library(dplyr) contributing_df_filepath <- "/mmfs1/gscratch/comdata/users/mjilg/govdoc-cr-data/final_data/CONTRIBUTING_weekly_count_data.csv" contributing_df = read.csv(contributing_df_filepath, header = TRUE) readme_df_filepath <- "/mmfs1/gscratch/comdata/users/mjilg/govdoc-cr-data/final_data/README_weekly_count_data.csv" readme_df = read.csv(readme_df_filepath, header = TRUE) window_num <- 5 contributing_df <- contributing_df |> filter(week_index >= (- window_num) & week_index <= (window_num)) |> mutate(doc_type = "CONTRIBUTING") readme_df <- readme_df |> filter(week_index >= (- window_num) & week_index <= (window_num)) |> mutate(doc_type = "README") main_df <- rbind(contributing_df, readme_df) main_df$log1p_count <- log1p(main_df$commit_count) library(scales) library(ggplot2) expm1_trans <- trans_new( name = 'expm1', transform = function(x) expm1(x), inverse = function(x) log1p(x) ) doctypeColors <- setNames( c('#5da2d8', '#c7756a') , c("CONTRIBUTING", "README")) time_plot <- main_df |> ggplot(aes(x=week_index, y=commit_count, color=factor(doc_type))) + scale_y_continuous(trans = 'log1p', labels = scales::comma) + labs(x="Weekly Offset", y="Commit Count", color="Document Type: ") + scale_color_manual(values = doctypeColors) + geom_smooth() + geom_vline(xintercept = 0)+ theme_bw() + theme(legend.position = "top") time_plot ggsave(filename = "plots/cr-020325-gam-introduction.png", plot = time_plot, width = 9, height = 9, dpi = 800)