preparing for data load tomorrow
This commit is contained in:
parent
176e6cceec
commit
207cf61e88
@ -5,41 +5,145 @@ library(dplyr)
|
||||
library(lubridate)
|
||||
|
||||
#for a given file we want to get the count data and produce a csv
|
||||
test_file <- "/gscratch/comdata/users/mjilg/program_testing/core_2012-01-01_to_2014-12-31.csv"
|
||||
test_dir <- "/gscratch/comdata/users/mjilg/program_testing/"
|
||||
readme_pub_info <- "/mmfs1/gscratch/comdata/users/mjilg/govdoc-cr-data/13125_hyak_test/13125_test_README_publication_commits.csv"
|
||||
contributing_pub_info <- "/mmfs1/gscratch/comdata/users/mjilg/govdoc-cr-data/13125_hyak_test/13125_test_CONTRIBUTING_publication_commits.csv"
|
||||
readme_dir <- "/mmfs1/gscratch/comdata/users/mjilg/govdoc-cr-data/13125_hyak_test/main_commit_data/readme/"
|
||||
contributing_dir <- "/mmfs1/gscratch/comdata/users/mjilg/govdoc-cr-data/13125_hyak_test/main_commit_data/contributing/"
|
||||
|
||||
transform_commit_data <- function(filepath){
|
||||
test_file <- "/mmfs1/gscratch/comdata/users/mjilg/govdoc-cr-data/13125_hyak_test/main_commit_data/contributing/_voxpupuli_beaker_commits.csv"
|
||||
|
||||
transform_commit_data <- function(filepath, ref_df){
|
||||
#basic, loading in the file
|
||||
df = read.csv(filepath, header = TRUE)
|
||||
temp_df <- df
|
||||
dir_path = dirname(filepath)
|
||||
file_name = basename(filepath)
|
||||
|
||||
# transform the rows of commit data to weekly count data
|
||||
project_name <- sub("_[0-9]{4}-[0-9]{2}-[0-9]{2}_to_[0-9]{4}-[0-9]{2}-[0-9]{2}.csv$", "", file_name)
|
||||
# isolate project id
|
||||
project_id <- sub("_commits\\.csv$", "", file_name)
|
||||
project_id <- sub("^_", "", project_id)
|
||||
|
||||
#make sure the dates are formatted correctly and state the project_id
|
||||
df <- df |>
|
||||
mutate(commit_date = ymd_hms(commit_date)) |>
|
||||
mutate(project_name = project_name)
|
||||
mutate(project_id = project_id)
|
||||
|
||||
#find the publication entry, in the specified df
|
||||
matched_entry <- ref_df |>
|
||||
filter(repo_id == project_id)
|
||||
commit_date <- as.Date(matched_entry$commit_date)
|
||||
|
||||
#get information about project age either in the "present"
|
||||
#or at the time of first commit
|
||||
oldest_commit_date <- min(as.Date(df$commit_date))
|
||||
project_age <- as.numeric(as.Date("2024-06-24") - oldest_commit_date)
|
||||
age_at_commit <- as.numeric(commit_date - oldest_commit_date)
|
||||
|
||||
#add that to the data
|
||||
df <- df |>
|
||||
mutate(age = project_age,
|
||||
age_at_commit = age_at_commit)
|
||||
|
||||
#we are looking at weekly data, 6m before and 6m after
|
||||
start_date <- commit_date %m-% months(6)
|
||||
end_date <- commit_date %m+% months(6)
|
||||
introduction_week <- floor_date(commit_date, "week")
|
||||
|
||||
#filler for when there are weeks without commits
|
||||
all_weeks <- seq.Date(floor_date(start_date, "week"), floor_date(end_date, "week"), by = "week")
|
||||
complete_weeks_df <- expand.grid(week = all_weeks,
|
||||
project_id = project_id,
|
||||
age = project_age,
|
||||
age_at_commit = age_at_commit)
|
||||
|
||||
#add a column with the floored week
|
||||
df <- df |>
|
||||
mutate(week = floor_date(commit_date, "week"))
|
||||
|
||||
#for each week, get the list of unique authors that committed
|
||||
cumulative_authors <- df %>%
|
||||
arrange(week) %>%
|
||||
group_by(week) %>%
|
||||
summarize(cumulative_author_emails = list(unique(author_email)), .groups = 'drop')
|
||||
#same for each committer
|
||||
cumulative_committers <- df %>%
|
||||
arrange(week) %>%
|
||||
group_by(week) %>%
|
||||
summarize(cumulative_committer_emails = list(unique(committer_email)), .groups = 'drop')
|
||||
|
||||
#now cut out the commit data that we don't care about
|
||||
df <- df |>
|
||||
filter(as.Date(commit_date) >= start_date & as.Date(commit_date) <= end_date)
|
||||
|
||||
#in order:
|
||||
# - we group by project, week, ages
|
||||
# - and we summarize commit and authorship details
|
||||
# - we then fill in information for missingness
|
||||
# - and add in vars for before/after
|
||||
# - and weekly index
|
||||
weekly_commits <- df |>
|
||||
mutate(week = floor_date(commit_date, "week")) |>
|
||||
group_by(week, project_name) |>
|
||||
summarise(commit_count = n(), .groups = 'drop')
|
||||
group_by(project_id, week, age, age_at_commit) |>
|
||||
summarise(commit_count = n(),
|
||||
author_emails = list(unique(author_email)),
|
||||
committer_emails = list(unique(committer_email)),
|
||||
.groups = 'drop') |>
|
||||
right_join(complete_weeks_df, by=c("week", "project_id", "age", "age_at_commit")) |>
|
||||
replace_na(list(commit_count = 0)) |>
|
||||
mutate(before_after = if_else(week < floor_date(commit_date, "week"), 0, 1)) |>
|
||||
mutate(week_index = as.integer(difftime(week,
|
||||
introduction_week,
|
||||
units = "weeks")))
|
||||
# then, to get the authorship details in
|
||||
# we check if the email data is present, if not we fill in blank
|
||||
# we bring in the information about authorship lists that we already had
|
||||
# then comparing the current week's author list with the previous week's cumulative list, or empty
|
||||
# ---- the length of that difference is the 'new' value
|
||||
# then we delete out the author list information
|
||||
weekly_with_authorship <- weekly_commits |>
|
||||
mutate(
|
||||
author_emails = ifelse(is.na(author_emails), list(character()), author_emails),
|
||||
committer_emails = ifelse(is.na(committer_emails), list(character()), committer_emails)
|
||||
) |>
|
||||
left_join(cumulative_authors, by = "week") |>
|
||||
left_join(cumulative_committers, by = "week") |>
|
||||
mutate(new_author_emails = mapply(function(x, y) length(setdiff(x, y)), author_emails, lag(cumulative_author_emails, default = list(character(1)))),
|
||||
new_committer_emails = mapply(function(x, y) length(setdiff(x, y)), committer_emails, lag(cumulative_committer_emails, default = list(character(1))))) |>
|
||||
select(-author_emails, -committer_emails, -cumulative_author_emails, -cumulative_committer_emails)
|
||||
|
||||
#prepare to save the new, transformed file
|
||||
count_path <- file.path(dir_path, "weekly_counts")
|
||||
count_file_name <- paste0("weeklycount_", file_name)
|
||||
output_file_path <- file.path(count_path, count_file_name)
|
||||
#save and gracefully exit
|
||||
write.csv(weekly_commits, output_file_path, row.names = FALSE)
|
||||
return(weekly_commits)
|
||||
#gracefully exit
|
||||
return(weekly_with_authorship)
|
||||
}
|
||||
|
||||
#then for all files in a directory
|
||||
transform_directory_of_commit_data <- function(dir_path) {
|
||||
transform_directory_of_commit_data <- function(is_readme) {
|
||||
ref_df <- read.csv(contributing_pub_info)
|
||||
dir_path <- contributing_dir
|
||||
if (is_readme){
|
||||
ref_df <- read.csv(readme_pub_info)
|
||||
dir_path <- readme_dir
|
||||
}
|
||||
counted_list <- list()
|
||||
file_list <- list.files(path = dir_path, pattern = "*.csv", full.names = TRUE)
|
||||
for (filepath in file_list) {
|
||||
transform_commit_data(filepath)
|
||||
transformed_data <- transform_commit_data(filepath, ref_df)
|
||||
counted_list <- append(counted_list, list(transformed_data))
|
||||
}
|
||||
counted_df <- bind_rows(counted_list)
|
||||
|
||||
return(counted_df)
|
||||
}
|
||||
|
||||
transform_directory_of_commit_data(test_dir)
|
||||
#below is for contributing file
|
||||
test_big_df <- transform_directory_of_commit_data(is_readme=FALSE)
|
||||
output_filepath <-"/mmfs1/gscratch/comdata/users/mjilg/govdoc-cr-data/13125_hyak_test/013125_weekly_count_CONTRIBUTING.csv"
|
||||
#below is for readme
|
||||
#test_big_df <- transform_directory_of_commit_data(is_readme=TRUE)
|
||||
#output_filepath <-"/mmfs1/gscratch/comdata/users/mjilg/govdoc-cr-data/13125_hyak_test/013125_weekly_count_README.csv"
|
||||
|
||||
#validation testing
|
||||
#length(unique(test_big_df$project_id))
|
||||
#filtered_df <- test_big_df %>%
|
||||
# filter(commit_count != 0, new_author_emails == 0, new_committer_emails == 0)
|
||||
|
||||
#another graceful exit
|
||||
#test_big_df.to_csv(output_filepath, index=False)
|
@ -3,7 +3,7 @@
|
||||
#SBATCH --job-name=mg-govdoc-cr
|
||||
#SBATCH --partition=cpu-g2-mem2x #update this line - use hyakalloc to find partitions you can use
|
||||
|
||||
#SBATCH --time=03:00:00
|
||||
#SBATCH --time=04:00:00
|
||||
#SBATCH --nodes=1
|
||||
#SBATCH --ntasks=4
|
||||
#SBATCH --mem=64G
|
||||
|
Loading…
Reference in New Issue
Block a user