{ "cells": [ { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [], "source": [ "import pandas as pd" ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [], "source": [ "merged_manifest = pd.read_csv('0203_readme_merged_manifest.csv')\n", "topic_distributions = pd.read_csv('020125_README_file_topic_distributions.csv')\n", "readability_scores = pd.read_csv('020125_README_readability.csv')" ] }, { "cell_type": "code", "execution_count": 10, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "4248" ] }, "execution_count": 10, "metadata": {}, "output_type": "execute_result" } ], "source": [ "first_merge = readability_scores.merge(topic_distributions, on=['filename'],how=\"inner\")\n", "#primary_merge = first_merge.merge(readability_scores, )\n", "first_merge['fvf_filepath'] = first_merge['filename']\n", "second_merge = first_merge.merge(merged_manifest, on=['fvf_filepath'], how=\"inner\")\n", "len(second_merge)" ] } ], "metadata": { "kernelspec": { "display_name": "base", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.12.2" } }, "nbformat": 4, "nbformat_minor": 2 }