1
0

preparing for data load tomorrow

This commit is contained in:
Matthew Gaughan 2025-01-31 21:09:18 -08:00
parent 176e6cceec
commit 207cf61e88
2 changed files with 124 additions and 20 deletions

View File

@ -5,41 +5,145 @@ library(dplyr)
library(lubridate)
#for a given file we want to get the count data and produce a csv
test_file <- "/gscratch/comdata/users/mjilg/program_testing/core_2012-01-01_to_2014-12-31.csv"
test_dir <- "/gscratch/comdata/users/mjilg/program_testing/"
readme_pub_info <- "/mmfs1/gscratch/comdata/users/mjilg/govdoc-cr-data/13125_hyak_test/13125_test_README_publication_commits.csv"
contributing_pub_info <- "/mmfs1/gscratch/comdata/users/mjilg/govdoc-cr-data/13125_hyak_test/13125_test_CONTRIBUTING_publication_commits.csv"
readme_dir <- "/mmfs1/gscratch/comdata/users/mjilg/govdoc-cr-data/13125_hyak_test/main_commit_data/readme/"
contributing_dir <- "/mmfs1/gscratch/comdata/users/mjilg/govdoc-cr-data/13125_hyak_test/main_commit_data/contributing/"
transform_commit_data <- function(filepath){
test_file <- "/mmfs1/gscratch/comdata/users/mjilg/govdoc-cr-data/13125_hyak_test/main_commit_data/contributing/_voxpupuli_beaker_commits.csv"
transform_commit_data <- function(filepath, ref_df){
#basic, loading in the file
df = read.csv(filepath, header = TRUE)
temp_df <- df
dir_path = dirname(filepath)
file_name = basename(filepath)
# transform the rows of commit data to weekly count data
project_name <- sub("_[0-9]{4}-[0-9]{2}-[0-9]{2}_to_[0-9]{4}-[0-9]{2}-[0-9]{2}.csv$", "", file_name)
# isolate project id
project_id <- sub("_commits\\.csv$", "", file_name)
project_id <- sub("^_", "", project_id)
#make sure the dates are formatted correctly and state the project_id
df <- df |>
mutate(commit_date = ymd_hms(commit_date)) |>
mutate(project_name = project_name)
mutate(project_id = project_id)
#find the publication entry, in the specified df
matched_entry <- ref_df |>
filter(repo_id == project_id)
commit_date <- as.Date(matched_entry$commit_date)
#get information about project age either in the "present"
#or at the time of first commit
oldest_commit_date <- min(as.Date(df$commit_date))
project_age <- as.numeric(as.Date("2024-06-24") - oldest_commit_date)
age_at_commit <- as.numeric(commit_date - oldest_commit_date)
#add that to the data
df <- df |>
mutate(age = project_age,
age_at_commit = age_at_commit)
#we are looking at weekly data, 6m before and 6m after
start_date <- commit_date %m-% months(6)
end_date <- commit_date %m+% months(6)
introduction_week <- floor_date(commit_date, "week")
#filler for when there are weeks without commits
all_weeks <- seq.Date(floor_date(start_date, "week"), floor_date(end_date, "week"), by = "week")
complete_weeks_df <- expand.grid(week = all_weeks,
project_id = project_id,
age = project_age,
age_at_commit = age_at_commit)
#add a column with the floored week
df <- df |>
mutate(week = floor_date(commit_date, "week"))
#for each week, get the list of unique authors that committed
cumulative_authors <- df %>%
arrange(week) %>%
group_by(week) %>%
summarize(cumulative_author_emails = list(unique(author_email)), .groups = 'drop')
#same for each committer
cumulative_committers <- df %>%
arrange(week) %>%
group_by(week) %>%
summarize(cumulative_committer_emails = list(unique(committer_email)), .groups = 'drop')
#now cut out the commit data that we don't care about
df <- df |>
filter(as.Date(commit_date) >= start_date & as.Date(commit_date) <= end_date)
#in order:
# - we group by project, week, ages
# - and we summarize commit and authorship details
# - we then fill in information for missingness
# - and add in vars for before/after
# - and weekly index
weekly_commits <- df |>
mutate(week = floor_date(commit_date, "week")) |>
group_by(week, project_name) |>
summarise(commit_count = n(), .groups = 'drop')
group_by(project_id, week, age, age_at_commit) |>
summarise(commit_count = n(),
author_emails = list(unique(author_email)),
committer_emails = list(unique(committer_email)),
.groups = 'drop') |>
right_join(complete_weeks_df, by=c("week", "project_id", "age", "age_at_commit")) |>
replace_na(list(commit_count = 0)) |>
mutate(before_after = if_else(week < floor_date(commit_date, "week"), 0, 1)) |>
mutate(week_index = as.integer(difftime(week,
introduction_week,
units = "weeks")))
# then, to get the authorship details in
# we check if the email data is present, if not we fill in blank
# we bring in the information about authorship lists that we already had
# then comparing the current week's author list with the previous week's cumulative list, or empty
# ---- the length of that difference is the 'new' value
# then we delete out the author list information
weekly_with_authorship <- weekly_commits |>
mutate(
author_emails = ifelse(is.na(author_emails), list(character()), author_emails),
committer_emails = ifelse(is.na(committer_emails), list(character()), committer_emails)
) |>
left_join(cumulative_authors, by = "week") |>
left_join(cumulative_committers, by = "week") |>
mutate(new_author_emails = mapply(function(x, y) length(setdiff(x, y)), author_emails, lag(cumulative_author_emails, default = list(character(1)))),
new_committer_emails = mapply(function(x, y) length(setdiff(x, y)), committer_emails, lag(cumulative_committer_emails, default = list(character(1))))) |>
select(-author_emails, -committer_emails, -cumulative_author_emails, -cumulative_committer_emails)
#prepare to save the new, transformed file
count_path <- file.path(dir_path, "weekly_counts")
count_file_name <- paste0("weeklycount_", file_name)
output_file_path <- file.path(count_path, count_file_name)
#save and gracefully exit
write.csv(weekly_commits, output_file_path, row.names = FALSE)
return(weekly_commits)
#gracefully exit
return(weekly_with_authorship)
}
#then for all files in a directory
transform_directory_of_commit_data <- function(dir_path) {
transform_directory_of_commit_data <- function(is_readme) {
ref_df <- read.csv(contributing_pub_info)
dir_path <- contributing_dir
if (is_readme){
ref_df <- read.csv(readme_pub_info)
dir_path <- readme_dir
}
counted_list <- list()
file_list <- list.files(path = dir_path, pattern = "*.csv", full.names = TRUE)
for (filepath in file_list) {
transform_commit_data(filepath)
transformed_data <- transform_commit_data(filepath, ref_df)
counted_list <- append(counted_list, list(transformed_data))
}
counted_df <- bind_rows(counted_list)
return(counted_df)
}
transform_directory_of_commit_data(test_dir)
#below is for contributing file
test_big_df <- transform_directory_of_commit_data(is_readme=FALSE)
output_filepath <-"/mmfs1/gscratch/comdata/users/mjilg/govdoc-cr-data/13125_hyak_test/013125_weekly_count_CONTRIBUTING.csv"
#below is for readme
#test_big_df <- transform_directory_of_commit_data(is_readme=TRUE)
#output_filepath <-"/mmfs1/gscratch/comdata/users/mjilg/govdoc-cr-data/13125_hyak_test/013125_weekly_count_README.csv"
#validation testing
#length(unique(test_big_df$project_id))
#filtered_df <- test_big_df %>%
# filter(commit_count != 0, new_author_emails == 0, new_committer_emails == 0)
#another graceful exit
#test_big_df.to_csv(output_filepath, index=False)

View File

@ -3,7 +3,7 @@
#SBATCH --job-name=mg-govdoc-cr
#SBATCH --partition=cpu-g2-mem2x #update this line - use hyakalloc to find partitions you can use
#SBATCH --time=03:00:00
#SBATCH --time=04:00:00
#SBATCH --nodes=1
#SBATCH --ntasks=4
#SBATCH --mem=64G