1
0

initial commit

This commit is contained in:
Matthew Gaughan 2025-01-29 20:24:43 -08:00
commit 176e6cceec
3 changed files with 154 additions and 0 deletions

9
.gitignore vendored Normal file
View File

@ -0,0 +1,9 @@
# ignore the R studio docker image needed by hyak
rstudio_latest.sif
# do not need to include any R items
.Rhistory
.cache/
.config/
.local/

View File

@ -0,0 +1,45 @@
library(tidyverse)
# test data directory: /gscratch/comdata/users/mjilg/program_testing/
# load in the paritioned directories
library(dplyr)
library(lubridate)
#for a given file we want to get the count data and produce a csv
test_file <- "/gscratch/comdata/users/mjilg/program_testing/core_2012-01-01_to_2014-12-31.csv"
test_dir <- "/gscratch/comdata/users/mjilg/program_testing/"
transform_commit_data <- function(filepath){
df = read.csv(filepath, header = TRUE)
dir_path = dirname(filepath)
file_name = basename(filepath)
# transform the rows of commit data to weekly count data
project_name <- sub("_[0-9]{4}-[0-9]{2}-[0-9]{2}_to_[0-9]{4}-[0-9]{2}-[0-9]{2}.csv$", "", file_name)
df <- df |>
mutate(commit_date = ymd_hms(commit_date)) |>
mutate(project_name = project_name)
weekly_commits <- df |>
mutate(week = floor_date(commit_date, "week")) |>
group_by(week, project_name) |>
summarise(commit_count = n(), .groups = 'drop')
#prepare to save the new, transformed file
count_path <- file.path(dir_path, "weekly_counts")
count_file_name <- paste0("weeklycount_", file_name)
output_file_path <- file.path(count_path, count_file_name)
#save and gracefully exit
write.csv(weekly_commits, output_file_path, row.names = FALSE)
return(weekly_commits)
}
#then for all files in a directory
transform_directory_of_commit_data <- function(dir_path) {
file_list <- list.files(path = dir_path, pattern = "*.csv", full.names = TRUE)
for (filepath in file_list) {
transform_commit_data(filepath)
}
}
transform_directory_of_commit_data(test_dir)

100
rstudio-server.job Normal file
View File

@ -0,0 +1,100 @@
#!/bin/sh
#SBATCH --job-name=mg-govdoc-cr
#SBATCH --partition=cpu-g2-mem2x #update this line - use hyakalloc to find partitions you can use
#SBATCH --time=03:00:00
#SBATCH --nodes=1
#SBATCH --ntasks=4
#SBATCH --mem=64G
#SBATCH --signal=USR2
#SBATCH --output=%x_%j.out
# This script will request a single CPU with four threads with 20GB of RAM for 2 hours.
# You can adjust --time, --nodes, --ntasks, and --mem above to adjust these settings for your session.
# --output=%x_%j.out creates a output file called rstudio-server_XXXXXXXX.out
# where the %x is short hand for --job-name above and the X's are an 8-digit
# jobID assigned by SLURM when our job is submitted.
RSTUDIO_CWD="/mmfs1/home/mjilg/git/govdoc-cr-analysis" # UPDATE THIS LINE
RSTUDIO_SIF="rstudio_latest.sif" # update this line
# Create temp directory for ephemeral content to bind-mount in the container
RSTUDIO_TMP=$(/usr/bin/python3 -c 'import tempfile; print(tempfile.mkdtemp())')
mkdir -p -m 700 \
${RSTUDIO_TMP}/run \
${RSTUDIO_TMP}/tmp \
${RSTUDIO_TMP}/var/lib/rstudio-server
cat > ${RSTUDIO_TMP}/database.conf <<END
provider=sqlite
directory=/var/lib/rstudio-server
END
# Set OMP_NUM_THREADS to prevent OpenBLAS (and any other OpenMP-enhanced
# libraries used by R) from spawning more threads than the number of processors
# allocated to the job.
#
# Set R_LIBS_USER to a path specific to rocker/rstudio to avoid conflicts with
# personal libraries from any R installation in the host environment
cat > ${RSTUDIO_TMP}/rsession.sh <<END
#!/bin/sh
export OMP_NUM_THREADS=${SLURM_JOB_CPUS_PER_NODE}
export R_LIBS_USER=/gscratch/scrubbed/mjilg/R
exec /usr/lib/rstudio-server/bin/rsession "\${@}"
END
chmod +x ${RSTUDIO_TMP}/rsession.sh
export APPTAINER_BIND="${RSTUDIO_CWD}:${RSTUDIO_CWD},/gscratch:/gscratch,${RSTUDIO_TMP}/run:/run,${RSTUDIO_TMP}/tmp:/tmp,${RSTUDIO_TMP}/database.conf:/etc/rstudio/database.conf,${RSTUDIO_TMP}/rsession.sh:/etc/rstudio/rsession.sh,${RSTUDIO_TMP}/var/lib/rstudio-server:/var/lib/rstudio-server"
# Do not suspend idle sessions.
# Alternative to setting session-timeout-minutes=0 in /etc/rstudio/rsession.conf
export APPTAINERENV_RSTUDIO_SESSION_TIMEOUT=0
export APPTAINERENV_USER=$(id -un)
export APPTAINERENV_PASSWORD=$(openssl rand -base64 15)
# get unused socket per https://unix.stackexchange.com/a/132524
# tiny race condition between the python & apptainer commands
readonly PORT=$(/mmfs1/sw/pyenv/versions/3.9.5/bin/python -c 'import socket; s=socket.socket(); s.bind(("", 0)); print(s.getsockname()[1]); s.close()')
cat 1>&2 <<END
1. SSH tunnel from your workstation using the following command:
ssh -N -L 8787:${HOSTNAME}:${PORT} ${APPTAINERENV_USER}@klone.hyak.uw.edu
and point your web browser to http://localhost:8787
2. log in to RStudio Server using the following credentials:
user: ${APPTAINERENV_USER}
password: ${APPTAINERENV_PASSWORD}
When done using RStudio Server, terminate the job by:
1. Exit the RStudio Session ("power" button in the top right corner of the RStudio window)
2. Issue the following command on the login node:
scancel -f ${SLURM_JOB_ID}
END
source /etc/bashrc
module load apptainer
apptainer exec --cleanenv --home ${RSTUDIO_CWD} ${RSTUDIO_CWD}/${RSTUDIO_SIF} \
rserver --www-port ${PORT} \
--auth-none=0 \
--auth-pam-helper-path=pam-helper \
--auth-stay-signed-in-days=30 \
--auth-timeout-minutes=0 \
--rsession-path=/etc/rstudio/rsession.sh \
--server-user=${APPTAINERENV_USER}
APPTAINER_EXIT_CODE=$?
echo "rserver exited $APPTAINER_EXIT_CODE" 1>&2
exit $APPTAINER_EXIT_CODE