1
0
govdoc-cr-analysis/text_analysis/.ipynb_checkpoints/partitioned_readability-checkpoint.ipynb

113 lines
3.6 KiB
Plaintext
Raw Normal View History

2025-02-02 20:16:42 +00:00
{
"cells": [
{
"cell_type": "code",
"execution_count": null,
"id": "f4c4796f-d109-472d-8f9c-95c6ec85f757",
"metadata": {},
"outputs": [],
"source": [
"import os \n",
"import textstat\n",
"import csv"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "8f1f2fce-2335-4ee3-81f2-55822e2f63f9",
"metadata": {},
"outputs": [],
"source": [
"readme_wd = \"\"\n",
"contributing_wd = \"\"\n",
"\n",
"csv_fieldnames = ['subdir', 'filename', 'flesch_reading_ease', 'flesch_kincaid_grade', 'linsear_write_formula', 'dale_chall_readability_score', 'mcalpine_eflaw', 'reading_time', 'char_count', 'word_count']"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "a0d3b5b1-ae97-4a46-95e0-92232c46c2fa",
"metadata": {},
"outputs": [],
"source": [
"'''\n",
"gets the 3 readability scores for each individual textfile\n",
"'''\n",
"def get_readibility(file_address, file_dict):\n",
" file = open(file_address, \"r\")\n",
" document = file.read()\n",
" file_dict['flesch_reading_ease'] = textstat.flesch_reading_ease(document)\n",
" file_dict['flesch_kincaid_grade'] = textstat.flesch_kincaid_grade(document)\n",
" file_dict['linsear_write_formula'] = textstat.linsear_write_formula(document)\n",
" file_dict['dale_chall_readability_score'] = textstat.dale_chall_readability_score(document)\n",
" file_dict['mcalpine_eflaw'] = textstat.mcalpine_eflaw(document)\n",
" file_dict['reading_time'] = textstat.reading_time(document, ms_per_char=14.69)\n",
" file_dict['char_count'] = textstat.char_count(document, ignore_spaces=True)\n",
" file_dict['word_count'] = textstat.lexicon_count(document, removepunct=True)\n",
" return file_dict\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "8b3c481e-c521-4e1d-926e-88f4b75ae7de",
"metadata": {},
"outputs": [],
"source": [
"'''\n",
"getting readability scoring for each type of document\n",
"'''\n",
"def generate_file(output_csv, wdirectory, document_type):\n",
" with open(output_csv, 'w') as csvfile: \n",
" writer = csv.DictWriter(csvfile, fieldnames = csv_fieldnames) \n",
" writer.writeheader() \n",
" subdirs = os.listdir(wdirectory)\n",
" print(document_type)\n",
" for dir in subdirs: \n",
" print(dir)\n",
" files = os.listdir(wdirectory + \"/\" + dir)\n",
" count = 0\n",
" for file in files:\n",
" file_dict = {\"subdir\": dir, \"filename\": file}\n",
" print(file)\n",
" full_address = wdirectory + \"/\" + dir + \"/\" + file\n",
" file_dict = get_readibility(full_address, file_dict)\n",
" writer.writerow(file_dict)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "0e0a7b88-49b6-4053-84b8-f54f1c6536c0",
"metadata": {},
"outputs": [],
"source": [
"generate_file('dwo_readability_contributing.csv', contributing_wd, \"contributing\")"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.13.1"
}
},
"nbformat": 4,
"nbformat_minor": 5
}