Merge pull request #15 from aaronshaw/master
renaming example analysis directories
This commit is contained in:
commit
f770ade87a
Before Width: | Height: | Size: 48 KiB After Width: | Height: | Size: 48 KiB |
@ -0,0 +1,11 @@
|
||||
"article","project","timestamp","views"
|
||||
"2019–20_coronavirus_pandemic","en.wikipedia","2020033100",831879
|
||||
"2020_coronavirus_pandemic_in_India","en.wikipedia","2020033100",323123
|
||||
"2019–20_coronavirus_pandemic_by_country_and_territory","en.wikipedia","2020033100",315572
|
||||
"2020_coronavirus_pandemic_in_the_United_States","en.wikipedia","2020033100",290535
|
||||
"Coronavirus_disease_2019","en.wikipedia","2020033100",211391
|
||||
"2020_coronavirus_pandemic_in_Italy","en.wikipedia","2020033100",209908
|
||||
"Coronavirus","en.wikipedia","2020033100",188921
|
||||
"USNS_Comfort_(T-AH-20)","en.wikipedia","2020033100",150422
|
||||
"USNS_Comfort_(T-AH-20)","en.wikipedia","2020033100",150422
|
||||
"WrestleMania_36","en.wikipedia","2020033100",137637
|
|
52
wikipedia/example_analysis/pageview_example.R
Normal file
52
wikipedia/example_analysis/pageview_example.R
Normal file
@ -0,0 +1,52 @@
|
||||
### COVID-19 Digital Observatory
|
||||
### 2020-03-28
|
||||
###
|
||||
### Minimal example analysis file using pageview data
|
||||
|
||||
library(tidyverse)
|
||||
library(scales)
|
||||
|
||||
### Import and cleanup one datafile from the observatory
|
||||
|
||||
DataURL <-
|
||||
url("https://covid19.communitydata.science/datasets/wikipedia/digobs_covid19-wikipedia-enwiki_dailyviews-20200401.tsv")
|
||||
|
||||
views <-
|
||||
read.table(DataURL, sep="\t", header=TRUE, stringsAsFactors=FALSE)
|
||||
|
||||
### Alternatively, uncomment and run if working locally with full git
|
||||
### tree
|
||||
###
|
||||
### Identify data source directory and file
|
||||
## DataDir <- ("../data/")
|
||||
## DataFile <- ("dailyviews2020032600.tsv")
|
||||
|
||||
## related.searches.top <- read.table(paste(DataDir,DataFile, sep=""),
|
||||
## sep="\t", header=TRUE,
|
||||
## stringsAsFactors=FALSE)
|
||||
|
||||
### Cleanup and do the grouping with functions from the Tidyverse
|
||||
### (see https://www.tidyverse.org for more info)
|
||||
|
||||
views <- views[,c("article", "project", "timestamp", "views")]
|
||||
views$timestamp <- fct_explicit_na(views$timestamp)
|
||||
|
||||
|
||||
### Sorts and groups at the same time
|
||||
views.by.proj.date <- arrange(group_by(views, project, timestamp),
|
||||
desc(views))
|
||||
|
||||
|
||||
### Export just the top 10 by pageviews
|
||||
write.table(head(views.by.proj.date, 10),
|
||||
file="output/top10_views_by_project_date.csv", sep=",",
|
||||
row.names=FALSE)
|
||||
|
||||
### A simple visualization
|
||||
p <- ggplot(data=views.by.proj.date, aes(views))
|
||||
|
||||
## Density plot with log-transformed axis
|
||||
p + geom_density() + scale_x_log10(labels=comma)
|
||||
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user