stable” branch of the language, to the extent
that they test any compiler changes against the entire corpus of Rust programs they can
find on GitHub. But their analysis of their community’s 2016 user survey [79] summarized
why many users complained about instability: too many packages (“crates”) relied on un-
stable “nightly” development versions of the compiler to take advantage of interesting new
features. They concluded that “consensus formed around the need to move the ecosystem onto
the stable language and away from requiring the nightly builds of the compiler.”

• CPAN: stability through centralized testing. Finally, Perl, unlike Rust, is low in semantic ver-
sioning (Figure 3(f)), and in fact was the most likely ecosystem to claim they refer to depen-
dencies by name only, not version number (Figure 4(i)). They indicate some gatekeeping
and design compromises but not to the extent of Eclipse (Figure 3(c) and (k)). However,
in response to the open-ended question about what other values were not covered by the
survey, 12 (40%) of 30 Perl/CPAN participants who gave comments mentioned testability,25

many referring to Perl’s extensive battery of tests run on CPAN packages by volunteers;
one explicitly claimed this test facility helped with the stability of Perl packages. CPAN
stages changes and releases packages together (Table 9(f)), almost entirely specifying fixed
version numbers of their dependencies (Table 7(a)). A Haskell/Hackage participant men-
tioned CPAN’s kwalitee metric, an operationalization of quality employed by these testing
facilities, and attributed it to the ecosystem’s “focus on stability and compatibility.”

The three ecosystems work towards stability in very different ways. Eclipse, with its long-
standing corporate support, is able to dictate that upstream developers pay the cost of maintaining
backward compatibility; Rust/Cargo, although users clamor for stability, is eager to attract develop-
ers, and cannot impose the cost of stability by fiat as in Eclipse; instead, they apply gentle pressure
to upstream developers in various ways, while easing the pressure from downstream developers
by discouraging automatic major updates. CPAN, finally, has a large cadre of volunteers (CPAN
Testers) and built infrastructure taking on the task of thorough testing.

This comparison of stability practices demonstrates that the relationships between practices and
values are context-dependent and thus hard to generalize. A comprehensive theory incorporating
such insights is a task for future work. We hope our dataset and the questions it suggests pro-
vide a useful launching point. Contrasts revealed by the survey are ripe for further investigation:
researchers can find appropriate subjects for case studies of values being pursued in contrasting
ways, or, conversely, practices associated with contrasting values. In this case, analyzing the dif-
ferences between these three ecosystems suggests that the theory of how practices can further
values should take into account other factors, including the presence, availability, and motivations
of different kinds of developers. This should be confirmed, however, with more exhaustive study of

25Testability was not a value we surveyed, but we recommend it as a new value in an expanded list, since many survey

takers suggested it.

ACM Transactions on Software Engineering and Methodology, Vol. 30, No. 4, Article 42. Pub. date: July 2021.

When and How to Make Breaking Changes 42:43

these and other ecosystems and with other practice contrasts. Ecosystem communities dissatisfied
with their practices can themselves use it as a starting place to find alternative combinations of
practices that others are using.

Summary of RQ2.3 results: Many ecosystems have clear distinctions in a few key values
and practices. Often the consensus on important values is high; some practices are actually
enforced by policies and platform tools. However, some values, particularly quality, are nearly
universal value for software engineers with little variance among ecosystems. Breaking changes
are also generally avoided, though the strategies of how this is achieved and as how difficult it
is perceived to be depends on the specifics of the ecosystem.

6 DISCUSSION AND FUTURE WORK

Our article makes several contributions toward understanding how ecosystems go about the crit-
ical task of managing breaking changes and how those practices reflect the culture and values of
the ecosystem participants. Study 1 contributes a qualitative accounting of the very different ways
that three contrasting ecosystems manage change and how these differences relate to different
values and different ideas about which classes of participants should bear the costs. Prior work [19,
36, 67, 72] has examined particular practices for change management and noted the prevalence of
breaking changes [22, 48, 54, 90]. Our contribution is to characterize the types of change nego-
tiation practices found in three different ecosystems, show how these different sets of practices
require varying amounts of effort from different classes of ecosystem participants. We also show
how these different sets of practices reflect ecosystem values about the software, the community,
and which community needs take precedence. Study 2 builds on this, examining practices and val-
ues in a larger set of 18 ecosystems. We find that some values appear to be universal or nearly so,
within this set of ecosystems, perhaps reflecting a broader open source culture. Other values show
considerable divergence, which appears to be a substantial component of ecosystems’ distinctive
“personalities.” Within ecosystems, some values appear to reflect a consensus among participants,
while views of others are highly variable, perhaps reflecting diverse views of subsets of projects
or individuals, rather than ecosystem-wide values. We also show that the relationship between
practices and values is not simple, and we illustrate the apparent nature of such relationships
by contrasting the very different practices that several ecosystems employ in pursuit of stability,
which all of them value highly.

In the following subsections, we outline new and interesting research questions brought to light
by this work.

6.1 When Are Practices in Conflict or Complementary?

It seems highly unlikely that practices can be treated as independent of one another. If an ecosys-
tem is considering adopting a new practice, e.g., to enhance stability, the outcome of trying to
implement various stability-enhancing practices is likely to be contingent on the set of other prac-
tices already in place. For example, introducing semantic versioning to signal breaking changes
would not make sense where snapshot consistency (current versions of everything must be com-
patible) is already enforced. Complementarity is the other side of the coin: Certain practices may
be more effective if certain other practices are adopted as well. For example, centralized testing is
likely to be more effective where an ecosystem has a repository with strong gatekeeping mecha-
nism, and a norm that dissuades developers from using alternative repositories.

We suspect that many conflicts and complementarities among practices are much more subtle,
and greater insight into these relations among practices would be very helpful to clarifying feasible

ACM Transactions on Software Engineering and Methodology, Vol. 30, No. 4, Article 42. Pub. date: July 2021.

42:44 C. Bogart et al.

paths for achieving ecosystem goals. Our survey data contains many starting points for investiga-
tions; for example, by allowing researchers to identify ecosystems with various combinations of
values and practices as targets for further exploration.

6.2 Assimilation or Ecosystem Selection?

Our survey indicates that developers’ personal values usually align well with the values of ecosys-
tems (Figure 2) in which they operate. Understanding how this alignment comes about would
help to predict the outcome of attempted interventions and design interventions more likely to be
effective. There are at least two major possibilities. Developers may join ecosystems for reasons
unrelated to values, e.g., the application domain or technical characteristics of the software. Being
exposed to the ecosystem values, they may then assimilate over time, adapting their behavior and
personal values to what they experience around them. However, the alignment may come about
primarily through value-based selection, where developers join ecosystems because they resonate
with the system’s values.

These two possibilities will often carry different implications for interventions. If developers
tend to assimilate the ecosystem’s values, an existing community might be steered toward dif-
ferent practices and expect that developers will adapt over time. In contrast, if developers pick
ecosystems based on compatible values, then this would likely mean that substantial changes
would attract new value-aligned developers but risk significant disruption if long-term contrib-
utors rebel or leave. While one might expect some degree of both selection and assimilation, un-
derstanding which values and practices are more easily adapted, and which tend to be resistant to
change, could be a big help in designing effective interventions.

Our survey data does not provide insights into causation, but it can provide starting points for
further investigations and can be combined with external data to approach the questions. We took
a small step in this direction to illustrate some of the possibilities. If developers tend to assim-
ilate practices and values from those around them, we would expect values and practices to be
shared more among ecosystems with relatively large overlap of participating developers than in
those with a relatively small overlap. As a preliminary study, we investigated whether ecosystems
that share many developers26 have similar practices or values. Over all pairs of ecosystems, we
found a sizable correlation between similarity of average responses on ecosystem practice ques-
tions (those depicted in Figures 3 and 4), and overlap in committers to those ecosystems (Spearman
ρ = 0.341,p < .00001,n = 289 pairs of ecosystems, correlating average perceived ecosystem value
for each pair of ecosystems with developer overlap between them). Interestingly, perceived val-
ues of the ecosystem do not seem to align with developer overlap (ρ = −0.05,p = 0.44,n = 289,
correlating average personal value for each pair of ecosystems with developer overlap between
them).

While a number of interpretations of these relationships are possible, the data are consistent
with the idea that practices diffuse among ecosystems that have large developer overlap, but values
do not. Future work using time series data about developer overlap and historic participation in
ecosystems would allow researchers to identify specific developers that moved to ecosystems with
different or similar practices and values (according to our survey data) and use interviews, surveys,
or data mining to see if and how their behavior changed.

26To measure developer overlap, we assembled a list of all packages in each ecosystem from libraries.io, Cargo.io, and

LuaRocks.com, and we identified Eclipse plugins as non-fork packages in GitHub containing a “plugin.xml” file. Using

the authors of commits to those packages’ github projects as archived by Mockus [57], we counted what percent of each

ecosystem’s contributors also contributed to each other ecosystem. We excluded Bioconductor, because we had no clear

mapping to GitHub repositories.

ACM Transactions on Software Engineering and Methodology, Vol. 30, No. 4, Article 42. Pub. date: July 2021.

When and How to Make Breaking Changes 42:45

6.3 When Are Attempted Changes Broadly Adopted?

Collecting cases of effective and ineffective past changes in ecosystems can help to understand the
conditions that favor broadly adopted changes. Examples of attempted policy or practices changes
can often be found through surveys. In our survey, text answers about contrasting ecosystems
often explained how practices were deliberately designed. Five Perl developers, for example, de-
scribed how an extensive centralized testing infrastructure (CPAN Testers) was added to improve
the quality and compatibility of CPAN modules. Perhaps beginning with our results and then con-
ducting new interviews or surveys, it should be possible to unearth many examples of attempted
change and to determine the outcome. A second approach could identify conflicts between values
and practices to suggest ineffective changes. In the case of Rust, for example, the high value of sta-
bility (Figure 3(a)), but also high perception of instability (Figure 4(b)) led us to investigate Rust’s
struggle, as mentioned above, to promote practices leading to stable versions of libraries despite
the community’s eagerness to innovate with new features.

In Edgar Schein’s work on organizational culture, his recommendations [70, p. 323ff] for chang-
ing an organization include strong role models for new behaviors, lowering learning anxiety, and
raising survival anxiety (i.e., making people confident that they can learn new practices and aware
that the community will fail if they do not). Elements of this advice are visible in the practices of
ecosystems that have tried to change their values. In Rust, for example, the compiler team mod-
els stability practices that packages might follow [80]. Rust’s stability attributes for packages may
reduce learning anxiety by making it easier for downstream users to create stable interfaces, and
Rust’s annual survey helps developers see each others’ agreement that there are problems with
stability.

7 CONCLUSION

While managing change has long been an important topic in software engineering, it is particularly
interesting in the context of open source ecosystems, since projects tend to be highly interdepen-
dent yet independently maintained. The variety of practices used to manage change is consider-
able, but perhaps most interestingly is what we might think of as the political dimension in the
selection of practices. Whose interests are served by the adoption of one set of practices rather
than others? How are the costs (primarily effort) distributed over types of ecosystem participants?
What values to these practices actually serve?

We have attempted to provide a somewhat detailed description of practices used in three ecosys-
tems, as well as a broader characterization of 18 ecosystems. We believe these studies just scratch
the surface, however, and much work remains to be done in understanding how practices fit with
values, and with each other, and how effective changes can be made to address ecosystem weak-
nesses. We hope through this work, and through the data we are making publicly available, to
have contributed to a better understanding of these issues.

APPENDICES

A STUDY 1 INTERVIEW PROTOCOL

The following lists the questions from our interview script. We did not ask each question to each
interviewee, but instead we directed them towards areas where they had personal experience.
Given our iterative approach, some questions in this script were added or modified after earlier
interviews.

For maintainers of upstream packages:

• Why do you work on <package1>?
• Do you have any plan or strategy for how the interface of <package1>will evolve as people

come to depend on it?

ACM Transactions on Software Engineering and Methodology, Vol. 30, No. 4, Article 42. Pub. date: July 2021.

42:46 C. Bogart et al.

• Think about a recent larger change in your project. Was it backward-compatible? What
impact did you expect it would have on packages that depend on <package1>?

• Follow up: Did you consider alternative ways of making <change1> that would have more
or less impact on users of <package1>?

• Follow up: If you had not made <change1>, what would have happened differently for
<package1>’s future?

• Follow up: What is your position on backward compatibility?
• Does the platform help/hinder you in evolution decisions as in <change1>? What if the

platform had mechanism <alternative mechanism>?

For developers with upstream dependencies:

• Why do you work on <package1>?
• If there’s a useful looking package that claims to provide some functionality you need, how

do you decide whether to adopt it?
• What’s your general strategy for choosing which version of a package to depend on?
• When do you think it’s reasonable and expected for a package to change its interface?
• Do you prefer a stable but stale or a rapidly evolving but unstable dependency? What rate

of interface change is too often?
• Is it a burden to have too many dependencies for a project?
• Can you give an example of a package you’ve considered, and felt like its stability was a

consideration (positively or negatively)?
• How do you keep up with changes to packages you depend on?
• When <change1> happened in <upstream package1>, how did you first find out about it?
• Are you ever watching for development activity between releases?
• Are you using the Github notification mechanism and why/why not?
• If you could have an ideal notification system to get important changes: What would such

system look like, what changes would it notify you about?
• Did you think <change1> was an appropriate change, or should they have left it alone?

For developers having experience working on the platform, we asked questions about specific
policies, their intentions, and their consequences. Here are some example questions about CRAN:

• CRAN differs from some other repositories in that it asks package authors to notify reverse
dependency packages before submitting an update that breaks its API.
—Was there anything specific that precipitated that policy?
—Did you consider other options for solving the problem? What were the tradeoffs you

thought about?
—How successful has that policy been so far?

• More generally, CRAN has stricter requirements for authors than some other package repos-
itories do. What factors does the CRAN team take into consideration when deciding if a
quality standard is worth the effort of instituting and enforcing?

• Bioconductor does coordinated releases of all the packages at once, while CRAN lets pack-
ages update on their own schedule.
—How and why did the two repositories end up having different policies?
—What have been the consequences for the two repositories?
—Will they likely stay that way?

• CRAN makes it easy to install only the latest version of a package; some repositories let
users install old versions. Why is it done that way?

ACM Transactions on Software Engineering and Methodology, Vol. 30, No. 4, Article 42. Pub. date: July 2021.

When and How to Make Breaking Changes 42:47

• CRAN has more permissive expectations about version number changes than some plat-
forms. Has the current system been sufficient, or have you considered altering the policies
about numbering?

• Can you tell me something about how potential breaking changes are handled among the
developers of the base and recommended packages?
—How do developers communicate to coordinate and synchronize changes?
—Does it work differently for base and recommended than among ordinary packages in the

CRAN repository?

B STUDY 2 SURVEY QUESTIONS

For transparency and replicability, we list all evaluated questions of the survey including their ex-
act phrasing. We exclude a small number of questions about power structures, community health,
and motivation that we have not used in this article.

Part I: Ecosystem.

• Please choose ONE software ecosystem* in which you publish a package**. If you don’t
publish any packages, then pick an ecosystem whose packages you use.
“Software ecosystem” = a community of people using and developing packages that can
depend on each other, using some shared language or platform
* “Package”: A distributable, separately maintained unit of software. Some ecosystems have
other names for them, such as “libraries,” “modules,” “crates,” “cocoapods,” “rocks,” or
“goodies,” but we’ll use “package” for consistency.
[selection or textfield, substituted for <ecosystem> in remainder of survey]

Ecosystem Role.

• Check the statement that best describes your role in this ecosystem.
—I’m a founder or core contributor to <ecosystem> (i.e., its language, platform, or

repository).
—I’m a lead maintainer of a commonly-used package in <ecosystem>.
—I’m a lead maintainer of at least one package in <ecosystem>.
—I have commit access to at least one package in <ecosystem>.
—I have submitted a patch or pull request to a package in <ecosystem>.
—I have used packages from <ecosystem> for code or scripts I’ve written.

• About how many years have you been using <ecosystem> in any way?
—< 1 year
—1–2 years
—2–5 years
—5–10 years
—10–20 years
—> 20 years

Ecosystem values.

• How important do you think the following values are to the <ecosystem> community? (Not
to you personally; we’ll ask that separately.) [See Section 3.3.2 for the 11 value questions;
results shown in Figure 2.]

• How confident are you in your ratings of the values of <ecosystem> above?
—Not confident
—Slightly confident

ACM Transactions on Software Engineering and Methodology, Vol. 30, No. 4, Article 42. Pub. date: July 2021.

42:48 C. Bogart et al.

—Confident
—Very confident

• Is there some other value the <ecosystem> community emphasizes that was not asked
above? If so, describe it here:

Part II: Package.

• In the following, we are going to ask about your experience working on one particular
package. Please think of one package in <ecosystem> you have contributed to recently
and are most familiar with. If you haven’t contributed to a package in <ecosystem>, then
name some software you’ve written that relies on packages in <ecosystem> packages. You
may use a pseudonym for it if you are concerned about keeping your responses anonymous.
— [text fields, substituted for <package> in remainder of survey]

• Do you submit the package you chose to a/the repository associated with <ecosystem>?
(Choose “no” if the ecosystem does not have its own central repository.) — [yes/no]

• Is there any software maintained by other people that depends on the package you chose?
— [yes/no]

• Is the package you chose installed by default as part of a standard basic set of packages or
platform tools? — [yes/no]

• How important are each of these values in development of <package> to you personally?
[See Section 3.3.2 for the 11 value questions.]

• (OPTIONAL) Is there some other value important to you personally for <package> which
was not mentioned? — [text fields]

• How often do you face breaking changes from any upstream dependencies (that require
rework in <package>)? [Results shown in Figure 4(a).]

—Never
—Less than once a year
—Several times a year
—Several times a month
—Several times a week
—Several times a day

• How often do you make breaking changes to <package>? (i.e., changes that might re-
quire end-users or downstream packages to change their code) — [frequency scale as
above][Results shown in Figure 3(a).]

Making changes to <package>.

• I feel constrained not to make too many changes to <package> because of
• potential impact on users. [Results shown in Figure 3(b).]

—Strongly agree
—Somewhat agree
—Neither agree nor disagree
—Somewhat disagree
—Strongly disagree
—I don’t know

• I know what changes users of <package> want. — [agreement+don’t know scale as above]
• If I have multiple breaking changes to make to <package>, I try to batch them up into a

single release. — [agreement+don’t know scale as above][Results shown in Figure 3(d).]

• I release <package> on a fixed schedule, which <package> users are aware of. — [agree-
ment+don’t know scale as above][Results shown in Figure 3(j).]

ACM Transactions on Software Engineering and Methodology, Vol. 30, No. 4, Article 42. Pub. date: July 2021.

When and How to Make Breaking Changes 42:49

• Releases of <package> are coordinated or synchronized with releases of packages by other
authors. — [agreement+don’t know scale as above][Results shown in Figure 3(i).]

• When working on <package>, I make technical compromises to maintain backward
compatibility for users. — [agreement+don’t know scale as above][Results shown in

Figure 3(c).]

• When working on <package>, I often spend extra time working on extra code aimed
at backward compatibility. (e.g., maintaining deprecated or outdated methods) — [agree-
ment+don’t know scale as above]

• When working on <package>, I spend extra time backporting changes, i.e., making similar
fixes to prior releases of the code, for backward compatibility. — [agreement+don’t know
scale as above]

Releasing Packages.

• A large part of the community releases updates/revisions to packages together at the same
time. — [agreement+don’t know scale as above]

• A package has to a meet strict standards to be accepted into the repository. — [agree-
ment+don’t know scale as above][Results shown in Figure 3(k).]

• Most packages in <ecosystem> will sometimes have small updates without changing the
version number at all. — [agreement+don’t know scale as above]

• Most packages in <ecosystem> with version greater than 1.0.0 increment the leftmost digit
of the version number if the change might break downstream code. — [agreement+don’t
know scale as above]

• I sometimes release small updates of <package> to users without changing the version
number at all. — [agreement scale, without “don’t know”][Results shown in Figure 3(g).]

• For my packages whose version is greater than 1.0.0, I always increment the leftmost
digit if a change might break downstream code (semantic versioning). — [agreement as
above][Results shown in Figure 3(f).]

• When making a change to <package>, I usually write up an explanation of what changed
and why (a change log). — [agreement as above][Results shown in Figure 3(e).]

• When working on <package>, I usually communicate with users before performing
a change, to get feedback or alert them to the upcoming change. — [agreement as
above][Results shown in Figure 3(h).]

• When making a breaking change on <package>, I usually create a migration guide to ex-
plain how to upgrade. — [agreement as above]

• After making a breaking change to <package>, I usually assist one or more users indi-
vidually to upgrade. (e.g., reaching out to affected users, submitting patches/pull requests,
offering help) — [agreement as above]

Part IV: Dependencies.

• In the last 6 months I have participated in discussions, or made bug/feature requests, or
worked on development of another package in <ecosystem> that one of my packages de-
pends on. — [yes/no]

• Have you contributed code to an upstream dependency of one of your packages in the last
6 months (one where you’re not the primary developer)? — [yes/no]

• About how often do you communicate with developers of packages you depend on (e.g.,
participating in mailing lists, conferences, Twitter conversations, filing bug reports or fea-
ture requests, etc.)? — [frequency scale, as above][Results shown in Figure 4(f).]

ACM Transactions on Software Engineering and Methodology, Vol. 30, No. 4, Article 42. Pub. date: July 2021.

42:50 C. Bogart et al.

For most dependencies that my packages rely on, the way I typically become aware of a change
to the dependency that might break my package is:

• I read about it in the dependency project’s internal media (e.g., dev mailing lists, not general
public announcements) — [agreement scale, as above]

• I read about it in the dependency project’s external media (e.g., a general announcement
list, blog, Twitter, etc) — [agreement scale, as above]

• A developer typically contacts me personally to bring the change to my attention — [agree-
ment scale, as above][Results shown in Figure 4(e).]

• Typically I get a notification from a tool when a new version of the dependency is likely to
break my package — [agreement scale, as above][Results shown in Figure 4(f).]

• Typically, I find out that a dependency changed because something breaks when I try to
build my package. — [agreement scale, as above][Results shown in Figure 4(g).]

• How do you typically declare the version numbers of packages that <package> depends —
[Results shown in Figure 4(i).]

—I specify an exact version number
—I specify a range of version numbers, e.g., 3.x.x, or [2.1 through 2.4]
—I specify just a package name and always get the newest version
—I specify a range or just the name, but I take a snapshot of dependencies (e.g., shrinkwrap,

packrat)
• What is the common practice in <ecosystem> for declaring version numbers of dependen-

cies? — [same scale as previous + “don’t know”]

Using or avoiding dependencies.

• When adding a dependency to <package>, I usually do significant research to assess
the quality of the package or its maintainers, before relying on a package that seems
to provide the functionality I need. — [agreement scale, as above][Results shown in

Figure 4(d).]

• It’s only worth adding a dependency if it adds a substantial amount of value. — [agreement
scale, as above][Results shown in Figure 4(c).]

• I often choose NOT to update <package> to use the latest version of its dependencies. —
[agreement scale, as above][Results shown in Figure 4(h).]

• When adding a dependency, I usually create an abstraction layer (i.e., facade, wrapper, shim)
to protect internals of my code from changes. — [agreement scale, as above]

• When working on <package>, I often copy or rewrite segments of code from other packages
into my package, to avoid creating a new dependency. — [agreement scale, as above]

• When working on <package>, I must expend substantial effort to find versions of all my
dependencies that will work together. — [agreement scale, as above]

• (OPTIONAL) Compare <ecosystem> with other ecosystems you’ve used or heard about –
does one have some features that the other should adopt? If so, name the other ecosystem(s)
and describe the feature(s). — [text field]

• (OPTIONAL) Why do you think people chose to design these other ecosystem(s) differently
from <ecosystem>? — [text field]

Part V: Demographics and motivations.

• Age
—18–24
—25–34

ACM Transactions on Software Engineering and Methodology, Vol. 30, No. 4, Article 42. Pub. date: July 2021.

When and How to Make Breaking Changes 42:51

—35–44
—45–54
—55–64
—65+

• Gender — [male/female/other]
• Formal computer science education/training

—None
—Coursework
—Degree

• How many years have you been contributing to open source? (in any way, including writ-
ing code, documentation, engaging in discussions, etc) — [same time scale as “years used
ecosystem” above]

• How many years have you been developing or maintaining software? — [same as previous]
• (OPTIONAL) Is there anything else we should have asked, that would help us better under-

stand your experience with community values and breaking changes in <ecosystem> If so,
tell us about it: — [text field]

C SUGGESTED SET OF VALUES FOR FUTURE STUDIES

We propose the following list of values that appear to distinguish software ecosystems. They are
derived from Study 1 results plus examination of ecosystem webpages, then modified based on
survey results, adding values that were suggested by survey respondents (Standardization, Tech-
nical Diversity, Usability, and Social Benevolence), and removing one that does not distinguish
meaningfully among developers or ecosystems (Quality).

• Stability: Backward compatibility, allowing seamless updates (“do not break existing
clients”).

• Innovation: Innovation through fast and potentially disruptive changes.
• Replicability: Long-term archival of current and historic versions with guaranteed integrity,

such that exact behavior of code can be replicated.
• Compatibility: Protecting downstream developers and end-users from struggling to find a

compatible set of versions of different packages.
• Rapid Access: Getting package changes through to end-users quickly after their release (“no

delays”).
• Commerce: Helping professionals build commercial software.
• Community: Collaboration and communication among developers.
• Openness and Fairness: ensuring that everyone in the community has a say in decision-

making and the community’s direction.
• Curation: Selecting a set of consistent, compatible packages that cover users’ needs.
• Fun and personal growth: Providing a good experience for package developers and users.
• Standardization: Promote standard tools and practices, limiting developers choice to save

them time and effort.
• Technical Diversity: Allowing developers freedom to develop and interact in a diversity of

ways.
• Usability: Ensuring that tools and libraries are easy for developers to use; ensuring resulting

software is easy for end-users to use.
• Social Benevolence: An ethical community empowering others by making software and other

resources available.

ACM Transactions on Software Engineering and Methodology, Vol. 30, No. 4, Article 42. Pub. date: July 2021.

42:52 C. Bogart et al.

D LOCK FILE NAMES IN EACH ECOSYSTEM

Table 11. Lock Files Counted in Different Ecosystems

Ecosystem Lock file Notes

Atom (plugins) package-lock.json,
npm-shinkwrap.

json

(see Node.js/NPM below)

CocoaPods podfile.lock

Eclipse (plugins) N/A This function would be done within the project’s
regular metadata files (plugin.xml and pom.xml)
and so could not be measured readily with this

technique

Erlang,Elixir/Hex mix.lock

Go GoPkg.lock,
vendor/

Preceding the GoPkg.lock file, a canonical method
of locking down dependency versions was to simply

include a snapshot of their source code; so we
looked for a “vendor/” directory in the project.

Haskell (Cabal/Hackage) cabal.config

Haskell (Stack/Stackage) cabal.config Although possible, this was never used since
Stackage’s main distinguishing feature is to
constrain the versions of a set of packages

Lua/Luarocks N/A We could not find evidence of a canonical or even
common practice way of locking down Lua versions

Maven N/A This function would be done within the project’s
regular metadata file (pom.xml) and so could not be

measured readily with this technique

Node.js/NPM package-lock.json,
npm-shinkwrap.

json

These are both npm lockfiles with some semantic
differences;27 npm-shrinkwrap is intended to be

published; package-lock is not; however, both can
be found in GitHub projects.

NuGet project.lock.json The NuGet blog suggests saving this file to a
repository to lock in dependency versions.28

Perl/CPAN cpanfile.snapshot We could not find evidence of a canonical way to do
this in CPAN, but one recommendation was a

third-party package called Carton29 that creates this
snapshot file.

PHP/Packagist composer.lock

Python/PyPi N/A We could not find evidence of a canonical way to do
this in Pypi; a StackOverflow post suggested that

there are several nonstandard alternatives.30

R/Bioconductor packrat.lock Not canonically standard, but common and
well-known. However, it is mostly irrelevant for
Bioconductor, since a set of mutually compatible

packages are released as a unit.

R/CRAN packrat.lock Not canonically standard, but common and
well-known.

Ruby/Rubygems Gemfile.lock

Rust/Cargo Cargo.lock

27https://docs.npmjs.com/files/package-lock.json.
28https://blog.nuget.org/20181217/Enable-repeatable-package-restores-using-a-lock-file.html.
29https://metacpan.org/pod/Carton.
30https://stackoverflow.com/questions/8726207/what-are-the-python-equivalents-to-rubys-bundler-perls-

carton.

ACM Transactions on Software Engineering and Methodology, Vol. 30, No. 4, Article 42. Pub. date: July 2021.

https://docs.npmjs.com/files/package-lock.json
https://blog.nuget.org/20181217/Enable-repeatable-package-restores-using-a-lock-file.html
https://metacpan.org/pod/Carton
https://stackoverflow.com/questions/8726207/what-are-the-python-equivalents-to-rubys-bundler-perls-carton
https://stackoverflow.com/questions/8726207/what-are-the-python-equivalents-to-rubys-bundler-perls-carton

When and How to Make Breaking Changes 42:53

ACKNOWLEDGMENTS

We want to thank Audris Mockus and the WoC project at University of Tennessee, Knoxville, for
access to the WoC archive [57] for data mining, and the many people interviewed and surveyed,
and those who helped with the design and promotion of the survey.

REFERENCES

[1] Pietro Abate, Roberto DiCosmo, Ralf Treinen, and Stefano Zacchiroli. 2011. MPM: A modular package manager. In

Proceedings of the International Symposium on Component Based Software Engineering (CBSE’11). ACM Press, New

York, 179–188. DOI:https://doi.org/10.1145/2000229.2000255

[2] Rabe Abdalkareem. 2017. Reasons and drawbacks of using trivial npm packages: The developers’ perspective. In

Proceedings of the 11th Joint Meeting on Foundations of Software Engineering (ESEC/FSE’17). ACM, New York, NY,

1062–1064.

[3] Cyrille Artho, Kuniyasu Suzaki, Roberto Di Cosmo, Ralf Treinen, and Stefano Zacchiroli. 2012. Why do software

packages conflict? IEEE International Working Conference on Mining Software Repositories, 141–150.

[4] Anat Bardi and Shalom H. Schwartz. 2003. Values and behavior: Strength and structure of relations. Personal. Soc.

Psychol. Bull. 29, 10 (2003), 1207–1220.

[5] Gabriele Bavota, Gerardo Canfora, Massimiliano Di Penta, Rocco Oliveto, and Sebastiano Panichella. 2015. How the

Apache community upgrades dependencies: An evolutionary study. Empir. Softw. Eng. 20, 5 (2015), 1275–1317.

[6] Christopher Bogart, Christian Kästner, James Herbsleb, and Ferdian Thung. 2016. How to break an API: Cost negoti-

ation and community values in three software ecosystems. In Proceedings of the International Symposium Foundations

of Software Engineering (FSE’16). ACM Press, New York.

[7] Christopher Bogart, Anna Filippova, James Herbsleb, and Christian Kastner. 2017. Culture and Breaking Change: A

Survey of Values and Practices in 18 Open Source Software Ecosystems. DOI:https://doi.org/10.1184/R1/5108716.v1

[8] Shawn A. Bohner and Robert S. Arnold. 1996. Software Change Impact Analysis. IEEE Computer Society Press, Los

Alamitos, CA.

[9] Virginia Braun and Victoria Clarke. 2006. Using thematic analysis in psychology. Qualit. Res. Psychol. 3, 2 (2006),

77–101. DOI:https://doi.org/10.1191/1478088706qp063oa

[10] A. Brito, L. Xavier, A. Hora, and M. T. Valente. 2018. Why and how Java developers break APIs. In Proceedings of the

IEEE 25th International Conference on Software Analysis, Evolution and Reengineering (SANER’18). 255–265.

[11] Javier Luis Cánovas Izquierdo and Jordi Cabot. 2015. Enabling the definition and enforcement of governance rules

in open source systems. Proceedings of the International Conference on Software Engineering (ICSE’15). 505–514.

DOI:https://doi.org/10.1109/ICSE.2015.184

[12] Jaepil Choi and Heli Wang. 2007. The promise of a managerial values approach to corporate philanthropy. J. Bus.

Ethics 75, 4 (2007), 345–359.

[13] Juliet Corbin and Anselm Strauss. 2014. Criteria for evaluation. In Basics of Qualitative Research: Techniques and

Procedures for Developing Grounded Theory (3rd ed.). Sage Publications, Inc.

[14] Bradley E. Cossette and Robert J. Walker. 2012. Seeking the ground truth: A retroactive study on the evolution and

migration of software libraries. In Proceedings of the International Symposium Foundations of Software Engineering

(FSE’12). ACM Press, New York, 55.

[15] John W. Creswell and J. David Creswell. 2014. Research Design: Qualitative, Quantitative, and Mixed Methods Ap-

proaches (4th ed.). Sage Publications.

[16] Mary Crossan, Daina Mazutis, and Gerard Seijts. 2013. In search of virtue: The role of virtues, values and character

strengths in ethical decision making. J. Bus. Ethics 113, 4 (2013), 567–581.

[17] Laura Dabbish, Colleen Stuart, Jason Tsay, and Jim Herbsleb. 2012. Social coding in GitHub: Transparency and col-

laboration in an open software repository. In Proceedings of the Conference on Computer Supported Cooperative Work

(CSCW’12). 1277–1286.

[18] Barthélémy Dagenais and Martin P. Robillard. 2010. Creating and evolving developer documentation: Understanding

the decisions of open source contributors. In Proceedings of the ACM International Symposium on Foundations of

Software Engineering. 127–136. DOI:https://doi.org/10.1145/1882291.1882312

[19] Cleidson R. B. de Souza and David F. Redmiles. 2008. An empirical study of software developers’ management of

dependencies and changes. In Proceedings of the International Conference on Software Engineering (ICSE’08).

[20] Cleidson R. B. De Souza and David F. Redmiles. 2009. On the roles of APIs in the coordination of collaborative software

development. Comput. Supp. Coop. Work 18, 5-6 (2009), 445–475. DOI:https://doi.org/10.1007/s10606-009-9101-3

[21] Alexandre Decan, Tom Mens, Maëlick Claes, and Philippe Grosjean. 2016. When GitHub meets CRAN: An analysis of

inter-repository package dependency problems. In Proceedings of the International Conference on Software Analysis,

Evolution, and Reengineering. 493–504. DOI:https://doi.org/10.1109/SANER.2016.12

ACM Transactions on Software Engineering and Methodology, Vol. 30, No. 4, Article 42. Pub. date: July 2021.

https://doi.org/10.1145/2000229.2000255
https://doi.org/10.1184/R1/5108716.v1
https://doi.org/10.1191/1478088706qp063oa
https://doi.org/10.1109/ICSE.2015.184
https://doi.org/10.1145/1882291.1882312
https://doi.org/10.1007/s10606-009-9101-3
https://doi.org/10.1109/SANER.2016.12

42:54 C. Bogart et al.

[22] Alexandre Decan, Tom Mens, and Maëlick Claes. 2017. An empirical comparison of dependency issues in OSS pack-

aging ecosystems. In Proceedings of the International Conference on Software Analysis, Evolution, and Reengineering

(SANER’17).

[23] Dedoose. 2016. Version 7.0.23. Web Application for Managing, Analyzing, and Presenting Qualitative and Mixed Method

Research Data. SocioCultural Research Consultants, LLC, Los Angeles, CA. Retrieved from www.dedoose.com

[24] Jim des Rivières. 2005. API First. Retrieved from http://www.eclipsecon.org/2005/presentations/EclipseCon2005_12.

2APIFirst.pdf.

[25] Jim des Rivières. 2007. Evolving Java-based APIs. Retrieved from https://wiki.eclipse.org/Evolving_Java-based_APIs.

[26] Jens Dietrich, David J. Pearce, Jacob Stringer, and Kelly Blincoe. 2019. Dependency versioning in the wild. In Proceed-

ings of the Conference on Mining Software Repositories (MSR’19). 349–359. DOI:https://doi.org/10.1109/MSR.2019.00061

[27] Don A. Dillman, Jolene D. Smyth, and Leah Melani Christian. 2014. Internet, Phone, Mail, and Mixed-mode Surveys:

The Tailored Design Method. John Wiley & Sons.

[28] Alexander Eck. 2018. Coordination across open source software communities: Findings from the rails ecosystem. In

Tagungsband Multikonferenz Wirtschaftsinformatik (MKWI’18). 109–120.

[29] Stephen G. Eick, Todd L. Graves, Alan F. Karr, J. S. Marron, and Audris Mockus. 2001. Does code decay? Assessing

the evidence from change management data. IEEE Trans. Softw. Eng. 27, 1 (Jan. 2001), 1–12. DOI:https://doi.org/10.

1109/32.895984

[30] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. 1995. Design Patterns: Elements of Reusable Object-

Oriented Software. Addison-Wesley, Boston, MA.

[31] R. Stuart Geiger. 2017. Summary analysis of the 2017 GitHub open source survey. CoRR abs/1706.02777 (2017).

[32] Gemnasium. 2017. Gemnasium. Retrieved on 28 April, 2021 from https://web.archive.org/web/20180324121439/https:

//gemnasium.com/.

[33] Mohammad Gharehyazie, Baishakhi Ray, and Vladimir Filkov. 2017. Some from here, some from there: Cross-project

code reuse in GitHub. In Proceedings of the IEEE International Working Conference on Mining Software Repositories.

291–301. DOI:https://doi.org/10.1109/MSR.2017.15

[34] GitHub, Inc. 2017. Open Source Survey 2017. Retrieved from http://opensourcesurvey.org/2017/ on 4/28/2021.

[35] The Neighbourhoodie Software GmbH. 2017. Greenkeeper.io. Retrieved on 28 April, 2021 from https://web.archive.

org/web/20180224075015/https://greenkeeper.io/.

[36] Johannes Henkel and Amer Diwan. 2005. CatchUp!: Capturing and replaying refactorings to support API evolu-

tion. In Proceedings of the International Conference on Software Engineering (ICSE’05). ACM Press, New York, 274–

283.

[37] Steven Hitlin and Jane Allyn Piliavin. 2004. Values: Reviving a dormant concept. Ann. Rev. Sociol. 30, 1 (2004), 359–393.

[38] Reid Holmes and Robert J. Walker. 2010. Customized awareness: Recommending relevant external change events.

In Proceedings of the International Conference on Software Engineering (ICSE’10). ACM Press, New York, 465–474.

DOI:https://doi.org/10.1145/1806799.1806867

[39] Daqing Hou and Xiaojia Yao. 2011. Exploring the intent behind API evolution: A case study. In Proceedings of the

Working Conference on Reverse Engineering (WCRE’11). IEEE Computer Society, Los Alamitos, CA, 131–140.

[40] Marco Iansiti and Roy Levien. 2004. The Keystone Advantage: What the New Dynamics of Business Ecosystems Mean

for Strategy, Innovation, and Sustainability. Harvard Business Press, Boston, MA.

[41] Javier Luis Cánovas Izquierdo and Jordi Cabot. 2015. Enabling the definition and enforcement of governance rules in

open source systems. In Proceedings of the International Conference on Software Engineering (ICSE’15). IEEE, 505–514.

[42] Steven J. Jackson, David Ribes, Ayse G. Buyuktur, and Geoffrey C. Bowker. 2011. Collaborative rhythm: Temporal

dissonance and alignment in collaborative scientific work. In Proceedings of the Conference on Computer Supported

Cooperative Work (CSCW’11). 245–254.

[43] Slinger Jansen and Michael A. Cusumano. 2013. Defining software ecosystems: A survey of software platforms and

business network governance. In Software Ecosystems: Analyzing and Managing Business Networks in the Software

Industry. Edward Elgar Publishing.

[44] Puneet Kapur, Brad Cossette, and Robert J. Walker. 2010. Refactoring references for library migration. In Proceedings

of the International Conference on Object-oriented Programming, Systems, Languages and Applications (OOPSLA’10).

ACM Press, New York, 726–738. DOI:https://doi.org/10.1145/1869459.1869518

[45] Smitha Keertipati, Sherlock A. Licorish, and Bastin Tony Roy Savarimuthu. 2016. Exploring decision-making pro-

cesses in Python. In Proceedings of the International Conference on Evaluation and Assessment in Software Engineering.

ACM, 43.

[46] Riivo Kikas, Georgios Gousios, Marlon Dumas, and Dietmar Pfahl. 2017. Structure and evolution of package depen-

dency networks. In Proceedings of the 14th International Conference on Mining Software Repositories (MSR’17). IEEE

Press, Piscataway, NJ, 102–112.

ACM Transactions on Software Engineering and Methodology, Vol. 30, No. 4, Article 42. Pub. date: July 2021.

www.dedoose.com
http://www.eclipsecon.org/2005/presentations/EclipseCon2005_12.2APIFirst.pdf
http://www.eclipsecon.org/2005/presentations/EclipseCon2005_12.2APIFirst.pdf
https://wiki.eclipse.org/Evolving_Java-based_APIs
https://doi.org/10.1109/MSR.2019.00061
https://doi.org/10.1109/32.895984
https://doi.org/10.1109/32.895984
https://web.archive.org/web/20180324121439/https://gemnasium.com/
https://web.archive.org/web/20180324121439/https://gemnasium.com/
https://doi.org/10.1109/MSR.2017.15
http://opensourcesurvey.org/2017/
https://web.archive.org/web/20180224075015/https://greenkeeper.io/
https://web.archive.org/web/20180224075015/https://greenkeeper.io/
https://doi.org/10.1145/1806799.1806867
https://doi.org/10.1145/1869459.1869518

When and How to Make Breaking Changes 42:55

[47] Daniel Le Berre and Pascal Rapicault. 2009. Dependency management for the eclipse ecosystem: Eclipse P2, meta-

data and resolution. In Proceedings of the International Workshop on Open Component Ecosystems (IWOCE’09). 21–30.

DOI:https://doi.org/10.1145/1595800.1595805

[48] Mario Linares-Vásquez, Gabriele Bavota, Carlos Bernal-Cárdenas, Massimiliano Di Penta, Rocco Oliveto, and Denys

Poshyvanyk. 2013. API change and fault proneness: A threat to the success of Android apps. In Proceedings of the

European Software Engineering Conference/Foundations of Software Engineering (ESEC/FSE’13). ACM Press, New York,

477–487.

[49] Cristina V. Lopes, Petr Maj, Pedro Martins, Vaibhav Saini, Di Yang, Jakub Zitny, Hitesh Sajnani, and Jan Vitek. 2017.

DéjàVu: A map of code duplicates on GitHub. Proc. ACM Program. Lang. 1, OOPSLA (2017), 1–28. DOI:https://doi.

org/10.1145/3133908

[50] Mircea F. Lungu. 2009. Reverse Engineering Software Ecosystems. Ph.D. Dissertation. University of Lugano.

[51] Fabio Mancinelli, Jaap Boender, Roberto Di Cosmo, Jerome Vouillon, Berke Durak, Xavier Leroy, and Ralf Treinen.

2006. Managing the complexity of large free and open source package-based software distributions. 199–208.

DOI:https://doi.org/10.1109/ASE.2006.49

[52] Konstantinos Manikas. 2016. Revisiting software ecosystems research: A longitudinal literature study. J. Syst. Softw.

117 (2016), 84–103.

[53] Michael Mattsson and Jan Bosch. 2000. Stability assessment of evolving industrial object-oriented frameworks. J.

Softw. Maint.: Res. Pract. 12, 2 (2000), 79–102.

[54] Tyler McDonnell, Baishakhi Ray, and Miryung Kim. 2013. An empirical study of API stability and adoption in the

Android ecosystem. In Proceedings of the International Conference on Software Maintenance (ICSM’13). IEEE Computer

Society, Los Alamitos, CA.

[55] T. Mens. 2016. An ecosystemic and socio-technical view on software maintenance and evolution. In Proceedings of

the IEEE International Conference on Software Maintenance and Evolution (ICSME’16). 1–8.

[56] David G. Messerschmitt, Clemens Szyperski et al. 2005. Software Ecosystem: Understanding an Indispensable Technol-

ogy and Industry. MIT Press Books.

[57] Audris Mockus. 2009. Amassing and indexing a large sample of version control systems: Towards the census of public

soruce code history. In Proceedings of the IEEE Conference on Mining Software Repositories (MSR’09).

[58] Emerson Murphy-Hill, Thomas Zimmerman, and Nachiappan Nagappan. 2014. Cowboys, ankle sprains, and keepers

of quality: How is video game development different from software development? In Proceedings of the International

Conference on Software Engineering (ICSE’14). DOI:https://doi.org/10.1145/2568225.2568226

[59] Linda Northrop, Peter Feiler, Richard P. Gabriel, John Goodenough, Rick Linger, Tom Longstaff, Rick Kazman, Mark

Klein, Douglas Schmidt, Kevin Sullivan, and Kurt Wallnau. 2006. Ultra-large-scale Systems: The Software Challenge of

the Future. Software Engineering Institute.

[60] Siobhán O’Mahony and Fabrizio Ferraro. 2007. The emergence of governance in an open source community. Acad.

Manag. J. 50, 5 (2007), 1079–1106.

[61] Jeroen Ooms. 2013. Possible directions for improving dependency versioning in R. R Journal 5, 1 (2013), 1–9.

[62] Klaus Ostermann, Paolo G. Giarrusso, Christian Kästner, and Tillmann Rendel. 2011. Revisiting information hiding:

Reflections on classical and nonclassical modularity. In Proceedings of the European Conference on Object-oriented

Programming (ECOOP’11) (Lecture Notes in Computer Science), Vol. 6813. Springer-Verlag, Berlin, 155–178.

[63] David L. Parnas. 1972. On the criteria to be used in decomposing systems into modules. Commun. ACM 15, 12 (1972),

1053–1058. DOI:https://doi.org/10.1145/361598.361623

[64] Raphael Pham, Leif Singer, Olga Liskin, Fernando Figueira Filho, and Kurt Schneider. 2013. Creating a shared under-

standing of testing culture on a social coding site. In Proceedings of the International Conference on Software Engineer-

ing (ICSE’13). IEEE Computer Society, Los Alamitos, CA, 112–121.

[65] Tom Preston-Werner. 2013. Semantic Versioning 2.0.0. Retrieved from http://semver.org.

[66] Steven Raemaekers, Arie van Deursen, and Joost Visser. 2012. Measuring software library stability through historical

version analysis. In Proceedings of the International Conference on Software Maintenance (ICSM’12). IEEE Computer

Society, Los Alamitos, CA, 378–387.

[67] Steven Raemaekers, Arie Van Deursen, and Joost Visser. 2014. Semantic versioning versus breaking changes: A study

of the Maven repository. In Proceedings of the International Working Conference on Source Code Analysis and Manip-

ulation (SCAM’14). IEEE Computer Society, Los Alamitos, CA, 215–224. DOI:https://doi.org/10.1109/SCAM.2014.30

[68] Romain Robbes, Mircea Lungu, and David Röthlisberger. 2012. How do developers react to API deprecation? The

case of a smalltalk ecosystem. In Proceedings of the International Symposium Foundations of Software Engineering

(FSE). ACM Press, New York. DOI:https://doi.org/10.1145/2393596.2393662

[69] RStudio Team. 2015. RStudio: Integrated Development for R.Technical Report. RStudio, Inc., Boston MA. Retrieved from

www.rstudio.com

ACM Transactions on Software Engineering and Methodology, Vol. 30, No. 4, Article 42. Pub. date: July 2021.

https://doi.org/10.1145/1595800.1595805
https://doi.org/10.1145/3133908
https://doi.org/10.1145/3133908
https://doi.org/10.1109/ASE.2006.49
https://doi.org/10.1145/2568225.2568226
https://doi.org/10.1145/361598.361623
http://semver.org
https://doi.org/10.1109/SCAM.2014.30
https://doi.org/10.1145/2393596.2393662
www.rstudio.com

42:56 C. Bogart et al.

[70] Edgar H. Schein and Peter Schein. 2017. Organizational Culture and Leadership (5th ed.). Wiley.

[71] Shalom H. Schwartz. 1992. Universals in the content and structure of values: Theoretical advances and empirical tests

in 20 countries. Adv. Exper. Soc. Psychol. 25 (1992), 1–65.

[72] Leif Singer, Fernando Figueira Filho, and Margaret-Anne Storey. 2014. Software engineering at the speed of light:

How developers stay current using Twitter. In Proceedings of the International Conference on Software Engineering

(ICSE’14). 211–221. DOI:https://doi.org/10.1145/2568225.2568305

[73] Ian Sommerville. 2010. Software Engineering (9th ed.). Pearson Addison Wesley.

[74] Diomidis Spinellis. 2012. Package management systems. IEEE Softw. 29, 2 (2012), 84–86.

[75] Adam Stakoviak, Andrew Thorp, and Isaac Schleuter. 2013. The Changelog. Retrieved from https://changelog.com/

101/.

[76] Peri Tarr, Harold Ossher, William Harrison, and Stanley M. Sutton, Jr.1999. N degrees of separation: Multi-

dimensional separation of concerns. In Proceedings of the International Conference on Software Engineering (ICSE’99).

IEEE Computer Society, Los Alamitos, CA, 107–119.

[77] The LibreOffice Design Team. 2017. What Open Source Means To LibreOffice Users. Retrieved from https://design.

blog.documentfoundation.org/2017/09/13/open-source-means-libreoffice-users/.

[78] The Rust Team. 2021. The Cargo Book. Retrieved on 28 April, 2021 from https://doc.rust-lang.org/cargo/faq.html#

why-do-binaries-have-cargolock-in-version-control-but-not-libraries.

[79] Jonathan Tuner. 2016. State of Rust Survey 2016. Retrieved from https://blog.rust-lang.org/2016/06/30/State-of-Rust-

Survey-2016.html.

[80] A. Turon and N. Matsakis. 2014. Stability as a Deliverable (The Rust Programming Language Blog). Retrieved from

https://blog.rust-lang.org/2014/10/30/Stability.html.

[81] Ivo van den Berk, Slinger Jansen, and Lútzen Luinenburg. 2010. Software ecosystems. In Proceedings of the European

Conference on Software Architecture (ECSA’10). 127–134. DOI:https://doi.org/10.1145/1842752.1842781

[82] Bill Venners. 2003. The Philosophy of Ruby: A Conversation with Yukihiro Matsumoto, Part I. Retrieved from http:

//www.artima.com/intv/rubyP.html.

[83] Jonathan Wareham, Paul B. Fox, and Josep Lluís Cano Giner. 2014. Technology ecosystem governance. Organiz. Sci.

25, 4 (2014), 1195–1215.

[84] Mark Weiser. 1984. Program slicing.IEEE Trans. Softw. Eng. 10, 4 (1984), 352–357.

[85] Joel West. 2003. How open is open enough?: Melding proprietary and open source platform strategies. Res. Polic. 32,

7 (2003), 1259–1285.

[86] Joel West and Siobhán O’Mahony. 2008. The role of participation architecture in growing sponsored open source

communities. Industr. Innov. 15, 2 (2008), 145–168.

[87] Hadley Wickham. 2015. Releasing a Package. O’Reilly Media, Sebastopol, CA. Retrieved from http://r-pkgs.had.co.nz/

release.html.

[88] Wei Wu, Foutse Khomh, Bram Adams, Yann Gaël Guéhéneuc, and Giuliano Antoniol. 2015. An exploratory study

of API changes and usages based on Apache and Eclipse ecosystems. Empir. Softw. Eng. (2015), 1–47. DOI:https:

//doi.org/10.1007/s10664-015-9411-7

[89] Wei Wu, Foutse Khomh, Bram Adams, Yann-Gaël Guéhéneuc, and Giuliano Antoniol. 2016. An exploratory study of

API changes and usages based on Apache and Eclipse ecosystems. Empir. Softw. Eng. 21, 6 (2016), 2366–2412.

[90] Laerte Xavier, Aline Brito, Andre Hora, and Marco Tulio Valente. 2017. Historical and impact analysis of API breaking

changes: A large-scale study. In Proceedings of the IEEE International Conference on Software Analysis, Evolution and

Reengineering (SANER’17). IEEE, 138–147.

[91] Yihui Xie. 2013. R Package Versioning. Retrieved from http://yihui.name/en/2013/06/r-package-versioning/.

[92] Robert A. Yin. 2013. Case Study Research: Design and Methods (5th ed.). Sage Publications.

Received August 2019; revised December 2020; accepted January 2021

ACM Transactions on Software Engineering and Methodology, Vol. 30, No. 4, Article 42. Pub. date: July 2021.

https://doi.org/10.1145/2568225.2568305
https://changelog.com/101/
https://changelog.com/101/
https://design.blog.documentfoundation.org/2017/09/13/open-source-means-libreoffice-users/
https://design.blog.documentfoundation.org/2017/09/13/open-source-means-libreoffice-users/
https://doc.rust-lang.org/cargo/faq.html#why-do-binaries-have-cargolock-in-version-control-but-not-libraries
https://doc.rust-lang.org/cargo/faq.html#why-do-binaries-have-cargolock-in-version-control-but-not-libraries
https://blog.rust-lang.org/2016/06/30/State-of-Rust-Survey-2016.html
https://blog.rust-lang.org/2016/06/30/State-of-Rust-Survey-2016.html
https://blog.rust-lang.org/2014/10/30/Stability.html
https://doi.org/10.1145/1842752.1842781
http://www.artima.com/intv/rubyP.html
http://www.artima.com/intv/rubyP.html
http://r-pkgs.had.co.nz/release.html
http://r-pkgs.had.co.nz/release.html
https://doi.org/10.1007/s10664-015-9411-7
https://doi.org/10.1007/s10664-015-9411-7
http://yihui.name/en/2013/06/r-package-versioning/

