1
0

initial analysis

This commit is contained in:
Matthew Gaughan 2025-02-02 12:16:42 -08:00
parent 207cf61e88
commit 3c4ea14c81
14 changed files with 1113 additions and 14 deletions

View File

@ -5,12 +5,12 @@ library(dplyr)
library(lubridate)
#for a given file we want to get the count data and produce a csv
readme_pub_info <- "/mmfs1/gscratch/comdata/users/mjilg/govdoc-cr-data/13125_hyak_test/13125_test_README_publication_commits.csv"
contributing_pub_info <- "/mmfs1/gscratch/comdata/users/mjilg/govdoc-cr-data/13125_hyak_test/13125_test_CONTRIBUTING_publication_commits.csv"
readme_dir <- "/mmfs1/gscratch/comdata/users/mjilg/govdoc-cr-data/13125_hyak_test/main_commit_data/readme/"
contributing_dir <- "/mmfs1/gscratch/comdata/users/mjilg/govdoc-cr-data/13125_hyak_test/main_commit_data/contributing/"
readme_pub_info <- "/mmfs1/gscratch/comdata/users/mjilg/govdoc-cr-data/final_data/metadata/README_publication_commits.csv"
contributing_pub_info <- "/mmfs1/gscratch/comdata/users/mjilg/govdoc-cr-data/final_data/metadata/CONTRIBUTING_publication_commits.csv"
readme_dir <- "/mmfs1/gscratch/comdata/users/mjilg/govdoc-cr-data/final_data/main_commit_data/readme/"
contributing_dir <- "/mmfs1/gscratch/comdata/users/mjilg/govdoc-cr-data/final_data/main_commit_data/contributing/"
test_file <- "/mmfs1/gscratch/comdata/users/mjilg/govdoc-cr-data/13125_hyak_test/main_commit_data/contributing/_voxpupuli_beaker_commits.csv"
#test_file <- "/mmfs1/gscratch/comdata/users/mjilg/govdoc-cr-data/13125_hyak_test/main_commit_data/contributing/_voxpupuli_beaker_commits.csv"
transform_commit_data <- function(filepath, ref_df){
#basic, loading in the file
@ -31,7 +31,7 @@ transform_commit_data <- function(filepath, ref_df){
#find the publication entry, in the specified df
matched_entry <- ref_df |>
filter(repo_id == project_id)
commit_date <- as.Date(matched_entry$commit_date)
commit_date <- min(as.Date(matched_entry$commit_date))
#get information about project age either in the "present"
#or at the time of first commit
@ -134,16 +134,15 @@ transform_directory_of_commit_data <- function(is_readme) {
}
#below is for contributing file
test_big_df <- transform_directory_of_commit_data(is_readme=FALSE)
output_filepath <-"/mmfs1/gscratch/comdata/users/mjilg/govdoc-cr-data/13125_hyak_test/013125_weekly_count_CONTRIBUTING.csv"
#test_big_df <- transform_directory_of_commit_data(is_readme=FALSE)
#output_filepath <-"/mmfs1/gscratch/comdata/users/mjilg/govdoc-cr-data/final_data/CONTRIBUTING_weekly_count_data.csv"
#below is for readme
#test_big_df <- transform_directory_of_commit_data(is_readme=TRUE)
#output_filepath <-"/mmfs1/gscratch/comdata/users/mjilg/govdoc-cr-data/13125_hyak_test/013125_weekly_count_README.csv"
big_df <- transform_directory_of_commit_data(is_readme=TRUE)
output_filepath <-"/mmfs1/gscratch/comdata/users/mjilg/govdoc-cr-data/final_data/README_weekly_count_data.csv"
#validation testing
#length(unique(test_big_df$project_id))
length(unique(big_df$project_id))
#filtered_df <- test_big_df %>%
# filter(commit_count != 0, new_author_emails == 0, new_committer_emails == 0)
#another graceful exit
#test_big_df.to_csv(output_filepath, index=False)
write.csv(big_df, output_filepath, row.names = FALSE)

View File

@ -0,0 +1,24 @@
library(dplyr)
library(lubridate)
library(rdd)
contributing_df_filepath <- "/mmfs1/gscratch/comdata/users/mjilg/govdoc-cr-data/final_data/CONTRIBUTING_weekly_count_data.csv"
contributing_df = read.csv(contributing_df_filepath, header = TRUE)
window_num <- 5
contributing_df <- contributing_df |>
filter(week_index >= (- window_num) & week_index <= (window_num)) |>
mutate(scaled_age = scale(age)) |>
mutate(scaled_age_at_commit = scale(age_at_commit))|>
mutate(log1p_count = log1p(commit_count))
library(lme4)
library(optimx)
library(lattice)
all_gmodel <- glmer.nb(log1p_count ~ before_after * week_index + scaled_age + (before_after * week_index | project_id),
control=glmerControl(optimizer="bobyqa",
optCtrl=list(maxfun=2e5)), nAGQ=0,
data=contributing_df)
summary(all_gmodel)

View File

@ -0,0 +1,30 @@
library(dplyr)
library(lubridate)
library(rdd)
contributing_df_filepath <- "/mmfs1/gscratch/comdata/users/mjilg/govdoc-cr-data/final_data/CONTRIBUTING_weekly_count_data.csv"
df = read.csv(contributing_df_filepath, header = TRUE)
#EDA
var(df$commit_count) # 325.5261
mean(df$commit_count) # 7.743385
median(df$commit_count) # 1
mean(df$age) # 4838.649 days
mean(df$age_at_commit) # 2141.996 days
median(df$age) # 4597 days
median(df$age_at_commit) # 1603 days
# scale and log-transform
df$scaled_age <- scale(df$age)
df$scaled_age_at_commit <- scale(df$age_at_commit)
df$log1p_count <- log1p(df$commit_count)
#getting IK Bandwidth
get_optimal_bandwidth <- function(df){
IKbandwidth(df$week_index, df$log1p_count, cutpoint = 0, verbose = FALSE, kernel = "triangular")
}
mean_optimal_bandwidth <- df %>%
group_by(project_id) %>%
summarise(optimal_bandwidth = get_optimal_bandwidth(cur_data())) %>%
summarise(mean_optimal_bandwidth = mean(optimal_bandwidth))

44
mlm/gam_plot.R Normal file
View File

@ -0,0 +1,44 @@
contributing_df_filepath <- "/mmfs1/gscratch/comdata/users/mjilg/govdoc-cr-data/final_data/CONTRIBUTING_weekly_count_data.csv"
contributing_df = read.csv(contributing_df_filepath, header = TRUE)
readme_df_filepath <- "/mmfs1/gscratch/comdata/users/mjilg/govdoc-cr-data/final_data/README_weekly_count_data.csv"
readme_df = read.csv(readme_df_filepath, header = TRUE)
window_num <- 5
contributing_df <- contributing_df |>
filter(week_index >= (- window_num) & week_index <= (window_num)) |>
mutate(doc_type = "CONTRIBUTING")
readme_df <- readme_df |>
filter(week_index >= (- window_num) & week_index <= (window_num)) |>
mutate(doc_type = "README")
main_df <- rbind(contributing_df, readme_df)
main_df$log1p_count <- log1p(main_df$commit_count)
library(scales)
library(ggplot2)
expm1_trans <- trans_new(
name = 'expm1',
transform = function(x) expm1(x),
inverse = function(x) log1p(x)
)
doctypeColors <-
setNames( c('#5da2d8', '#c7756a')
, c("CONTRIBUTING", "README"))
time_plot <- main_df |>
ggplot(aes(x=week_index, y=commit_count, color=factor(doc_type))) +
scale_y_continuous(trans = 'log1p', labels = scales::comma) +
labs(x="Weekly Offset", y="Commit Count", color="Document Type: ") +
scale_color_manual(values = doctypeColors) +
geom_smooth() +
geom_vline(xintercept = 0)+
theme_bw() +
theme(legend.position = "top")
time_plot
#ggsave(filename = "plots/cr-020225-gam-introduction.png", plot = time_plot, width = 8, height = 6, dpi = 700)

Binary file not shown.

After

Width:  |  Height:  |  Size: 493 KiB

View File

34
mlm/readme_did_prep.R Normal file
View File

@ -0,0 +1,34 @@
library(tidyverse)
library(dplyr)
library(lubridate)
library(rdd)
readme_df_filepath <- "/mmfs1/gscratch/comdata/users/mjilg/govdoc-cr-data/final_data/README_weekly_count_data.csv"
df = read.csv(readme_df_filepath, header = TRUE)
#EDA
var(df$commit_count) # 112.4945
mean(df$commit_count) # 2.431342
median(df$commit_count) # 0
mean(df$age) # 4911.734 days
mean(df$age_at_commit) # 197.296 days
median(df$age) # 4689 days
median(df$age_at_commit) # 0 days
# scale and log-transform
df$scaled_age <- scale(df$age)
df$scaled_age_at_commit <- scale(df$age_at_commit)
df$log1p_count <- log1p(df$commit_count)
#getting IK Bandwidth
get_optimal_bandwidth <- function(df){
IKbandwidth(df$week_index, df$log1p_count, cutpoint = 0, verbose = FALSE, kernel = "triangular")
}
mean_optimal_bandwidth <- df %>%
group_by(project_id) %>%
summarise(optimal_bandwidth = get_optimal_bandwidth(cur_data())) %>%
summarise(mean_optimal_bandwidth = mean(optimal_bandwidth))
#Mean Optimal Bandwidth: 5.44841

View File

@ -3,7 +3,7 @@
#SBATCH --job-name=mg-govdoc-cr
#SBATCH --partition=cpu-g2-mem2x #update this line - use hyakalloc to find partitions you can use
#SBATCH --time=04:00:00
#SBATCH --time=05:00:00
#SBATCH --nodes=1
#SBATCH --ntasks=4
#SBATCH --mem=64G

View File

@ -0,0 +1,112 @@
{
"cells": [
{
"cell_type": "code",
"execution_count": null,
"id": "f4c4796f-d109-472d-8f9c-95c6ec85f757",
"metadata": {},
"outputs": [],
"source": [
"import os \n",
"import textstat\n",
"import csv"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "8f1f2fce-2335-4ee3-81f2-55822e2f63f9",
"metadata": {},
"outputs": [],
"source": [
"readme_wd = \"\"\n",
"contributing_wd = \"\"\n",
"\n",
"csv_fieldnames = ['subdir', 'filename', 'flesch_reading_ease', 'flesch_kincaid_grade', 'linsear_write_formula', 'dale_chall_readability_score', 'mcalpine_eflaw', 'reading_time', 'char_count', 'word_count']"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "a0d3b5b1-ae97-4a46-95e0-92232c46c2fa",
"metadata": {},
"outputs": [],
"source": [
"'''\n",
"gets the 3 readability scores for each individual textfile\n",
"'''\n",
"def get_readibility(file_address, file_dict):\n",
" file = open(file_address, \"r\")\n",
" document = file.read()\n",
" file_dict['flesch_reading_ease'] = textstat.flesch_reading_ease(document)\n",
" file_dict['flesch_kincaid_grade'] = textstat.flesch_kincaid_grade(document)\n",
" file_dict['linsear_write_formula'] = textstat.linsear_write_formula(document)\n",
" file_dict['dale_chall_readability_score'] = textstat.dale_chall_readability_score(document)\n",
" file_dict['mcalpine_eflaw'] = textstat.mcalpine_eflaw(document)\n",
" file_dict['reading_time'] = textstat.reading_time(document, ms_per_char=14.69)\n",
" file_dict['char_count'] = textstat.char_count(document, ignore_spaces=True)\n",
" file_dict['word_count'] = textstat.lexicon_count(document, removepunct=True)\n",
" return file_dict\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "8b3c481e-c521-4e1d-926e-88f4b75ae7de",
"metadata": {},
"outputs": [],
"source": [
"'''\n",
"getting readability scoring for each type of document\n",
"'''\n",
"def generate_file(output_csv, wdirectory, document_type):\n",
" with open(output_csv, 'w') as csvfile: \n",
" writer = csv.DictWriter(csvfile, fieldnames = csv_fieldnames) \n",
" writer.writeheader() \n",
" subdirs = os.listdir(wdirectory)\n",
" print(document_type)\n",
" for dir in subdirs: \n",
" print(dir)\n",
" files = os.listdir(wdirectory + \"/\" + dir)\n",
" count = 0\n",
" for file in files:\n",
" file_dict = {\"subdir\": dir, \"filename\": file}\n",
" print(file)\n",
" full_address = wdirectory + \"/\" + dir + \"/\" + file\n",
" file_dict = get_readibility(full_address, file_dict)\n",
" writer.writerow(file_dict)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "0e0a7b88-49b6-4053-84b8-f54f1c6536c0",
"metadata": {},
"outputs": [],
"source": [
"generate_file('dwo_readability_contributing.csv', contributing_wd, \"contributing\")"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.13.1"
}
},
"nbformat": 4,
"nbformat_minor": 5
}

View File

@ -0,0 +1,33 @@
{
"cells": [
{
"cell_type": "code",
"execution_count": null,
"id": "76168c17-548e-4bf2-a1fa-6c0b6372262a",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.13.1"
}
},
"nbformat": 4,
"nbformat_minor": 5
}

View File

@ -0,0 +1,339 @@
{
"cells": [
{
"cell_type": "code",
"execution_count": null,
"id": "e09a84d6-cbd4-4a12-8e96-3775f734a262",
"metadata": {},
"outputs": [],
"source": [
"import re\n",
"import numpy as np\n",
"import pandas as pd\n",
"import glob\n",
"import copy\n",
"import csv\n",
"from statistics import mean, median\n",
"from strip_markdown import strip_markdown\n",
"import joblib"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "9483091c-ac72-415c-932d-ac7cf7970789",
"metadata": {},
"outputs": [],
"source": [
"import gensim\n",
"import gensim.corpora as corpora\n",
"from gensim.utils import simple_preprocess\n",
"from gensim.models import CoherenceModel\n",
"from gensim.models.phrases import Phrases\n",
"\n",
"from sklearn.decomposition import LatentDirichletAllocation\n",
"from sklearn.model_selection import GridSearchCV\n",
"from sklearn.feature_extraction.text import CountVectorizer, TfidfVectorizer\n",
"\n",
"from statistics import mode"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "3da6b590-875d-478d-aaaa-de020039c519",
"metadata": {},
"outputs": [],
"source": [
"# spacy and nltk for lemmatization\n",
"import nltk \n",
"#nltk.download('stopwords')\n",
"import spacy\n",
"from nltk.corpus import stopwords\n",
"from nltk.stem.wordnet import WordNetLemmatizer\n",
"\n",
"stopwords = stopwords.words('english')"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "60c137ae-6fe9-4b03-b899-6141b1645d6b",
"metadata": {},
"outputs": [],
"source": [
"def metadata_for_file(file):\n",
" word_list = file.split()\n",
" word_count = len(word_list)\n",
" #print(word_list)\n",
" if word_count == 0:\n",
" avg_word_length = 0\n",
" else: \n",
" avg_word_length = sum(map(len, word_list)) / len(word_list)\n",
" #return number of paragraphs\n",
" return word_count, avg_word_length"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "2e674fef-adb4-48c9-86a0-a655c41a95f3",
"metadata": {},
"outputs": [],
"source": [
"def get_data_from_dir(directory):\n",
" files = glob.glob(f\"{directory}/*\")\n",
" data_list = []\n",
" word_counts = []\n",
" avg_word_lengths = []\n",
" file_list = []\n",
" for file in files:\n",
" text = open(file, encoding='utf-8').read()\n",
" #here's some of the descriptive text analysis\n",
" word_count, avg_word_length = metadata_for_file(text)\n",
" word_counts.append(word_count)\n",
" avg_word_lengths.append(avg_word_length)\n",
" #adding the data to the list of text\n",
" data_list.append(text)\n",
" #adding filename\n",
" file_list.append(file)\n",
" return data_list, word_counts, avg_word_lengths, file_list"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "2b332b10-bfc8-4566-8c52-19a8a334af00",
"metadata": {},
"outputs": [],
"source": [
"#preprocessing text data\n",
"def preprocess(corpus_list):\n",
" #extending stopwords \n",
" specific_stopwords = [\"http\", \"com\", \"www\", \"org\", \"file\", \"code\", \"time\", \"software\", \"use\", \"user\", \"set\", \"line\", \"run\", \"source\", \"github\",\n",
" \"lineno\", \"python\", \"php\", \"ruby\", \"api\"]\n",
" stopwords.extend(specific_stopwords)\n",
" D = copy.copy(corpus_list)\n",
" #stripping markdown from documents\n",
" D = [strip_markdown(doc) for doc in D]\n",
" #strip html \n",
" D = [re.sub(r'<!--.*?-->', '', doc, flags=re.DOTALL) for doc in D]\n",
" #mvp right now, can certainly be expanded as iterations of text analysis are done\n",
" D = [[token for token in simple_preprocess(doc) if token not in stopwords and len(token) > 2]for doc in D]\n",
" lemmatizer = WordNetLemmatizer()\n",
" D_lemma = [\" \".join([lemmatizer.lemmatize(token) for token in doc]) for doc in D]\n",
" return D_lemma"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "2a26b7ef-d2df-4e1d-8aeb-66706ac6cbb7",
"metadata": {},
"outputs": [],
"source": [
"#preparing processed data for model usage\n",
"def text_preparation(lemmatized_text):\n",
" #bigrams\n",
" D_bigrams = copy.copy(lemmatized_text)\n",
" bigram = Phrases(D_bigrams, min_count=2)\n",
" for i in range(len(lemmatized_text)):\n",
" for token in bigram[D_bigrams[i]]:\n",
" if '_' in token:\n",
" D_bigrams[i].append(token)\n",
" #id2word\n",
" id2word = corpora.Dictionary(D_bigrams)\n",
" id2word.filter_extremes(no_below=5, no_above=0.5)\n",
" #bow representation \n",
" bag_of_words = [id2word.doc2bow(doc) for doc in D_bigrams]\n",
" return bag_of_words, id2word"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "24799e25-2c0c-4e16-b503-68296f604f52",
"metadata": {},
"outputs": [],
"source": [
"def lda_model_identification(data_vectorized):\n",
" lda = LatentDirichletAllocation()\n",
" search_params = {'n_components': [TKTK], 'learning_decay': [.5, .7, .9], 'batch_size' : [128, 256] }\n",
" model = GridSearchCV(lda, param_grid=search_params, verbose=10)\n",
" model.fit(data_vectorized)\n",
" best_lda_model = model.best_estimator_\n",
" print(\"Best Model's Params: \", model.best_params_)\n",
" print(\"Best Log Likelihood Score: \", model.best_score_)\n",
" print(\"Model Perplexity: \", best_lda_model.perplexity(data_vectorized))"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "d3b5785f-8272-44f5-9aee-e5f5e97452e5",
"metadata": {},
"outputs": [],
"source": [
"def best_lda_model(data_vectorized, vocab):\n",
" lda = LatentDirichletAllocation(n_components=TKTK, learning_decay = TKTK, batch_size = TKTK, max_iter = TKTK)\n",
" id_topic = lda.fit_transform(data_vectorized)\n",
" topic_words = {}\n",
" for topic, comp in enumerate(lda.components_):\n",
" word_idx = np.argsort(comp)[::-1][:10]\n",
" topic_words[topic] = [vocab[i] for i in word_idx]\n",
" for topic, words in topic_words.items():\n",
" print('Topic: %d' % topic)\n",
" print(' %s' % ', '.join(words))\n",
" #lda.print_topics(num_words=10)\n",
" joblib.dump(lda, '020125_DOCTYPE_lda.jl')\n",
" #lda = joblib.load('0509_lda.jl')\n",
" return id_topic"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "80bcdc6c-8a3d-4738-87b5-15e6c2db3a27",
"metadata": {},
"outputs": [],
"source": [
"def get_most_prevalent(vect_documents, documents):\n",
" lda = joblib.load('TKTK_lda.jl')\n",
" distributions = lda.transform(vect_documents)\n",
" most_prevalent = {0: [0, \"\"],1: [0, \"\"], 2: [0, \"\"], 3: [0, \"\"], 4: [0, \"\"], 5: [0, \"\"], 6: [0, \"\"], 7: [0, \"\"]}\n",
" for i, topic_distribution in enumerate(distributions):\n",
" for j in range(8):\n",
" if topic_distribution[j] > most_prevalent[j][0]:\n",
" most_prevalent[j] = [topic_distribution[j], documents[i]]\n",
" print(most_prevalent)\n",
" return most_prevalent\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "3afd27af-8e8f-43c0-8610-06f7a68d5aec",
"metadata": {},
"outputs": [],
"source": [
"def prevalent_topics(vect_documents, file_list):\n",
" lda = joblib.load('TKTKTKTK_lda.jl')\n",
" #lda = joblib.load('0514_contrib_lda.jl')\n",
" distributions = lda.transform(vect_documents)\n",
" #figuring out what the max distribution is and then figuring out the mode\n",
" top_topic = []\n",
" count_of_multiple = 0\n",
" topic_arrays = []\n",
" for i, topic_distribution in enumerate(distributions):\n",
" max_dist = max(topic_distribution)\n",
" indexes = np.where(topic_distribution == max_dist)[0]\n",
" if len(indexes) == 1:\n",
" top_topic.append(indexes[0])\n",
" else:\n",
" count_of_multiple += 1\n",
" topic_arrays.append(topic_distribution)\n",
" most_frequent(top_topic)\n",
" print(count_of_multiple)\n",
" df = pd.DataFrame(topic_arrays)\n",
" #finding the distribution values for all documents\n",
" with open('readme_file_topic_distributions.csv', 'w', newline='') as csvfile:\n",
" fieldnames = ['filename', 't0', 't1', 't2', 't3', 't4', 't5', 't6', 't7']\n",
" writer = csv.DictWriter(csvfile, fieldnames=fieldnames)\n",
" writer.writeheader()\n",
" for i, row in df.iterrows():\n",
" project_dir = {}\n",
" project_dir['filename'] = file_list[i].split(\"/\")[-1]\n",
" array_row = df.iloc[i].to_numpy()\n",
" for j in range(8):\n",
" project_dir[\"t\" + str(j)] = array_row[j]\n",
" writer.writerow(project_dir)\n",
" #print(df.sort_values(by=['0']).head(5))\n",
" '''\n",
" for i in range(8):\n",
" print(\"-----------------------Topic \" + str(i) + \" --------------------------------\")\n",
" top5 = df.nlargest(10, i)\n",
" top_indices = top5.index.to_list()\n",
" print(top5)\n",
" for index in top_indices:\n",
" print(file_list[index])\n",
" bottom5 = df.nsmallest(10, i)\n",
" bottom_indices = bottom5.index.to_list()\n",
" print(bottom5)\n",
" for index in bottom_indices:\n",
" print(file_list[index])\n",
" '''\n",
" averages = df.mean()\n",
" print(averages)\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "5aefbafc-0c1b-409a-afbc-655e4cef91e3",
"metadata": {},
"outputs": [],
"source": [
"def most_frequent(topic_prevalence):\n",
" most_frequent_array = []\n",
" for j in range(4):\n",
" topic = mode(topic_prevalence)\n",
" most_frequent_array.append(topic)\n",
" topic_prevalence = [i for i in topic_prevalence if i != topic]\n",
" print(most_frequent_array)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "1f937c2e-2714-475d-b670-602164c46642",
"metadata": {},
"outputs": [],
"source": [
"listed_corpus, wordcounts, wordlengths, file_list = get_data_from_dir(readme_directory)\n",
"print(\"Mean wordcount: \", mean(wordcounts))\n",
"print(\"Median wordcount: \", median(wordcounts))\n",
"print(\"Mean wordlength: \", mean(wordlengths))\n",
"print(\"Median wordlength: \", median(wordlengths))\n",
"lemmatized_corpus = preprocess(listed_corpus)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "e90e236f-8db5-40cc-88a3-60e674b9d1de",
"metadata": {},
"outputs": [],
"source": [
"vectorizer = CountVectorizer(analyzer='word', \n",
" min_df=2, \n",
" stop_words='english', \n",
" lowercase=True, \n",
" token_pattern='[a-zA-Z0-9]{2,}', \n",
" )\n",
"data_vectorized = vectorizer.fit_transform(lemmatized_corpus)\n",
"joblib.dump(vectorizer, '020125_DOCTYPE_vectorizer.joblib'"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.13.1"
}
},
"nbformat": 4,
"nbformat_minor": 5
}

View File

@ -0,0 +1,112 @@
{
"cells": [
{
"cell_type": "code",
"execution_count": null,
"id": "f4c4796f-d109-472d-8f9c-95c6ec85f757",
"metadata": {},
"outputs": [],
"source": [
"import os \n",
"import textstat\n",
"import csv"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "8f1f2fce-2335-4ee3-81f2-55822e2f63f9",
"metadata": {},
"outputs": [],
"source": [
"readme_wd = \"\"\n",
"contributing_wd = \"\"\n",
"\n",
"csv_fieldnames = ['subdir', 'filename', 'flesch_reading_ease', 'flesch_kincaid_grade', 'linsear_write_formula', 'dale_chall_readability_score', 'mcalpine_eflaw', 'reading_time', 'char_count', 'word_count']"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "a0d3b5b1-ae97-4a46-95e0-92232c46c2fa",
"metadata": {},
"outputs": [],
"source": [
"'''\n",
"gets the 3 readability scores for each individual textfile\n",
"'''\n",
"def get_readibility(file_address, file_dict):\n",
" file = open(file_address, \"r\")\n",
" document = file.read()\n",
" file_dict['flesch_reading_ease'] = textstat.flesch_reading_ease(document)\n",
" file_dict['flesch_kincaid_grade'] = textstat.flesch_kincaid_grade(document)\n",
" file_dict['linsear_write_formula'] = textstat.linsear_write_formula(document)\n",
" file_dict['dale_chall_readability_score'] = textstat.dale_chall_readability_score(document)\n",
" file_dict['mcalpine_eflaw'] = textstat.mcalpine_eflaw(document)\n",
" file_dict['reading_time'] = textstat.reading_time(document, ms_per_char=14.69)\n",
" file_dict['char_count'] = textstat.char_count(document, ignore_spaces=True)\n",
" file_dict['word_count'] = textstat.lexicon_count(document, removepunct=True)\n",
" return file_dict\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "8b3c481e-c521-4e1d-926e-88f4b75ae7de",
"metadata": {},
"outputs": [],
"source": [
"'''\n",
"getting readability scoring for each type of document\n",
"'''\n",
"def generate_file(output_csv, wdirectory, document_type):\n",
" with open(output_csv, 'w') as csvfile: \n",
" writer = csv.DictWriter(csvfile, fieldnames = csv_fieldnames) \n",
" writer.writeheader() \n",
" subdirs = os.listdir(wdirectory)\n",
" print(document_type)\n",
" for dir in subdirs: \n",
" print(dir)\n",
" files = os.listdir(wdirectory + \"/\" + dir)\n",
" count = 0\n",
" for file in files:\n",
" file_dict = {\"subdir\": dir, \"filename\": file}\n",
" print(file)\n",
" full_address = wdirectory + \"/\" + dir + \"/\" + file\n",
" file_dict = get_readibility(full_address, file_dict)\n",
" writer.writerow(file_dict)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "0e0a7b88-49b6-4053-84b8-f54f1c6536c0",
"metadata": {},
"outputs": [],
"source": [
"generate_file('dwo_readability_contributing.csv', contributing_wd, \"contributing\")"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.13.1"
}
},
"nbformat": 4,
"nbformat_minor": 5
}

View File

@ -0,0 +1,33 @@
{
"cells": [
{
"cell_type": "code",
"execution_count": null,
"id": "76168c17-548e-4bf2-a1fa-6c0b6372262a",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.13.1"
}
},
"nbformat": 4,
"nbformat_minor": 5
}

View File

@ -0,0 +1,339 @@
{
"cells": [
{
"cell_type": "code",
"execution_count": null,
"id": "e09a84d6-cbd4-4a12-8e96-3775f734a262",
"metadata": {},
"outputs": [],
"source": [
"import re\n",
"import numpy as np\n",
"import pandas as pd\n",
"import glob\n",
"import copy\n",
"import csv\n",
"from statistics import mean, median\n",
"from strip_markdown import strip_markdown\n",
"import joblib"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "9483091c-ac72-415c-932d-ac7cf7970789",
"metadata": {},
"outputs": [],
"source": [
"import gensim\n",
"import gensim.corpora as corpora\n",
"from gensim.utils import simple_preprocess\n",
"from gensim.models import CoherenceModel\n",
"from gensim.models.phrases import Phrases\n",
"\n",
"from sklearn.decomposition import LatentDirichletAllocation\n",
"from sklearn.model_selection import GridSearchCV\n",
"from sklearn.feature_extraction.text import CountVectorizer, TfidfVectorizer\n",
"\n",
"from statistics import mode"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "3da6b590-875d-478d-aaaa-de020039c519",
"metadata": {},
"outputs": [],
"source": [
"# spacy and nltk for lemmatization\n",
"import nltk \n",
"#nltk.download('stopwords')\n",
"import spacy\n",
"from nltk.corpus import stopwords\n",
"from nltk.stem.wordnet import WordNetLemmatizer\n",
"\n",
"stopwords = stopwords.words('english')"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "60c137ae-6fe9-4b03-b899-6141b1645d6b",
"metadata": {},
"outputs": [],
"source": [
"def metadata_for_file(file):\n",
" word_list = file.split()\n",
" word_count = len(word_list)\n",
" #print(word_list)\n",
" if word_count == 0:\n",
" avg_word_length = 0\n",
" else: \n",
" avg_word_length = sum(map(len, word_list)) / len(word_list)\n",
" #return number of paragraphs\n",
" return word_count, avg_word_length"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "2e674fef-adb4-48c9-86a0-a655c41a95f3",
"metadata": {},
"outputs": [],
"source": [
"def get_data_from_dir(directory):\n",
" files = glob.glob(f\"{directory}/*\")\n",
" data_list = []\n",
" word_counts = []\n",
" avg_word_lengths = []\n",
" file_list = []\n",
" for file in files:\n",
" text = open(file, encoding='utf-8').read()\n",
" #here's some of the descriptive text analysis\n",
" word_count, avg_word_length = metadata_for_file(text)\n",
" word_counts.append(word_count)\n",
" avg_word_lengths.append(avg_word_length)\n",
" #adding the data to the list of text\n",
" data_list.append(text)\n",
" #adding filename\n",
" file_list.append(file)\n",
" return data_list, word_counts, avg_word_lengths, file_list"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "2b332b10-bfc8-4566-8c52-19a8a334af00",
"metadata": {},
"outputs": [],
"source": [
"#preprocessing text data\n",
"def preprocess(corpus_list):\n",
" #extending stopwords \n",
" specific_stopwords = [\"http\", \"com\", \"www\", \"org\", \"file\", \"code\", \"time\", \"software\", \"use\", \"user\", \"set\", \"line\", \"run\", \"source\", \"github\",\n",
" \"lineno\", \"python\", \"php\", \"ruby\", \"api\"]\n",
" stopwords.extend(specific_stopwords)\n",
" D = copy.copy(corpus_list)\n",
" #stripping markdown from documents\n",
" D = [strip_markdown(doc) for doc in D]\n",
" #strip html \n",
" D = [re.sub(r'<!--.*?-->', '', doc, flags=re.DOTALL) for doc in D]\n",
" #mvp right now, can certainly be expanded as iterations of text analysis are done\n",
" D = [[token for token in simple_preprocess(doc) if token not in stopwords and len(token) > 2]for doc in D]\n",
" lemmatizer = WordNetLemmatizer()\n",
" D_lemma = [\" \".join([lemmatizer.lemmatize(token) for token in doc]) for doc in D]\n",
" return D_lemma"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "2a26b7ef-d2df-4e1d-8aeb-66706ac6cbb7",
"metadata": {},
"outputs": [],
"source": [
"#preparing processed data for model usage\n",
"def text_preparation(lemmatized_text):\n",
" #bigrams\n",
" D_bigrams = copy.copy(lemmatized_text)\n",
" bigram = Phrases(D_bigrams, min_count=2)\n",
" for i in range(len(lemmatized_text)):\n",
" for token in bigram[D_bigrams[i]]:\n",
" if '_' in token:\n",
" D_bigrams[i].append(token)\n",
" #id2word\n",
" id2word = corpora.Dictionary(D_bigrams)\n",
" id2word.filter_extremes(no_below=5, no_above=0.5)\n",
" #bow representation \n",
" bag_of_words = [id2word.doc2bow(doc) for doc in D_bigrams]\n",
" return bag_of_words, id2word"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "24799e25-2c0c-4e16-b503-68296f604f52",
"metadata": {},
"outputs": [],
"source": [
"def lda_model_identification(data_vectorized):\n",
" lda = LatentDirichletAllocation()\n",
" search_params = {'n_components': [TKTK], 'learning_decay': [.5, .7, .9], 'batch_size' : [128, 256] }\n",
" model = GridSearchCV(lda, param_grid=search_params, verbose=10)\n",
" model.fit(data_vectorized)\n",
" best_lda_model = model.best_estimator_\n",
" print(\"Best Model's Params: \", model.best_params_)\n",
" print(\"Best Log Likelihood Score: \", model.best_score_)\n",
" print(\"Model Perplexity: \", best_lda_model.perplexity(data_vectorized))"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "d3b5785f-8272-44f5-9aee-e5f5e97452e5",
"metadata": {},
"outputs": [],
"source": [
"def best_lda_model(data_vectorized, vocab):\n",
" lda = LatentDirichletAllocation(n_components=TKTK, learning_decay = TKTK, batch_size = TKTK, max_iter = TKTK)\n",
" id_topic = lda.fit_transform(data_vectorized)\n",
" topic_words = {}\n",
" for topic, comp in enumerate(lda.components_):\n",
" word_idx = np.argsort(comp)[::-1][:10]\n",
" topic_words[topic] = [vocab[i] for i in word_idx]\n",
" for topic, words in topic_words.items():\n",
" print('Topic: %d' % topic)\n",
" print(' %s' % ', '.join(words))\n",
" #lda.print_topics(num_words=10)\n",
" joblib.dump(lda, '020125_DOCTYPE_lda.jl')\n",
" #lda = joblib.load('0509_lda.jl')\n",
" return id_topic"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "80bcdc6c-8a3d-4738-87b5-15e6c2db3a27",
"metadata": {},
"outputs": [],
"source": [
"def get_most_prevalent(vect_documents, documents):\n",
" lda = joblib.load('TKTK_lda.jl')\n",
" distributions = lda.transform(vect_documents)\n",
" most_prevalent = {0: [0, \"\"],1: [0, \"\"], 2: [0, \"\"], 3: [0, \"\"], 4: [0, \"\"], 5: [0, \"\"], 6: [0, \"\"], 7: [0, \"\"]}\n",
" for i, topic_distribution in enumerate(distributions):\n",
" for j in range(8):\n",
" if topic_distribution[j] > most_prevalent[j][0]:\n",
" most_prevalent[j] = [topic_distribution[j], documents[i]]\n",
" print(most_prevalent)\n",
" return most_prevalent\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "3afd27af-8e8f-43c0-8610-06f7a68d5aec",
"metadata": {},
"outputs": [],
"source": [
"def prevalent_topics(vect_documents, file_list):\n",
" lda = joblib.load('TKTKTKTK_lda.jl')\n",
" #lda = joblib.load('0514_contrib_lda.jl')\n",
" distributions = lda.transform(vect_documents)\n",
" #figuring out what the max distribution is and then figuring out the mode\n",
" top_topic = []\n",
" count_of_multiple = 0\n",
" topic_arrays = []\n",
" for i, topic_distribution in enumerate(distributions):\n",
" max_dist = max(topic_distribution)\n",
" indexes = np.where(topic_distribution == max_dist)[0]\n",
" if len(indexes) == 1:\n",
" top_topic.append(indexes[0])\n",
" else:\n",
" count_of_multiple += 1\n",
" topic_arrays.append(topic_distribution)\n",
" most_frequent(top_topic)\n",
" print(count_of_multiple)\n",
" df = pd.DataFrame(topic_arrays)\n",
" #finding the distribution values for all documents\n",
" with open('readme_file_topic_distributions.csv', 'w', newline='') as csvfile:\n",
" fieldnames = ['filename', 't0', 't1', 't2', 't3', 't4', 't5', 't6', 't7']\n",
" writer = csv.DictWriter(csvfile, fieldnames=fieldnames)\n",
" writer.writeheader()\n",
" for i, row in df.iterrows():\n",
" project_dir = {}\n",
" project_dir['filename'] = file_list[i].split(\"/\")[-1]\n",
" array_row = df.iloc[i].to_numpy()\n",
" for j in range(8):\n",
" project_dir[\"t\" + str(j)] = array_row[j]\n",
" writer.writerow(project_dir)\n",
" #print(df.sort_values(by=['0']).head(5))\n",
" '''\n",
" for i in range(8):\n",
" print(\"-----------------------Topic \" + str(i) + \" --------------------------------\")\n",
" top5 = df.nlargest(10, i)\n",
" top_indices = top5.index.to_list()\n",
" print(top5)\n",
" for index in top_indices:\n",
" print(file_list[index])\n",
" bottom5 = df.nsmallest(10, i)\n",
" bottom_indices = bottom5.index.to_list()\n",
" print(bottom5)\n",
" for index in bottom_indices:\n",
" print(file_list[index])\n",
" '''\n",
" averages = df.mean()\n",
" print(averages)\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "5aefbafc-0c1b-409a-afbc-655e4cef91e3",
"metadata": {},
"outputs": [],
"source": [
"def most_frequent(topic_prevalence):\n",
" most_frequent_array = []\n",
" for j in range(4):\n",
" topic = mode(topic_prevalence)\n",
" most_frequent_array.append(topic)\n",
" topic_prevalence = [i for i in topic_prevalence if i != topic]\n",
" print(most_frequent_array)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "1f937c2e-2714-475d-b670-602164c46642",
"metadata": {},
"outputs": [],
"source": [
"listed_corpus, wordcounts, wordlengths, file_list = get_data_from_dir(readme_directory)\n",
"print(\"Mean wordcount: \", mean(wordcounts))\n",
"print(\"Median wordcount: \", median(wordcounts))\n",
"print(\"Mean wordlength: \", mean(wordlengths))\n",
"print(\"Median wordlength: \", median(wordlengths))\n",
"lemmatized_corpus = preprocess(listed_corpus)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "e90e236f-8db5-40cc-88a3-60e674b9d1de",
"metadata": {},
"outputs": [],
"source": [
"vectorizer = CountVectorizer(analyzer='word', \n",
" min_df=2, \n",
" stop_words='english', \n",
" lowercase=True, \n",
" token_pattern='[a-zA-Z0-9]{2,}', \n",
" )\n",
"data_vectorized = vectorizer.fit_transform(lemmatized_corpus)\n",
"joblib.dump(vectorizer, '020125_DOCTYPE_vectorizer.joblib'"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.13.1"
}
},
"nbformat": 4,
"nbformat_minor": 5
}