library(dplyr) library(lubridate) library(rdd) contributing_df_filepath <- "/mmfs1/gscratch/comdata/users/mjilg/govdoc-cr-data/final_data/CONTRIBUTING_weekly_count_data.csv" df = read.csv(contributing_df_filepath, header = TRUE) #EDA var(df$commit_count) # 325.5261 mean(df$commit_count) # 7.743385 median(df$commit_count) # 1 mean(df$age) # 4838.649 days mean(df$age_at_commit) # 2141.996 days median(df$age) # 4597 days median(df$age_at_commit) # 1603 days # scale and log-transform df$scaled_age <- scale(df$age) df$scaled_age_at_commit <- scale(df$age_at_commit) df$log1p_count <- log1p(df$commit_count) #getting IK Bandwidth get_optimal_bandwidth <- function(df){ IKbandwidth(df$week_index, df$log1p_count, cutpoint = 0, verbose = FALSE, kernel = "triangular") } mean_optimal_bandwidth <- df %>% group_by(project_id) %>% summarise(optimal_bandwidth = get_optimal_bandwidth(cur_data())) %>% summarise(mean_optimal_bandwidth = mean(optimal_bandwidth))